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Abstract

Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit
dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and
theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has
remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of
an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above
50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells.
We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict
that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should
lead to a decrease in dynamic range.
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supported by the European Commission Project GABA (FP6-NEST Contract 043309) and the Spanish MCyT and Feder under Project FISICO (FIS-2004-00953). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: leonardo@ifisc.uib-csic.es

Introduction

One of the distinctive features of many neurons is the presence

of extensive dendritic trees. Much experimental and computa-

tional work has been devoted to the description of morphologic

and dynamic aspects of these neural processes [1], in special after

the discovery of dendritic active conductances [2–4]. Several

proposals have been made about possible computational functions

associated to active dendrites, such as the implementation of

biological logic gates and coincidence detectors [5,6], learning

signaling via dendritic spikes [7] or an increase in the learning

capacity of the neuron [8]. However, it is not clear whether such

mechanisms are robust in face of the noisy and spatially distributed

character of incoming synaptic input, as well as the large

variability in morphology and dendritic sizes.

Here we propose to view the dendritic tree not as a

computational device, an exquisitely designed ‘‘neural microchip’’

[6] whose function could be dependent on an improbable fine

tuning of biological parameters (such as delay constants,

arborization size, etc), but rather as a spatially extended excitable

system [9] whose robust collective properties may have been

progressively exapted to perform other biological functions. Our

intention is to provide a simpler hypothesis about the functional

role of active dendrites, which could be experimentally tested

against other proposals.

We study a model where the excitable dynamics is simple, but

the dendritic topology is faithfully reproduced by means of a

binary tree with a large number of excitable branchlets. Most

importantly, branchlets are activated stochastically (at some rate),

so that the effects of the nonlinear interactions among dendritic

spikes can be assessed. We study how the geometry of such a

spatially extended excitable system boosts its ability to perform

non-linear signal processing on incoming stimuli. We show that

excitable trees naturally exhibit large dynamic ranges — above

50 dB. In other words, the neuron could handle five orders of

magnitude of stimulus intensity, even in the absence of adaptive

mechanisms. This performance is one hundred times better than

what was previously observed in other network topologies [10,11].

Such a high performance seems to be characteristic of branched

(tree) structures. We believe that these findings provide important

clues about the possible functional roles of active dendrites, thus

providing a theoretical background [4] on the cooperative

behavior of interacting branchlets. We observe in the model the

occurrence of dendritic spikes similar to those already observed

experimentally and recently related to synaptic plasticity [7]. Here,

however, such spikes are just an inevitable consequence of the

excitable dynamics and we propose that even dendritic trees

without important plasticity phenomena (like those of some

sensory neurons) could benefit from active dendrites from the

point of view of enlargement of its operational range.

Our results also suggest that, under continuous synaptic

bombardment, dendritic spikes could be responsible for another

unintended prediction of the model, namely, that the neuron transfer

function needs not to be simply a Hill-like saturating curve; rather, a

double-sigmoid behavior may appear (as observed experimentally in

retinal ganglion cells [12]). The model further predicts that:

N the neuron average activity depends mainly on the rate of

branchlet activation, reflecting in a robust way the afferent

input, and not on the total number of branchlets present in the

tree, which is highly dependent on accidental morphological

details;
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N the size of the dendritic arbor, or rather the number of

bifurcations of the tree, affects in a specific manner the

neuronal dynamic range.

So, why do neurons have active dendrites? As a short answer,

we propose that neurons are the only body cells with large

dendrites because they need to work with a large stimulus range.

Owing to the enormous number of afferent synapses and the large

variability of input rates, highly arborized and active dendrites are

crucial to enhance the dynamic range of a neuron, in a way not

accounted for by passive cable theory and biophysical neuron

models with few compartments (reduced models) [13]. Other

phenomena, such as backpropagating spikes, could have been later

exapted to more complex functional roles. One should, however,

consider first a generic property of extended excitable media: that,

due to the creation and annihilation of non-linear pulses, the

input-output transfer function of such media is necessarily highly

non-linear, with a very large dynamic range as compared with that

of a passive medium.

Methods

Modeling active dendrites
In computational neuroscience, the behavior of an active

neuronal membrane traditionally is modeled by coupled differen-

tial equations which represent the dynamics of its electric potential

and gating variables related to the ionic conductances. This

modeling strategy was then further extended by detailing the

dendritic tuft through a compartmental approach [14]. Motivated

by the abundant evidence that dendrites have active ion channels

that can support non-linear summation and dendritic spikes [1,6],

this line of research currently aims at examining the possibility that

these extensive tree-shaped neuronal regions may be the stage for

some kind of ‘‘dendritic computation’’ [4,5,15].

Many efforts within this framework of biophysical modeling

have been devoted to unveiling the conditions under which the

regenerative properties of dendritic active channels may be

unleashed to generate a nonlinear excitation (e.g. at the level of

a single spine [16] or upon temporally synchronized and locally

strong input at the level of a branchlet [17]). Nonlinear cable

theory can further help predict whether and how a single dendritic

spike will propagate along the branches, for instance highlighting

the relative importance of a given channel type for the

propagation of action potentials [18]. Detailed biophysical models

also correctly predicts e.g. that two counter-propagating dendritic

spikes annihilate each other upon collision [19,20] (instead of

summing), but this is true for most – if not all – extended excitable

media. However, at the present state of the art of neuronal

simulations, biophysical modeling may not necessarily be the

approach best suited for addressing the much more difficult

question of what happens when many dendritic spikes interact,

specially in a more natural scenario where they would be

continuously created at different points of the dendritic tree at

some stochastic rate.

Understanding the net effect of the creation and annihilation of

dendritic nonlinear excitations under massive spatio-temporal

patterns of synaptic input requires 1) knowledge of the key

properties of these excitations and their interactions (which cable

theory gives us) and 2) a theoretical framework which addresses

the resulting collective behavior. We therefore borrow from cable

theory the facts that dendritic spikes may (or may not) be created

by integrated synaptic input at some branchlets, then may (or may

not) propagate to neighboring branchlets, and annihilate upon

collision owing to refractoriness. Then, by employing a simplified

excitable model for each branchlet, but a realistic multicompart-

ment dendritic tree, we are able to focus on their collective

behavior and to cast the dynamics of the dendritic tuft into the

framework of extended excitable media, where both numerical

and theoretical approaches have been successfully applied [9–

11,21–27].

Conventional wisdom in computational neuroscience is that in

the limit of a very large number of compartments the model would

be physically accurate. But in this same limit, conventional wisdom

in statistical physics (say, renormalization group arguments) tells us

that collective behaviors should be very weakly dependent on the

detailed modeling of the basic (compartmental) unit [28].

Macroscopic properties of extended media would rather depend

more strongly on dimensionality, network topology, symmetries,

presence of parameter randomness (disorder), noise, boundary

conditions etc. Therefore modeling should concentrate efforts on

these more decisive aspects, the use of simple excitable dynamics

for the elementary units being justified as a first approximation.

Elementary dynamics. To account for the active nature of

dendritic branchlets, each site is modelled as a simple discrete

excitable element: si tð Þ[ 0,1,2f g denotes the state of site i at time t
(Fig. 1A). If the i{th branchlet is active (si~1), in the next time

step it becomes refractory (si~2). The average refractory period is

controlled by pc, which is the probability with which sites return to

a quiescent state (si~0) again. Only quiescent sites can become

active due to activation by neighboring compartments or by

external (synaptic) inputs. Owing to the sometimes small density of

ionic channels in dendrites, transmission of excitations from active

to quiescent sites is modelled to occur with probability pl per bond

(see Fig. 1B). This means that, in the model, the propagation of

excitation from branchlet to branchlet is not deterministic and

may fail with probability 12pl.

Dendritic topology. We can think of an active dendritic tree

as an excitable network in which each site represents, for instance,

an excitable dendritic branchlet connected with two more distal

sites and one more proximal site (see Fig. 1B). That is, each branch

at ‘‘generation’’ g has a mother branch from ‘‘generation’’ g{1
and gives rise to two daughter branches at ‘‘generation’’ gz1 (i.e.

Author Summary

Most neurons present cellular tree-like extensions known
as dendrites, which receive input signals from synapses
with other cells. Some neurons have very large and
impressive dendritic arbors. What is the function of such
elaborate and costly structures? The functional role of
dendrites is not obvious because, if dendrites were an
electrical passive medium, then signals from their periph-
ery could not influence the neuron output activity.
Dendrites, however, are not passive, but rather active
media that amplify and support pulses (dendritic spikes).
These voltage pulses do not simply add but can also
annihilate each other when they collide. To understand the
net effect of the complex interactions among dendritic
spikes under massive synaptic input, here we examine a
computational model of excitable dendritic trees. We show
that, in contrast to passive trees, they have a very large
dynamic range, which implies a greater capacity of the
neuron to distinguish among the widely different inten-
sities of input which it receives. Our results provide an
explanation to the concentration invariance property
observed in olfactory processing, due to the very similar
response to different inputs. In addition, our modeling
approach also suggests a microscopic neural basis for the
century old psychophysical laws.

Active Dendrites Enhance Neuronal Dynamic Range
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each site — except those at the borders — has three neighbors).

The most distal generation will be called level G and we will study

tree properties as a function of the branching order G. The single

site at g~0 would correspond to the primary dendrite which

connects with the neuron soma (see Fig. 1B). Notice that the

number N of branchlets grows exponentially with the branching

order G.

External stimuli and branchlet activation. Each branchlet

receives a large number of synapses, whose post-synaptic potentials

(excitatory and inhibitory) are integrated. The final outcome of

this complex integration (which we do not model here) may or

may not trigger a branchlet spike, which we denote as our s~1
active state. As a first approximation, we assume that this

branchlet activation process (or crossing of the excitability

Figure 1. Morphology and dynamics of the model. (A) Definition of dynamical states: each dendritic branchlet can be in one of three states
(represented by circles): quiescent (blue), active (red) or refractory (grey). A quiescent state becomes active due to integrated synaptic input (with
probability ph) or transmission from an active neighbor (with probability pl , also called the coupling parameter). The active state has a fixed duration,
changing to the refractory state after a single time step (pd~1). The refractory state returns to the quiescent state with probability pc ( = 0.5 unless
otherwise stated). (B) Example of an active dendritic tree with G~3: branchlets connected in a binary tree topology. The probability that activity in
one branchlet activates its neighbour is pl (if the neighbor is in a quiescent state). (C) Apical activity F Nð Þ as a function of the number N of dendritic
branchlets. Due to integrated synaptic input, each branchlet becomes excited with a probability distribution modeled as an independent Poisson
process with rate h, as well as deterministic propagation from active neighbors (pl~1). From bottom to top: h~0:01, 0:1, 1:0, 10, 100 activations per
second at each branchlet.
doi:10.1371/journal.pcbi.1000402.g001

Active Dendrites Enhance Neuronal Dynamic Range
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threshold) is Poisson with rate h, which somehow reflects the

average excess of excitation as compared to inhibition. Thus,

besides transmission from active neighbors, each quiescent

branchlet can independently become active with probability

ph:1{exp {hdtð Þ per time step (see Fig. 1B), where dt~1 ms

is an arbitrary time step.

We assume that the activation processes of different branchlets

are independent of one another. Besides, we consider first the

uniform case where all branchlets have the same excitation rate h,

which is perhaps a reasonable assumption e.g. for mitral cells in

the olfactory system [29]. We recognize that these are strong

simplifications, but the analysis of this case is essential as a first

step. Later we discuss non-homogeneous cases where h depends on

the generation g or, for each branchlet, is drawn from a normal

distribution.

Dendritic tree output as a response function
We define the apical activity F as the number of excitations

(s~1 states) produced at the g~0 site, averaged over a large time

window (104 time steps and five realizations, unless otherwise

stated). In the following we will be interested in understanding the

function F h, Nð Þ, which is somehow analogous to the neuron

frequency versus injected current F Ið Þ curves studied in the

neuroscience literature. We suppose that, in the absence of lateral

inhibition, the neuron firing frequency produced at the axonal

trigger zone will be proportional to the apical activity F , which is

assumed by some biophysical models [30] and supported by recent

experimental evidence in the Drosophila olfactory system [31].

For readers familiar with statistical physics models we observe

that F is the order parameter and h is an external field that drives

the system to an active state with Fw0. Our model is an out-of-

equilibrium system with one absorbing state [32]. This means that,

in the absence of external drive (h?0) the dynamics eventually

takes the system to a global resting (quiescent) state F~0 from

which it cannot escape without further external stimulation. In

biological terms, this simply means that our dendritic tree will not

show spontaneous dendritic spikes without external synaptic input

and any activity in the tree will eventually die if h is turned to zero.

Results

Output dependence on arbor size N
Dendritic trees are responsible for processing incoming stimuli

which impinge continuously on the many synaptic buttons spread

on the dendrites (a single olfactory mitral cell can have around

30,000 synapses, whereas cerebellar Purkinje cells have around

200,000 synapses). Of course these numbers vary also between

individual cells of the same type. So, we first consider a classical

question asked (and not clearly answered) in the literature: given a

constant activation h in cells with different arbor sizes, will they fire

at very different levels [33]? The answer is not obvious since they

may have a huge difference of absolute number of synapses and

branchlets and we could have the prejudice that cells that have

more synapses should fire more easily (or at least need to

implement some homeostatic mechanism for controlling their

firing rate).

The answer provided by our model is very interesting: for low

excitation rate h, the output F h, Nð Þ increases linearly with the

number N of branchlets, so that having a large branched tree is

indeed important to amplify very weak signals (see Fig. 1C). In this

context there is a clear reason for a neuron to maintain a costly

number of branchlets. However, for moderate and high activation

levels, the activity F h, Nð Þ depends very weakly on N (it grows

sub-logarithmically with N, see Fig. 1C for N, say, larger than

5,000). That is, in this regime the output F reflects, in an almost

size-independent way, mostly the Poisson rate h, not the absolute

number of branchlets activated on the tree.

Large dendritic arbors therefore aid the detection of weak

stimuli, but for higher activation levels (i.e. higher imbalance

between excitatory and inhibitory signals) all the neurons code in a

similar way the activation rate h, irrespective of their arbor size.

Note that this ‘‘size invariance’’ is an intrinsic property of the

excitable tree, not based on any homeostatic regulatory mecha-

nism [19,34]. This sublogarithmic dependence of F on N means

that neurons function as reliable transductors for the signal h: the

specific number of branchlets, developmental defects, or asymme-

tries of the dendritic tuft have only a secondary effect in the global

neuron functioning.

Output dependence on excitation rate h
Given that the cell output depends weakly on N, now we turn

our attention to how F h, Nð Þ depends on the activation rate h.

Note that not much modeling work has been done on addressing

the collective activity of the dendritic tree subjected to extensive

and distributed synaptic input [35,36], particularly as the

activation rate h is varied. However, this is one of the simplest

questions one may ask regarding dendritic signal processing. In

particular, studies with models where the whole dendritic tree is

reduced to a small number of compartments (reduced compart-

mental models [37]) can hardly address this issue, since the

complex spatio-temporal information of the tree activation is lost

by definition.

As is well known, the average firing rate F dependence on stimulus

rate h of several cells has a saturating aspect like that of Fig. 2A. Our

cell presented a similar behavior (Fig. 2B), although of course it is not

the simple Hill function F
mð Þ

Hill hð Þ~Fmaxhm
�

hm
0 zhm

� �
usually

employed to fit experimental data. Indeed, for some values of axial

transmission pl, we saw an unexpected double-sigmoid behavior (see

below).
Tree dynamic range. The dynamic range D of the response

function follows a standard definition:

D~10 log
h90

h10

� �
, ð1Þ

where h90 (h10) is the stimulus value for which the response reaches

90% (10%) of its maximum range (F90 and F10 respectively). As

exemplified in Fig. 2A with a Hill function, D amounts to the

range of stimulus intensities (measured in dB) which can be

appropriately coded by F , discarding stimuli which are either so

weak as to be hidden by noise or self-sustained activity of the

system (vF10) or so strong that response is in practice non-

invertible owing to saturation (wF90). It is a straightforward

exercise to show that for a general Hill function with exponent m
we have D~ 10 log 81ð Þ=m&19=m dB. This simple analytical

result reinforces the fact that the exponent m governing the low-

stimulus regime is determinant for the dynamic range.

Figure 2B shows how the response curve changes with the

coupling pl between dendritic patches. For pl~0 (lowest curve)

each dendritic patch is an isolated excitable element, so activity

does not spread in the tree and the response function is a linear-

saturating curve with a small dynamic range (.16 dB, see Fig. 3).

As pl increases, more signals are transmitted to the apical site.

This amounts to an amplifying mechanism whose efficiency

increases with pl, as depicted in Fig. 2B.

Amplification, however, is highly nonlinear. Note that a

dendritic spike dies after some time either by propagation failure

or, more importantly, because it is annihilated upon collision with

Active Dendrites Enhance Neuronal Dynamic Range
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other excitable pulses or with the tree boundaries (the g~G distal

branches). Since the likelihood of these collisions increases with the

stimulus intensity, amplification is stronger for weak stimuli and

weaker for strong stimuli (in particular, for very strong stimulus

every excitable element reaches its maximum activity – limited by

refractoriness – and coupling is almost irrelevant). As a

consequence, sensitivity and dynamic range are concurrently

enhanced with increasing coupling, as illustrated in Fig. 3.

We emphasize that the above reasoning relies on very general

and robust properties of excitable media: any detailed compart-

mental biophysical model of an active dendritic arbor will present

similar results. Two features, however, strike as particularities of a

tree topology: 1) the dynamic range attains extremely large values

(see Fig. 3) and 2) the response functions can become double-

sigmoids, due to interaction with dendritic backspikes, as depicted

in the upper curves of Fig. 2B and discussed below.

Discussion

A possible critique to our modeling approach is that it lacks

biological realism. We notice that this is only true at the level of the

biophysical dynamics of each compartment, but we believe that

the idealization of such compartment as a generic excitable

element (a cyclic automaton) is immaterial. This has already been

demonstrated in studies of the dynamic range of networks

composed by cellular automata, non-linear discrete time maps,

nonlinear differential equations and conductance-based models

(Hodgkin-Huxley compartments) [22,27], as well as in a

biophysically detailed model of the vertebrate retina [38].

Our model has realistic biological aspects not reproduced by

most works in computational neuroscience with detailed biophys-

ics:

N a tree topology with a very large number (<105) of

compartments (branchlets);

N a proportionally large number of synaptic inputs;

N distributed activation along the whole tree instead of artificial

injected currents applied at particular points.

Notwithstanding the fact that artificial input protocols like

punctual current injection are useful for comparison with

experimental measurements [39], we believe that spatio-temporal

Figure 2. Response functions F hð Þ. (A) Response functions exemplified by normalized Hill functions F=Fmax~hm= Czhmð Þ with different Hill
exponents m. Relevant parameters for calculating the dynamic range are exemplified for m~1, in which case D~10 log 81^19 dB (see Eq. 1 and text
for details). (B) Family of response curves F hð Þ for G~10. From bottom to top, open symbols represent pl~0,0:2, . . . ,0:8, whereas closed symbols
represent a deterministic transmission of activity (pl~1) between dendritic branchlets. For plw0:5 extra inflection points appear, giving rise to
double sigmoid functions. (C) Study of the response exponent. Same curves as (B), but in double logarithmic scale. Notice the emergence of a non
trivial and very small exponent m (<0.2, thin dashed line) when reliability of dendritic spike propagation (pl) increases. Notice also that, for small
input, spikes seldom colide: the output frequency F is thus proportional (m~1) to the rate of branchlet activation (which creates the spikes). (D)
Double sigmoid experimental response curve of retinal ganglion cells extracted from Ref. [12] (open symbols) compared to simulation results (closed
symbols) for G~15 and pl~0:58. To scale the model variable h (ms21) to the experimental stimulus intensity I (Rh*/rod/s), we have employed
h~0:42I . The solid curve is a fit of two different Hill functions joined together at 110 Rh*/rod/s.
doi:10.1371/journal.pcbi.1000402.g002
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Poisson activation is a step toward a more realistic modeling of the

dendritic arbor dynamics under natural circumstances [19,35,36].

The dynamic range problem
As can be viewed in Fig. 3, large active dendritic trees perform

strong signal compression, which is the ability of coding many

orders of magnitude of stimulus intensity through only one decade

of output frequency. This question is particularly important in

sensory processing, where many orders of magnitude of stimulus

intensity are present. Interestingly, olfactory glomeruli, constituted

primarily by large active dendrites of mitral cells in vertebrates and

dendrites of principal cells in insects have large dynamic range

[40–42]. We conjecture that a similar situation occurs in the

problem of fine motor control and sensory-motor integration in

the cerebellum [43], which also involves the necessity of handling

sensory-motor feedback signals varying by orders of magnitude. In

correspondence to our hypothesis, Purkinje cells, which are

involved in these tasks, have indeed enormous active dendritic

arbors [13,44].

Previous work [10,11,21–27] has shown that the non-linear

summation of spikes enhance the dynamic range of excitable

media. The tree topology, however, has not been studied in these

works. Surprisingly, we found that its performance is largely

superior to the others. This motivates the proposal, first made here

(to the best of our knowledge), that the main functional role of

active dendrites is to enlarge the cell dynamic range.

As a particular application, we discuss now the case of the

dynamic range of olfactory glomeruli. Recent results for second-

order projection neurons of the Drosophila melanogaster antennal lobe

clearly exhibit strong weak-stimulus amplification and enhanced

dynamic range as compared to olfactory receptor neurons (ORNs)

[42]. To account for this observation, we can interpret our model

as representing a Drosophila principal cell (analogous to a mitral

cell) inside the glomerulus. Also, the signal propagation from ORN

axons to principal cell dendrites and the proportionality between

apical activity and somatic firing measured by Root et al. in the

Drosophila is compatible with our identification of F with the

somatic neuron response [31] in this particular case. These

authors show that it is mainly the ORN activity that drives the

projection neuron firing rate, the isolated effect of synapses from

interneurons (excitatory and inhibitory) being not sufficient to

induce spikes and having mostly a modulatory role.

Of course, in the case of other biological systems like the

mammalian olfactory bulb (where strong lateral inhibition occurs)

or pyramidal cells, the identification of F hð Þ with the somatic

firing rate is problematic, but we claim that the model is still useful

for understanding of the large dynamic range (as measured by

Calcium fluorescence) observed in the neuronal tuft [40,41].

It is important to notice that large dynamic ranges as observed

here means that the output varies slowly with the input. Therefore,

if experiments are done over only one or two orders of magnitude

of stimulus intensity (10–20 dB), the observed effect could be

confounded with an almost constant response. This may be an

alternative explanation for the concentration invariance property

observed in olfactory processing [45].

Weak dependence of activity on branchlet number
Another important prediction of our model is that dendritic size

(and the respective number of branchlets and synapses) has a weak

effect on the apical activation, being important mostly in the small

excitation regime. It is mainly the branchlet activation rate h, not

the total number of branchlets, that controls the apical rate F. This

is a desirable robustness property since there is a high variability of

dendritic size and spine density within a neuron population and

along time in the same neuron.

Whichever function one wishes to assign to active dendrites, it

must be fault tolerant in relation to gross dendrite morphology,

branchlet excitability and synaptic density, which vary with age

and time: for example, 30% of spine surface retracts in

hippocampal neurons over the rat estrous cycle [46]. Due to the

sublogarithmic dependence of F h,Nð Þ on N (see also the Model

Robustness section), our model demonstrates that such gross

independence from branchlet number, detailed branchlet dynam-

ics, dendritic axial conductance and tree morphology is possible,

Figure 3. Enhacing the dynamic range. Dendritic trees perform non-linear input-output transformations such that the capacity to distinguish
between different stimulus intensities, measured by the dynamic range (D) increases monotonically with coupling pl and the tree size (G). The tree
topology can produce very large dynamic ranges (above 50 dB).
doi:10.1371/journal.pcbi.1000402.g003

Active Dendrites Enhance Neuronal Dynamic Range
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and that enhancement of dynamic range is one of the most visible

properties of these excitable trees.

Response functions with double sigmoids
Double-sigmoid response functions have been reported recently

for retinal ganglion cells of the mouse [12]. This unusual shape

contrasts with the standard Hill fitting function. One wonders

whether the habit of fitting Hill functions to data could have

prevented further double-sigmoid curves from having been

reported in the literature.

It is very interesting that such double sigmoid behavior is a

distinctive feature of our model in a certain range of parameter

space. Can we interpret the findings on retinal ganglionar cells in

terms of our simplified model of dendritic response? Ganglionar

cells have dendritic arbors but their size is small compared to, say,

mitral cells or our typical model with branching order around

G~10.

However, in a structural analogy between the visual and

olfactory systems, Shepherd proposed that some ganglionar cells

are the retinal equivalent of mitral cells [44]. Here we pursue this

analogy and suggest that the ganglionar dendritic arbor plus the

retinal cells connected to it by gap junctions (electrical synapses)

can be viewed as an extended active tree similar to the one studied

here, with a large effective G.

We show in Fig. 2D that an appropriate choice of the model

parameters can lead to a response function which fits the

experimental data. Of course, the quantitative fit, although good,

is not the important message, but the qualitative one: that double-

sigmoid response functions can appear solely due to the tree

topology, without invoking any secondary activation processes or

complicated mechanisms to produce the unusual shape.

What is the physical origin of the double sigmoids in our model?

We believe that it is related to the two different modes of activation

of the apical site. The first one is the direct excitation due to its

local h rate. This direct excitation, if large, drives the system to its

maximum firing rate, which scales with the inverse of its refractory

period. This mechanism would be responsible for the saturation in

the right side of F hð Þ (region of large h), see Fig. 2B.

But the apical site also receives signals from its extended

dendritic tree, which is very sensitive to small activity (extending

the F hð Þ curve to the small h regime). However, it is plausible that

the tree excitability saturates for a smaller frequency, due to the

complicated interations between the spikes in the tree. So, we

conjecture that the first sigmoid represents a bottleneck effect

related to saturation in the flux of the activity along the subtrees

connected to the apical site. Indeed, this is compatible with the

observation that if we disconnect the apical site from the dendritic

tree (pl~0, Fig. 2B), the double sigmoidal behavior disappears

and only the second (large h) sigmoid is maintained. Of course, a

more detailed analysis of the origin of the first sigmoid is needed.

We also observed curves with three sigmoids (see Model

Robustness section), but postpone the discussion of these results to

future works. We only note here that the intermediate{h plateau

in these curves could also be related to the concentration

invariance reported for olfactory systems [45].

Screening resonance
As can be seen in Fig. 2B, some response curves in our model

can present an unusual shape, with curves for higher probability of

axial transmission pl falling below curves for lower pl. How can

more efficient trees present a response below less efficient ones for

the same h level?

This question can be answered by looking at Fig. 4A, where we

plot a family of curves F plð Þ for fixed h. For some (intermediate)

values of h, this curve is non-monotonic, suggesting a kind of

resonance through which activity in the primary dendrite is

maximized for an optimal coupling among sites all over the tree.

Why is this so?

Note that, on the one hand, for low enough pl, excitations

created in distal sites may not arrive at the primary site due to

propagation failure. For too strong coupling, on the other hand, the

topology of the tree leads to a dynamic screening of the primary

dendrite: backward propagation of activity (backspikes) effectively

can block forward propagation of incoming signals, as shown in

Fig. 4B. Activity F is therefore maximized at some intermediate

value of coupling. We called this phenomenon ‘‘screening

resonance’’. That such screening resonance indeed depends on

backspikes is confirmed by an asymmetrical propagation variant of

the model (see Model Robustness section). As backpropagation

goes to zero, the crossing between F hð Þ curves disappears (Figs. 4C

and 5C).

The transmission probability pl accounts for the joint effects of

membrane axial conductance and density of regenerative ionic

channels (Na+, Ca2+, NMDA etc). A possible experiment to test

whether this screening resonance indeed exits could involve the

manipulation of the density (or efficiency) of those channels in the

dendritic tuft: the model predicts that more excitable trees may

present lower activity than less excitable ones due to resonant

annihilation of dendritic spikes.

Testing dendritic spike annihilation
As discussed above, annihilation due to collision of dendritic

spikes is the central mechanism in our model behind both the

dynamic range enhancement (by preventing the tree response to

be proportional to the rate h) and the screening resonance

phenomenon (by blocking forward-propagating dendritic spikes

with backward-propagating ones).

With rare exceptions [19,20], the fact that nonlinear summation

often implies spike annihilation has been somewhat underrated in

the literature. Recent simulations with biophysical compartments

show the propagation and collision of dendritic spikes [19,20]. To

fully evaluate our ideas, one should examine better this

phenomenon in in vitro dendrites. The computational results

suggest the following simple experimental tests:

1. After the simultaneous creation, by two electrodes, of counter

propagating spikes on a long apical dendrite, no spike should

be detected in either electrode due to spike annihilation in the

space between them.

2. Blocking of active channels should reduce the dynamic range of

cells with large dendritic arbors, but the effect would be less

important in the case of cells with small dendrites (see Fig. 3).

3. After the simultaneous creation of spikes in two dendritic sites

on the same subtree, the neuron output should be almost the

same as that obtained with injection at a single point (due to

spike collision at some branchlet of the subtree). The final

output is not the (linear) sum of EPSPs but rather the tree

functions as an OR gate if the injected currents are

simultaneous and located at a similar level g.

One consequence of spike annihilation is that under moderate

stimulation backspikes will fail to reach more distal branches,

owing to collisions with forward-propagating dendritic spikes and/

or refractory branches [19,47]. Indeed, we have observed this

phenomenon in our model.

This is compatible with recent observations that backspikes are

strongly attenuated in the presence of synaptic input in medial

superior olive principal neurons [48]. So, the use of somatic
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backspikes as a backpropagating signal under massive synaptic

input seems to be problematic. Somatic backspikes show up

naturally in excitable trees but plays no functional role here.

We conjecture that somatic backspikes may be epiphenomena

or perhaps, if they have a functional role in learning processes, it is

a recent evolutionary exaptation from previous robust functions

like signal amplification by dendritic spikes. This can be tested: our

model predicts that active dendrites will be found even in neurons

without any plasticity or learning phenomena.

Relation to psychophysics
Our modeling approach also suggests a microscopic (neural)

basis for Stevens law of psychophysics [49,50], which states that

the perception F of stimulus intensity h grows as a power law

F*hm. In a previous work with disordered networks [10], by

assuming a linear relationship between psychophysical perception

and the network activity, we have found a Stevens-like exponent

for the input-output function of excitable media with value

m~0:5. For planar networks we found m&0:3 [26]. Here we

found for the dendritic tree architecture that the Stevens exponent

is very small (m&0:2 or even 0.1 for large trees with Gw20),

which means that the response function could be confounded with

a logarithmic (Weber-Fechner) law [49]. Of course, the macro-

scopic psychophysical law would be a convolution of all these non-

linear transfer functions between the sensory periphery and the

final processing (psychological) stage.

What our model shows is that any excitable medium naturally

presents a nonlinear input-output response with exponent mv1,

that is, large dynamic range, and that perceptual ‘‘psychophysical

laws’’ could be a very early phenomenon in evolution. A simple

precondition is that the sensory network should have an excitable

spatially extended dynamics, like the one already found in

bacterial chemotaxis channel networks, for example [51,52].

Model robustness
In our model, variable branchlet diameter and size is described

by a spatial dependence and disorder in pl. We do not expect the

results concerning the dynamic range to change qualitatively with

this type of generalization. The same model robustness appears for

changes in the refractory time and the use of continuous dynamical

variables (maps or differential equations). This latter property has

already been demonstrated in multilevel modeling studies which

used cellular automata and nonlinear differential equations to

describe the neuronal excitable elements [22,27,28]. We now

explicitly show the results for three variants of the model in order to

address the robustness of the dynamic range enhancement.

Model I: Propagation asymmetry. First, we consider the

possibility that backward transmission of excitation is less likely to

Figure 4. Screening resonance. Depending on the rate h, a maximum on the neuronal apical activity may be observed at an intermediate
coupling value (pl). Propagation of forward signals fails to effectively induce neuronal apical activity for higher values of coupling due to
backpropagating activity in a certain range h (here, the retropropagation ratio is b~1). (A) The non-monotonous behavior in the mean output
frequency F at the primary dendrite as a function of the coupling pl among sites (closed symbols). From bottom to top, h~0:01, 0:1, 1:0, 10, 100
activations per second per branchlet. (B) Density of active branchlets at generation g vs. time for G~10 and h~1 s{1 . Notice that in this short
(40 ms) sample, apical activity was higher for pl~0:9 (5 activations) than for pl~0:8 or pl~1 (3 activations each). The backpropagating signal for
pl~1 prevents distal activity from reaching the apical branchlet. (C) F as a function of backpropagation ratio b and coupling probability pl , for fixed
h~1 s{1 : the screening resonance disappears in the absence of backspikes (low values of b).
doi:10.1371/journal.pcbi.1000402.g004
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occur than in the forward direction (as suggested by impedance

matching arguments). For that purpose, we keep pl for denoting

the probability of transmission in the forward direction and let bpl

be the probability of transmission in the backward direction, with

0ƒbƒ1.

For b~1, a given active branchlet at level g excites a quiescent

daughter at gz1 and its quiescent mother at g{1 with the same

probability (this corresponds to the results presented so far). At the

other extreme, for b~0, backpropagating dendritic spikes do not

occur at all.

In Fig. 5A we show the F hð Þ curves for varying b, which present

pronounced double-sigmoid behavior, suggesting that backspikes

regularize the first sigmoidal saturation. In Fig. 5B we see that the

dynamic range D plð Þ curves are almost the same for different

values of b (note that the differences among the F hð Þ curves occur

for intermediate values of h, so the h10 and h90 points remain

essentially the same). Therefore, a possible functional role for

backspikes could be to regularize the response curve, since the first

saturation of a double-sigmoid corresponds to poor coding. Of

course, this presumed functional role is only speculative, but is a

new suggestion provided by our model.

Another result of this variant of the model confirms that

backspikes are indeed responsible for the crossing of the response

curves F hð Þ for different values of pl (see Fig. 2B). As depicted in

Fig. 4C, the screening resonance phenomenon only occurs for b
sufficiently close to one.

We also examined the effect of varying the coupling between

branchlets (pl, Fig. 5C) and their refractory period (pc, Fig. 5D) in

the asymmetric propagation model with b~0:5. We see some new

phenomena like a non-monotonic dependence of D on the

coupling pl (Fig. 5D), which only occurs for bv1.

Model II: Non-homogeneous branchlet activation. Since

the rate h reflects the imbalance between synaptic excitation and

inhibition at the branchlets, and since different branchlets may

receive a different number of synapses, a step torward more

realistic modeling would involve a branchlet-dependent h. We

Figure 5. Effect of asymmetric propagation. (A) Response functions for different values of backpropagation ratio b for fixed values of
transmission probability pl~0:8 and recovery probability pc~0:5 (which controls the refractory period). It shows a specific shape dependence with
more visible double sigmoid behavior for less backspike activity (lower values of b). (B) Dynamic range of the response functions shown in panel (A).
Although the response functions F hð Þ have different shapes, their dynamic ranges remain pretty much unaltered since the region in which the
response functions differ is located in between the range of h10 and h90 (see definition of dynamic range in Fig. 2A). (C) A family of response functions
for deterministic refractory period (pc~1:0) and asymmetric propagation (b~0:5). Similarly to Fig. 2B, from bottom to top open symbols represent
pl~0, 0:2,:::,0:8, and filled circles represent the case of pl~1. The model presents a wide variety of response function shapes. The filled symbols
present a dynamic range smaller than for pl~0:8, which is a rare example of non-monotonicity of the D plð Þ dependence. It occurs because the gain
in sensitivity (of h10) when pl increases from 0.8 to 1 is less than what is lost due to an early saturation (of h90). (D) Dynamic range for different values
of refractory period. The black curve displays the non-monotonicity explained in panel C). Besides this feature (which occurs only for bv1:0) the
dynamic range does not present qualitative changes compared to the standard symmetric model of Fig. 3.
doi:10.1371/journal.pcbi.1000402.g005

Active Dendrites Enhance Neuronal Dynamic Range

PLoS Computational Biology | www.ploscompbiol.org 9 June 2009 | Volume 5 | Issue 6 | e1000402



investigate the effects of a kind of non-homogeneity present in

several neurons, where synaptic density or excitability tends to be

larger in more distal branchlets.

A simple model that incorporates this spatial dependence is

h gð Þ~h0 exp agð Þ. For a~0 we recover the homogeneous model,

while for aw0 the rate of dendritic spike creation increases with

the distance from the soma (note in particular that for a%G{1 this

increase is approximately linear). The use of an exponential model

is motivated by the fact that it is an extreme one: any polynomial

dependence model lies between the uniform and the exponential

case. If the exponential model does not produce qualitative

changes, then polynomial models hardly will do.

In Fig. 6A we show the response curves F h0ð Þ for several values

of the parameter a. In Fig. 6B we show that the enhancement of

dynamic range obtained from the response curves F h0ð Þ (for

different values of a) is robust. Surprisingly, the signal amplifica-

tion and dynamic range is indeed much more efficient than the

homogeneous case a~0, attaining 80 dB (notwithstanding the

poor coding for intermediate values of h, where the size of the

plateau increases with a and pl). This result suggests that this case

of peripheral branchlets being more excitable could optimize the

signal processing, specially for neurons with poor propagation of

dendritic spikes (small pl, see Fig. 6B).

Model III: Disordered branchlet activation rate. In the

previous variant, all branchlets in the same generation g have the

same activation rate h gð Þ. Now, we study a disordered h model,

where each branchlet i~1, . . . ,N is initially assigned a rate

hi~uikh0zh0. The parameter k is fixed for each curve and ui is

drawn from a Gaussian distribution with zero mean and unit

variance, and is kept constant throughout each run. Note that k
corresponds to the coefficient of variation s=h0 of the distribution

P hð Þ, where s is the standard deviation. Since the Poisson

excitation rate h must be positive, we set hi~0 if we some

branchlet gets a hiv0 from the Gaussian distribution.

The response curves F h0ð Þ for different values of k are shown in

Fig. 6C. The enhancement of dynamic range is essentially

unchanged even under strong variability (k~1) of branchlet

activation rate (Fig. 6D).

Conclusions and perspectives
Several detailed biophysical models of dendritic trees have

already been presented in the literature, but we are not aware of

Figure 6. Effect of heterogeneous tree activation. (A) Response functions F h0ð Þ for the exponential activation distribution h gð Þ~h0 exp agð Þ
where g refers to the branchlet generation and a controls the exponential shape. More distal branchlets (larger g) are more activated than the apical
site. For large values of parameter a the sensitivity of the response function is greatly increased while the saturation remains almost the same. All
curves have pl~0:8, pc~0:5 and b~1:0. (B) Dynamic range for the previous case with h gð Þ activation, with an amazing enlargement of the dynamic
range for pl~0:5 and b~1:0. All cases refer to tree sizes of G~10. (C) Response functions F h0ð Þ for the disordered branchlet activation model with
coefficient of variation k~0:5, recovery probability pc~0:5, symmetric propagation (b~1) and G~10. From bottom to top, pl~0, 0:2, . . . ,1. (D) The
dynamic range remains the same for this disordered scenario in the tree (same parameters of panel (C)). Note that a coefficient of variation
k~s=h0~1 corresponds already to a highly heterogeneous case.
doi:10.1371/journal.pcbi.1000402.g006
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studies confirming the enlargement of the dynamic range by active

dendrites in such arbors. To see this effect, it is necessary that such

models incorporate inputs distributed along the full dendritic tree,

and that the branchlet activation rate be varied by orders of

magnitude.

We believe that biophysical multi-compartmental models (with

a large number of branchlets) seeking to probe the robustness of

our results would be most welcome. In particular, they would be

able to address the effect of post-synaptic potentials (PSPs, both

excitatory and inhibitory) which manage to generate somatic – but

not dendritic – spikes despite the presence of active channels in the

dendrites (a phenomenon which might be artificially adapted to

our model, but for which biophysical models are better equipped).

Also, the modulatory effect of such subthreshold PSPs and other

passive phenomena are better studied in biophysical simulations.

Other future tasks will be the study of the dendritic response due

to non-Poisson input distributions (say, 1
�

f b noise), correlated

input on the arbor, time-dependent inputs, asymmetric dendritic

trees etc. We believe that new signal processing features may

appear, but the dynamic range enlargement and sensitivity

enhancement by active dynamics will continue to be present.

Why do neurons have active channels in extensive dendritic

trees? Our proposal is that active large dendrites are able to detect

and amplify very weak signals and, at the same time, saturate

slowly for stronger tree activity. This universal ‘‘dynamic range’’

problem, related to the trade-off between sensitivity and saturation

of signal processing, is important both for individual neurons, large

neural networks, whole sensory organs and organisms. We

conjecture that the large dynamic ranges found in neurons with

active dendritic arbors could even help to explain macroscopic

psychophysical laws, providing a neural account for the century

old findings of Fechner, Weber and Stevens [10,49,53].
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