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Abstract

The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA
3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an
accurate energy function and a conformational sampling procedure. Both are only partly solved problems. Here, we focus
on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods,
which construct plausible conformations by stringing together short fragments obtained from experimental structures.
However, the discrete nature of the fragments necessitates the use of carefully tuned, unphysical energy functions, and
their non-probabilistic nature impairs unbiased sampling. We offer a solution to the sampling problem that removes these
important limitations: a probabilistic model of RNA structure that allows efficient sampling of RNA conformations in
continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure,
such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-
D conformations for 9 out of 10 test structures, solely using coarse-grained base-pairing information. In conclusion, the
method provides a theoretical and practical solution for a major bottleneck on the way to routine prediction and simulation
of RNA structure and dynamics in atomic detail.
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Introduction

Non-coding RNA is of crucial importance for the functioning of

the living cell, where it plays key catalytic, regulatory and

structural roles [1,2]. Understanding the exact mechanisms behind

these functions is therefore of great importance for both biology

and medicine. In many cases, this understanding requires

knowledge of RNA structure in atomic detail. However,

determining the structure of an RNA molecule experimentally is

typically a time consuming, expensive and difficult task [3].

Therefore, algorithms for RNA structure prediction have attracted

much interest, initially with the main focus on predicting

secondary structure. Many noticeable advances have been made

in the area of secondary structure prediction; most recently the

introduction of statistical sampling had an important impact [3–5].

In the past years, an increasing number of relevant structures

have become available, and much progress has been made in the

understanding of the three dimensional (3-D) structure of RNA.

The conformational space of RNA has been analyzed using

methods inspired by the Ramachandran plot for proteins [6,7], the

RNA base pair interactions have been accurately classified [8],

and the conformational space of the RNA backbone has been

clustered into discrete recurring conformations [6,9–11]. These

new insights have led to several useful tools for modeling RNA 3-D

structure [3,12] and significant advances in atomic resolution

prediction have recently been reported [13,14].

However, routine prediction of RNA 3-D structure still remains

an important open problem, and with the growing gap between

the number of known sequences and determined structures, the

problem is becoming more and more pronounced. The two key

ingredients in algorithms for RNA 3-D structure prediction,

namely an accurate energy function and a conformational

sampling procedure [14], are both only partly solved problems.

Here, we focus on the latter problem.

The current state of the art in RNA conformational sampling is

based on fragment assembly methods, which construct plausible

conformations by stringing together short fragments obtained from

experimental structures. These methods have led to numerous

important breakthroughs in the related fields of protein and RNA

3-D structure prediction in the last ten years [13–15]. Nonetheless,

fragment assembly methods are not a panacea. One of the

problems associated with these methods is that they inherently

discretize the continuous conformational space, and hence do not

cover all relevant conformations [14]. This is problematic since the

resolution of the conformational search procedure imposes limits

on the energy function; the use of fine-grained energy terms

requires continuous adjustments to the RNA’s dihedral degrees of

freedom, which fragment assembly methods cannot provide [14].

In other words, the shortcomings of the conformational sampling

method need to be counteracted by tweaking the energy function.

Furthermore, full conformational detail is of great importance for
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a complete understanding of RNA catalysis, binding [9] and

dynamics [16].

Another fundamental problem with fragment assembly methods

is their non-probabilistic nature, which makes their rigorous use in

the framework of statistical physics problematic. Particularly, it is

currently impossible to ensure unbiased sampling (which requires

the property of detailed balance [17]) in a Markov chain Monte

Carlo (MCMC) framework using fragment assembly as a proposal

function [18]. In other words, using a fragment library implies

adding an inherently unknown additional term to the energy

function [18]. This means that the unbiased simulation of the

dynamics of an RNA molecule under the control of an all-atom

empirical forcefield using fragment assembly methods is currently

impossible.

For these reasons we have developed a new solution to the

conformational sampling problem: a probabilistic model, called

BARNACLE, that describes RNA structure in a natural,

continuous space. BARNACLE makes it possible to efficiently

sample 3-D conformations that are RNA-like on a short length

scale. Such a model can be used purely as a proposal distribution,

but also as an energy term enforcing realistic local conformations.

Imposing favorable long range interactions, such as hydrogen

bonding between the bases, lies outside the scope of such a local

model and is the task of a global energy function.

BARNACLE combines a dynamic Bayesian network (DBN)

[19], which suits the sequential nature of the RNA molecule, with

directional statistics, a branch of statistics that is concerned with

the representation of angular data. The model is not only

computationally attractive, but can also be rigorously interpreted

in the language of statistical physics [20,21], making it attractive

from a theoretical viewpoint as well.

This approach is conceptually related to the probabilistic

models of protein structure recently proposed by our group

[20,21]. However, the model presented here is clearly far from a

trivial extension, as an RNA molecule has many more degrees of

freedom than a protein; in the RNA backbone alone, there are 11

angles per residue [22], as opposed to two in proteins. These many

degrees of freedom combined with the limited number of

experimentally determined RNA structures [23] make this a

particularly challenging statistical task for which a very different

strategy was required. In particular, the approach we used for

proteins would in the case of RNA require the use of a probability

density function on the 7-dimensional hypertorus, which poses a

serious statistical and computational obstacle.

Below, we describe the probabilistic model in detail, and show

that it captures the crucial aspects of local RNA structure. We also

demonstrate its usefulness in the context of RNA 3-D prediction,

and end with an outlook on possible applications.

Results

In this section, we first briefly explain the parameterization of

RNA 3-D structure, then describe the probabilistic model and

finally present an evaluation of its performance in various contexts.

Parameterization of RNA 3-D structure
Before we can formulate a probabilistic model, we need a

mathematical parameterization of RNA 3-D structure. For each

residue in an RNA molecule, the parameterization consists of the

base type (A, C, G and U) and the seven dihedral angles a, b, c, x,

d, e and f (Figure 1). In many other parameterizations, one or

more additional parameters are used, such as the dihedral angles

in the sugar ring [22]. However, it is possible to calculate the

positions of all non-hydrogen atoms in an RNA structure based on

the seven dihedral angles and the base type using the SN-NeRF

algorithm [24] and assuming ideal bond lengths and angles [25].

This parameterization is advantageous as it is simple, yet sufficient

to describe any RNA conformation in atomic detail on a local

length scale.

Description of the probabilistic model
The aim of the model, BARNACLE (BAyesian network model

of RNA using Circular distributions and maximum Likelihood

Estimation), is to capture both the marginal distributions of each of

the seven angles and the local dependencies between them. The

main ideas behind the design of the model are (i) to model the

marginal distributions of the seven dihedral angles by mixtures of

univariate probability distributions, since such mixtures have

proven ideal for approximating arbitrary distributions [26], and (ii)

to model the dependencies between the angles through a Markov

chain of hidden states.

We have implemented these ideas in a DBN (Figure 2) that uses

one slice (with position index j) for each angle in the

parameterization of a given RNA fragment. For example, for

two nucleotides i and i+1, the DBN consists of 14 slices that

represent the angles

ai,bi,ci,xi,di,ei,fi,aiz1,biz1,ciz1,xiz1,diz1,eiz1,fiz1

in the given order. Each slice, j, consists of three stochastic

variables: an angle identifier, Dj, that specifies which of the seven

angles is represented in a given slice, a hidden variable, Hj, that

can adopt 20 different discrete states (which is the optimal number

of states, see below and Materials and Methods), and an angular

variable, Aj, that adopts values in the interval 0,2p½ �. The DBN

models the conformational space of an RNA molecule with n

angles by the probability distribution:

P A1,A2,:::,Anð Þ~
X

H

P H1jD1ð ÞP A1jH1ð Þ P
n

j~2
P Hj

��Hj{1,Dj

� �
P Aj

��Hj

� � ð1Þ

Author Summary

The importance of RNA in biology and medicine has
increased immensely over the last several years, due to the
discovery of a wide range of important biological
processes that are under the guidance of non-coding
RNA. As is the case with proteins, the function of an RNA
molecule is encoded in its three-dimensional (3-D)
structure, which in turn is determined by the molecule’s
sequence. Therefore, interest in the computational predic-
tion of the 3-D structure of RNA from sequence is great.
One of the main bottlenecks in routine prediction and
simulation of RNA structure and dynamics is sampling, the
efficient generation of RNA-like conformations, ideally in a
mathematically and physically sound way. Current meth-
ods require the use of unphysical energy functions to
amend the shortcomings of the sampling procedure. We
have developed a mathematical model that describes
RNA’s conformational space in atomic detail, without the
shortcomings of other sampling methods. As an illustra-
tion of its potential, we describe a simple yet efficient
method to sample conformations that are compatible with
a given secondary structure. An implementation of the
sampling method, called BARNACLE, is freely available.

A Probabilistic Model of RNA Conformational Space
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where the sum runs over all possible hidden node sequences

H~ H1, . . . ,Hnð Þ.
We model all the factors in this expression that involve discrete

variables as conditional probability tables. To model the angular

variable, we use the univariate von Mises distribution [27]. This is

the circular equivalent of the Gaussian distribution, with the

density function

f xjm,kð Þ~ ek cos x{mð Þ

2pI0 kð Þ ,

where x[ 0,2p½ � is the angle, m is the mean angle, kw0 is a

concentration parameter and I0 is the modified Bessel function of

the first kind, order 0. More precisely, we use a von Mises

distribution to model each of the P Aj

��Hj

� �
distributions, with

parameters determined by the value of the Hj. In this way each

dihedral angle distribution is modeled as a weighted sum over the

same set of 20 von Mises distributions. This idea is crucial for the

development of a tractable model of this high dimensional space,

as it leads to a very economical model, in which many parameters

are common. Only 40 parameters are used for the von Mises

distributions, which represent the angles in continuous space. The

final model has only 537 non-zero parameters.

All the parameters are estimated by maximum-likelihood

estimation from experimental RNA data (see Materials and

Methods). The calculation of the sum in the probability density

function (equation (1)) can be efficiently calculated using the

forward algorithm [28]. Also, efficient algorithms exist to sample from

the probability distribution (see Materials and Methods).

We use the base type information in the construction of the 3-D

atom positions, but do not explicitly represent the base type in the

probabilistic model. The model only includes dihedral angles, and

is thus a purely geometrical model. The reasons not to include

base information directly into the model are two-fold: (i) by

focusing on a purely geometric model we diminish the dimen-

sionality of the problem, which is already substantial relative to the

amount of data available, and (ii) the geometric model can easily

be augmented with base information by a suitable energy function

since the parameterization allows for the positioning of all the

atoms in the base.

Evaluation of BARNACLE
In the following section, we evaluate the model using four tests.

In the first two tests, we examine how well the model describes

local RNA structure by (i) an information-theoretic analysis of the

angular distributions, including the distributions of individual

angles and pairs of angles, and (ii) analyzing the length distribution

of the most abundant substructure in RNA, the A-helix. In the

third test, we examine if the model is consistent with the rotamer

Figure 1. Ball-and-stick representation of an RNA fragment. The
seven relevant dihedral angles in the central nucleotide (a to f) are
indicated with red labels. Each label is placed on the central bond of the
four consecutive atoms that define the dihedral angle. The x angle
describes the rotation of the base relative to the RNA backbone, while
the six other angles define the course of the backbone. All atoms in the
central nucleotide are labeled and colored according to atom type
(oxygen: red, phosphor: yellow, nitrogen: blue and carbon/hydrogen:
grey). For clarity, the base is only partly shown.
doi:10.1371/journal.pcbi.1000406.g001

Figure 2. BARNACLE: a dynamic Bayesian network (DBN) that models the dihedral angles in an RNA fragment. In the graph, the nodes
represent stochastic variables, and the arrows encode their conditional independencies. That is, the graph structure specifies the form of the joint
probability distribution of the variables. The shown DBN represents nine consecutive dihedral angles, where the seven central angles originate from a
single nucleotide. Each slice j (a column of three variables) corresponds to one dihedral angle in an RNA fragment. The variables in each slice are: an
angle identifier, Dj, a hidden variable, Hj, and an angular variable, Aj. The angle identifier keeps track of which dihedral angle (from a to f) is
represented by a slice, while the angular node models the actual dihedral angle value. The hidden nodes induce dependencies between all angles
along the sequence (and not just between angles in consecutive slices).
doi:10.1371/journal.pcbi.1000406.g002

A Probabilistic Model of RNA Conformational Space
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model introduced by Murray et al. [9]. Finally, in the fourth test we

evaluate how well the model performs in an MCMC algorithm for

global RNA 3-D structure prediction. In the first three tests, we

use a standard data set of experimentally determined RNA

structures [9].

To the best of our knowledge, this is the first probabilistic model

of local RNA 3-D structure in continuous space. Therefore, we

construct our own baseline model for a meaningful comparison.

The baseline model has the same design as BARNACLE

(Figure 2), but without the (horizontal) arrows between the hidden

variables, thereby removing the dependencies along the sequence.

Such a model is called a mixture model. The use of a mixture model

as baseline is highly appropriate for two reasons. First, a mixture

model is theoretically able to approximate the marginal distribu-

tions of the individual angles arbitrarily well [26], and thus

constitutes a challenging baseline. Second, it gives us the

opportunity to test to what extent BARNACLE benefits from

including sequential dependencies.

Information-theoretic analysis of BARNACLE
In the first test, we compare BARNACLE to the mixture model

using the information-theoretic approach, following Burnham and

Anderson [29]. This approach is based on the Kullback-Leibler

(KL) divergence, which is a natural measure of the distance

(expressed in bits) between probability distributions [30]. For the

selection of the best model for a given data set, this leads to the use

of the Akaike Information Criterion (AIC). The AIC reaches a

minimum value for the best model.

For BARNACLE, the minimum AIC value is reached at 20

hidden states and for the mixture model, at 25 hidden states

(Materials and Methods). According to the minimum AIC values,

BARNACLE clearly outperforms the mixture model as a joint

distribution over the data set, which illustrates the importance of

taking the sequential dependencies into account.

Both models capture the multimodal nature and the skewness of

the marginal distributions of the seven individual angles (Figure 3

and Figure S1). The mixture model is expected to be more

accurate at the level of the individual angular distributions [26],

since sequential restraints are absent during its estimation. A

comparison based on the difference between the KL divergence of

the two models to the experimental data shows that this is indeed

the case (see Table S1). This fact establishes the mixture model as

a challenging baseline. However, the superiority of BARNACLE

already becomes clear at the level of the pairwise angular

distributions (within the same nucleotide, Table S2A, and in

consecutive nucleotides, Table S2B). The difference in accuracy

between the two models is also clearly visible in the corresponding

pairwise histograms (Figure 4 and Figure S2).

BARNACLE captures the length distribution of helices
In the second test, we evaluate how well BARNACLE captures

the length distribution of the helical regions in RNA. The idea is to

examine how well BARNACLE captures longer range dependen-

cies between the dihedral angles. We do so by first sampling a set

of structures from both BARNACLE and the mixture model (see

Materials and Methods). We then use the publicly available

program Suitename [31] to identify all A-helix rotamers in both

the sampled data sets and in the experimental data set. Finally, we

analyze the distributions of the helix lengths in the three data sets,

where helix length is defined as the number of consecutive A-helix

rotamers.

The histograms for the experimental data set and the data set

sampled from BARNACLE exhibit the same exponentially

decaying distribution (Figure 5). In contrast, the histogram for

the samples drawn from the mixture model decays significantly

faster than the two others. The differences can again be quantified

using the KL divergence. For the histograms of helices up to

length 16, the KL divergence from the experimental length

distribution to the length distribution in the BARNACLE data set

is 0.014 bits, whereas the KL divergence for the mixture model

data set is as large as 1.10 bits.

In conclusion, BARNACLE captures the length distribution of

the helical regions. The comparison with the mixture model makes

it clear that in this context the model benefits considerably from

including the sequential dependencies between the angles.

BARNACLE is consistent with an established rotamer
model

In the third test, we evaluate whether BARNACLE is consistent

with a discrete rotamer model that was first introduced in 2003 by

Murray et al. [9]. This rotamer model is currently used in the

software package MolProbity [12] for validation of the local

structure of experimentally determined structures. In this model,

all local structures are clustered into 46 different types, each

represented by a single rotamer.

Figure 3. The distributions of the a and e angles. The top figure
shows the distributions of the a angle and the bottom figure shows the
distributions of the e angle. The distributions in the experimental data
set are shown as histograms. The density functions for the angles in the
mixture model and BARNACLE are shown as light and dark grey lines,
respectively. Both models capture the tri-modal nature of the a angle
and the skewed distribution of the e angle. See Figure S2 for plots of all
7 angles.
doi:10.1371/journal.pcbi.1000406.g003

A Probabilistic Model of RNA Conformational Space
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We first sample a set of structures from BARNACLE and the

mixture model (see Materials and Methods). The rotamers in the

sampled and the experimental data sets are categorized using the

program Suitename [31], and their frequencies of occurrence are

compared.

Strikingly, all 46 rotamer types are present in the BARNACLE

samples. In addition, the fractions of the 45 non-helical rotamer

types are similar in the experimental data set and in the

BARNACLE samples (Figure 6). Finally, the percentage of A-

helix rotamers also matches closely (74.6% in the experimental

data set and 76.1% in the BARNACLE data).

Turning to the mixture model for comparison, we see that the

fractions of the 45 non-helical rotamers in the experimental data set

and in the samples are markedly different (Figure 6), and that the

percentage of A-helix rotamers is considerably lower than in the

experimental data set (53.2% versus 74.6%). In addition, the

percentage of conformations that do not belong to any of the

rotamers is markedly higher for the mixture model (28.0%) than for

BARNACLE (20.1%) and the experimental data set (14.2%).

Finally, the KL divergence from the distribution of the 46 rotamers

in the experimental data set is higher to the mixture model data

(1.83 bits) than to the BARNACLE data (0.20 bits).

Hence, BARNACLE is consistent with the rotamer model and

also in this context, the model benefits from including sequential

dependencies.

BARNACLE generates RNA-like decoys
In the fourth and final test, we use BARNACLE to generate

decoy structures for ten different RNA target structures, solely

Figure 4. Histograms of pairwise angle distributions. The figure shows the distributions in the experimental data set (left column) and in data
sampled from BARNACLE (middle column) and the mixture model (right column). Top row: the pairwise distributions of the dihedral angles a and b
within a nucleotide. Bottom row: the pairwise distributions of the inter-nucleotide angles e and a, where each e angle is paired with the neighboring a
angle in the 39-end direction.
doi:10.1371/journal.pcbi.1000406.g004

Figure 5. Histograms of the lengths of helical regions. The
distributions in the experimental data set, and in the data sets sampled
from BARNACLE and the mixture model are shown. The length is
defined as the number of consecutive A-helix rotamers.
doi:10.1371/journal.pcbi.1000406.g005

A Probabilistic Model of RNA Conformational Space
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using coarse-grained base-pairing information (that is, secondary

structure information).

We generate these structures using an MCMC method based on

1=k multihistogram sampling [32,33], which makes it possible to

obtain samples from BARNACLE that fall within a specified,

favorable energy interval. In other words, we can sample from

BARNACLE conditional upon a favorable energy. As energy

function, we use a simple base pairing energy (measured in Å) that

reaches a minimum when all the hydrogen bonds that are implied

in the native secondary structure are present. In this way, we

sample a large number of structures with correct secondary

structure, but with all the fine-grained conformational details

entirely left up to BARNACLE. The goal of this test is to examine

whether BARNACLE is capable of generating plausible RNA

structures from coarse grained base-pairing information only.

The test consists of using the MCMC method to generate a

large number of decoys for each of the ten targets (see Table S3 for

details on execution). We consider all decoys that have good

secondary structure (energy less than 1.0 Å) and evaluate their all-

atom RMSD (including all non-hydrogen atoms) and the C49 trace

RMSD after optimal superimposition with the target RNA

structure.

As a baseline, we again use the mixture model. We also include

another baseline; a model in which each angle distribution is

modeled by the uniform distribution on the circle. The RMSD

values for the best decoys are shown in Table 1. In this table, we

have for comparison also included results from the lowest RMSD

decoys obtained by Das and Baker’s FARNA method on the same

set of structures [14]. The target structures we use in this test are

the single chain subset of the structures used to evaluate FARNA.

To avoid bias, the models were re-trained on structures that were

not homologous to any of the target structures [14] (see Materials

and Methods).

As shown in Table 1, BARNACLE generates good decoys for

all but the longest of the target structures (1XJR, which is

equally challenging for the FARNA method). Most of the best

decoys have all atom RMSD values below 4 Å, and C49 RMSD

values below 3 Å, and are thus close to the native target

structure [14]. In all but one case, the best BARNACLE decoys

have a lower RMSD than the best decoys generated using the

mixture model, while in all cases, the uniform model performs

considerably worse. The mixture model performs surprisingly

well; for some of the targets the best decoys have an all-atom

RMSD that is below 3 Å. However, when considering the

RMSD distribution of all sampled decoys with good secondary

structure, we see that BARNACLE generates more low RMSD

decoys than the mixture model (Table S4); the 25% RMSD

quantile for BARNACLE is in general lower than or about

equal to the 5% quantile for the mixture model.

The best decoys for 1ZIH and 1L2X are shown in Figure 7.

Note that for the structures generated with BARNACLE, the

course of the backbone is very close to the native, and that for

1ZIH all the bases in the challenging loop region are also placed

correctly. This can only be ascribed to the model, as the correct

conformation of the backbone and of the bases in the loop is not

directly promoted by the energy function. Figure 7 clearly

illustrates another way in which BARNACLE outperforms the

mixture model: in the case of 1L2X, the course of the backbone is

less RNA-like for the mixture model. These qualitative observa-

tions are confirmed quantitatively by the ‘‘suiteness’’ score (a

structural quality score [12]) of the decoys, which shows a

considerably lower quality for the mixture model decoys (Table 2).

The uniform model performs much worse than both BARNACLE

and the mixture model. Essentially it does not produce any

realistic RNA conformations.

It is finally worth noticing that the results obtained with

BARNACLE for the ten structures are comparable to the results

obtained with the FARNA method by Das and Baker [14]; for 6 of

the target structures BARNACLE generates decoys with a lower

RMSD than FARNA. BARNACLE (a sampling method, which

we combine here with a very simple energy function based on

native secondary structure) and FARNA (a full blown RNA

prediction method) are of course very different methods, but the

results indicate that BARNACLE can be used to generate state-of-

the-art decoys in the context of 3-D RNA structure prediction in

atomic detail.

However, the crucial improvement introduced by BARNACLE

lies in providing a fully probabilistic sampling framework in

continuous space, while maintaining state-of-the-art sampling

quality (as shown by the comparison with FARNA). As pointed out

before, sampling methods based on fragment assembly impose

serious limits on the form of the energy function, and necessitates

the use of unphysical energy terms. BARNACLE provides a

satisfactory solution to this problem. The potential importance of

BARNACLE is also illustrated by the enormous impact of the

introduction of rigorous sampling methods on RNA secondary

structure prediction [4,5].

Figure 6. Histograms of the rotamer distributions in the non-
helical regions. The figure shows the distributions in the experimental
data set (top and bottom), in the BARNACLE samples (top) and in the
mixture model samples (bottom). The names of the rotamers, as
defined by the RNA Ontology Consortium [31], are used as index on the
horizontal axis. The rotamers are sorted along the horizontal axis
according to their frequency in the experimental data set.
doi:10.1371/journal.pcbi.1000406.g006

A Probabilistic Model of RNA Conformational Space
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Discussion

This study introduces a new approach to modeling local RNA

3-D structure. In contrast to previous approaches, we model the

local conformational space as continuous, and in a fully

probabilistic framework.

The introduced model has the potential to improve current

structure prediction approaches in several ways. First, it allows for

continuous adjustments in the conformational space, which

accommodates the use of fine-grained energy terms. As pointed

out by Das and Baker [14], discrete models preclude that. Second,

the probabilistic nature of BARNACLE enables unbiased

Table 1. Generation of RNA decoys using secondary structure information.

Structure description BARNACLE Mixture model Uniform model FARNA

PDB ID Len Bps RMSD C49 RMSD RMSD C49 RMSD RMSD C49 RMSD C49 RMSD

1ESY 19 6 2.44 1.26 2.61 1.43 8.14 6.96 1.44

1KKA 17 6 2.97 2.23 3.45 2.16 6.57 5.42 2.08

1L2X 27 8 3.87 2.77 4.99 4.02 9.11 8.28 3.11

1Q9A 27 6 3.35 2.92 5.01 4.41 8.70 7.82 2.65

1QWA 21 8 2.96 2.26 3.33 2.60 7.75 7.46 2.01

1XJR 46 15 9.50 9.36 - - - - 6.25

1ZIH 12 4 0.95 0.80 1.30 0.82 5.64 4.27 1.03

28SP 28 8 2.52 2.10 5.53 4.70 9.97 9.79 2.31

2A43 26 7 3.58 2.65 4.84 3.73 10.23 9.23 2.79

2F88 34 13 3.00 2.35 5.11 4.78 - - 2.41

Len: the number of nucleotides in the molecule; Bps: the number of Watson Crick and G–U wobble base pairs in the structure; RMSD: the all-atom RMSD of the decoys
with the lowest all-atom RMSD from the native structure; C49 RMSD: the C49 RMSD of the decoy with the lowest C49 RMSD from the native structure. FARNA C49 RMSD:
the C49 RMSD for the decoys with the lowest C49 RMSD obtained by Das and Baker’s FARNA method [14]. A dash indicates that no structures with good base paring
(energy below 1.0 Å) were obtained. All RMSD values are measured in Ångström (Å). Lowest (best) RMSD values are highlighted with bold face.
doi:10.1371/journal.pcbi.1000406.t001

Figure 7. Decoys generated using BARNACLE, the mixture model and the uniform model. The decoys shown are those with the lowest
full-atom RMSD from the native structures, among all decoys with good secondary structure (energy less than 1.0 Å). Decoys are shown for PDB
structures 1ZIH and 1L2X. Pictures made using PyMOL (http://www.pymol.org).
doi:10.1371/journal.pcbi.1000406.g007
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sampling in an MCMC framework and makes it possible to

include the local structural bias as a direct term in an energy

function, which is not possible with non-probabilistic models.

Our model has several other potential uses, such as RNA

structure validation. The current state of the art is to assign scores

to short individual fragments based on their similarity to a set of

rotamers [12]. The model proposed here could be used to assign a

likelihood to a whole sequence of dihedral angles or to pinpoint

local stretches that have a low likelihood.

As for the quality of the model, we have shown that it captures

the essential properties of local RNA structure, and that it is

consistent with the rotameric model of RNA that underlies the

structure validation tool MolProbity [12]. In addition, we have

demonstrated that the model readily generates good quality decoys

for short RNA molecules using an MCMC framework and a

simple energy function.

An obvious challenge for the future is to extend the model with

sequence and evolutionary information. Given the high dimen-

sionality of the problem, and the paucity of the data, this will pose

a formidable statistical challenge.

With the development of the probabilistic model of local RNA

structure and our previous work on probabilistic models of local

protein structure [20,21], we have provided solutions to the

conformational sampling problem for the two most important

biological macromolecules: RNA and proteins. We expect to see

considerable benefits from these models in many areas of

application.

Materials and Methods

Training and selecting a model
To obtain the final model, we optimized BARNACLE’s

parameters based on a set of known RNA structures, using the

in-house dynamic Bayesian network software package Mocapy

[34]. The optimization was done with the stochastic expectation

maximization algorithm [35].

Selecting number of hidden states. The optimal number

of hidden states for BARNACLE was determined using the

Akaike Information Criterion (AIC). We chose AIC over the

two other model selection criteria, the Bayesian Information

Criterion and the Integrated Completed Likelihood, since both

criteria are known to underestimate the number of hidden

states for density estimation [36,37], and clearly do so for our

particular model design (data not shown). Both criteria point to

models with fewer hidden states than the total number of modes

in the angle distributions.

We trained seven models with 5, 10, 15, 20, 25, 30 and 40

hidden states, respectively. Each of these models were trained with

4 different initial sets of parameters, to avoid picking a model that

converged to a local optimum. We chose the model with the lowest

AIC score, resulting in 20 hidden states. We used the same

training procedure for the baseline mixture model, which resulted

in a model with 25 hidden states. The AIC plots for the two

models can be seen in Figure 8.

The Akaike Information Criterion. The Akaike

Information Criterion (AIC) [26,29] is a well established model

selection criterion that favors the model which minimizes the

expression

{2 log L yjdð Þz2n,

where L yjdð Þ is the likelihood of the model y given the data d,

and n is the number of parameters. The AIC score is an estimate

of the expected relative Kullback-Leibler divergence between the

unknown mechanism that generated the data and the model fitted

to the data [29] (for a definition of Kullback-Leibler divergence see

below).

Training data
As training data, we used the angles from the structures in the

2005 version of the RNA data set compiled by Murray et al. [9],

which consists of RNA 3-D structures of good quality

determined by X-ray crystallography. For all the tests, except

the decoy test, we used the entire data set for training. For the

decoy test, we trained the models using the RNA data in the

large ribosomal subunit (PDB code 1S72) in order to avoid bias

Table 2. The average suiteness scores for the lowest RMSD decoys.

Structure description BARNACLE Mixture model Uniform model Target

PDB ID Len Bps Best struct Best C49 struct Best struct Best C49 struct Best struct Best C49 struct

1ESY 19 6 0.755 0.786 0.571 0.640 0.000 0.000 0.168

1KKA 17 6 0.756 0.737 0.715 0.637 0.000 0.000 0.210

1L2X 27 8 0.652 0.629 0.619 0.566 0.000 0.000 0.745

1Q9A 27 6 0.731 0.705 0.604 0.575 0.001 0.000 0.714

1QWA 21 8 0.789 0.827 0.722 0.723 0.000 0.000 0.077

1XJR 46 15 0.706 0.706 - - - - 0.508

1ZIH 12 4 0.784 0.784 0.675 0.610 0.000 0.000 0.505

28SP 28 8 0.812 0.816 0.601 0.589 0.000 0.000 0.328

2A43 26 7 0.664 0.675 0.529 0.456 0.000 0.000 0.692

2F88 34 13 0.746 0.776 0.556 0.557 - - 0.509

Average suiteness 0.732 0.737 0.610 0.585 0.000 0.000 0.497

The table shows the average scores for the lowest RMSD decoys generated by BARNACLE, the mixture model and the uniform model. The average scores are calculated
by Suitename [31] and higher scores indicate higher quality. Len: the number of nucleotides in the molecule; Bps: the number of Watson Crick and G–U wobble base
pairs in the structure; Best struct: the average suiteness per suite for the lowest RMSD structure; Best C49 struct: the average suiteness per suite for the lowest C49 RMSD
structure; Target: the average suiteness per suite for the experimental determined target structures. The highest (best) suiteness scores are highlighted with bold face. A
dash indicates that no structures with the correct base paring (energy below 1.0 Å) were obtained.
doi:10.1371/journal.pcbi.1000406.t002
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from homologous structures [14]. For target 1Q9A, the

homologous sequence at residues 2684–2710 in structure 1S72

was removed before training. Before we used the data set we

removed outliers and ensured that the data consists of unbroken

chains.

Outlier removal. The compilers of the data set pointed out

that the data set contains errors [9]. Hence, we performed an

outlier removal by applying the outlier definition of Knorr and Ng

[38] to every angle pair within a residue. This led to the removal of

the worst outliers, but did not significantly decrease the size of the

data set: 971 out of 70,803 angles were removed.

Chain breaks. Some PDB files in the data set lack whole

residues in the middle of a chain. We identified such residues by

considering the bond distances O39-P between consecutive

residues. When such a distance was more than 50 times the

standard deviation [25], we split the chain up at this point. Since

we want to preserve the sequentiality in the data set, we use the

Needlemann-Wunch algorithm [39] to align all the pieces to the

full base sequence specified in the PDB header (the algorithm was

modified to only allow insertions at split points). In this way, we

calculate how many residues are missing. The missing residues are

simply treated as missing data in the stochastic expectation

maximization training procedure [35].

Sampling
It is possible to sample from BARNACLE in two different ways:

one can (i) sample an entire sequence of angles, or (ii) resample a

segment in an angle sequence seamlessly, that is, conditional upon

the remaining angles. In both cases, the resulting angle sequence is

subsequently converted into atomic coordinates.

Sampling a sequence of angles. Sampling a sequence of

angles is done using a three step procedure. First, one specifies the

values of the angle identifier nodes, which for an RNA fragment of

n nucleotides consists of n repeats of the sequence a, b, c, x, d, e
and f. Then, the values of the hidden nodes, hj are sampled

from one end to the other, from the distribution

P Hj

��Dj~dj ,Hj{1~hj{1

� �
. Finally, the angular values are

sampled from the distribution P Aj

��Hj~hj

� �
.

Resampling a segment of angles. Assume that we have

sampled a sequence of hidden values, h1, . . . ,hnf g, and a

sequence of angle values, a1, . . . ,anf g, given an appropriate

sequence of identifier variables, d1, . . . ,dnf g. Resampling a

subsequence, from position l to m can then be done using the

forward-backtrack algorithm [20,21,40]. This algorithm is a two

step procedure.

In the first step the hidden variables, hl , . . . , hm, are resampled.

This is done by first calculating the forward variables

fk jð Þ~P Hj~k
��Hl{1~hl{1,Dj~dj

� �
,

for each possible hidden node value k in each slice j[ l, . . . ,mf g,
using the forward algorithm [28]. Then the hidden nodes values,

hj , are sampled from position m to position l proportional to:

fk jð ÞP Hjz1~hjz1

��Hj~k,Dj~dj

� �
:

In the second step the angles, aj , at each position j[ l, . . . ,mf g, are

sampled from the distribution P Aj

��Hj~hj

� �
.

Data sets used in the evaluations
We use data sets sampled from BARNACLE and the mixture

model for the evaluations in the results section.

For the comparison of the pairwise angle distributions (Figure 4

and Figure S2) we sampled data sets with the same size (9.8?103

nucleotides) and length distributions as the experimental data set.

For the comparison of the length distributions of helical regions

(Figure 5) and the rotamer distribution (Figure 6), we sampled data

sets of 100 times the size of the experimental data set (0.98?106

nucleotides), again with the same length distributions as the

experimental data set. For these two comparisons, the data set has

to be this large to ensure a sufficient sampling of the distribution in

question from the mixture model. Certain rotamers (Figure 6) and

long helical regions (Figure 5) only have negligible probabilities

according to the mixture model, and for smaller sample sizes not

all rotamers are sampled.

Model evaluation using the Kullback-Leibler divergence
In the Results section, we use the Kullback-Leibler (KL)

divergence [30] to measure the similarity between the experimen-

tal data and the models.

Figure 8. Selection of the best models using the Akaike
Information Criterion. The Akaike Information Criterion (AIC) scores
are shown for all trained BARNACLE models (top) and mixture models
(bottom). The AIC score reaches a minimum for the best model. The
BARNACLE model with 20 hidden states, and the mixture model with 25
states have the best AIC scores (shown in red). The best models for each
given number of hidden states are shown in black. The dotted lines are
tendency lines constructed by cubic splines [43]. The three outliers in
the BARNACLE plot (at 10 and 15 hidden states) illustrate that the
stochastic expectation maximization procedure can get stuck in a local
optimum. Note that the best BARNACLE model has a lower (better)
score than the best mixture model.
doi:10.1371/journal.pcbi.1000406.g008
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The KL divergence is a standard measure for the distance

between two probability distributions. For two continuous

probability density functions p and q, the KL divergence is

defined as:

K p,qð Þ~
ð

p xð Þlog
p xð Þ
q xð Þ dx, ð2Þ

while for two discrete probability mass functions p and q the KL

divergence is defined as

K p,qð Þ~
X

x

p xð Þlog
p xð Þ
q xð Þ : ð3Þ

Typically p is taken to be an empirical data distribution or the

‘‘true’’ underlying distribution that generated the data, whereas q
typically represents a model or an approximation of p. The

divergence is always non-negative and only becomes zero for equal

distributions. When the binary logarithm is used in the definition,

the divergence is measured in bits.

For the comparisons of the individual and pairwise angle

distributions we use equation (2). We calculate the difference

between the KL divergence from the experimental data set, p, to

the mixture model, ~qq, and the KL divergence from the

experimental data set to BARNACLE, q, in the following way:

K p,~qqð Þ{K p,qð Þ~

{

ð
p xð Þlog ~qq xð Þdxz

ð
p xð Þlog q xð Þdx:

To calculate this expression, we use the fact that the KL

divergence can be expressed in terms of statistical expectations

[29]. The difference can be rewritten as the expectation with

respect to p:

K p,~qqð Þ{K p,qð Þ~{Ep log ~qqð ÞzEp log qð Þ:

Since the empirical distribution, p, is a set of observations, x1,x2,
. . . ,xN , we can calculate the expectations by averaging over these

observations [41]:

K p,~qqð Þ{K p,qð Þ~

1

N

XN

i~1

{log ~qq xið Þzlog q xið Þ:

For the length distribution of the helical regions and the

distribution of the 46 rotamers we use equation (3).

Details on the MCMC simulations
The MCMC simulations are done in the 1=k-ensemble [32],

using the Metropolis-Hastings algorithm [17,42], and the

generalized multihistogram method for updating the weights

[33]. The method has two main components: a proposal

distribution, and an energy function (see below for details). The

energy space is divided into n bins (each of width 0.05 Å), and the

method seeks to generate samples more often in low than in high

energy bins. In particular, the target distribution is the density of

states weighted according to the inverse of the cumulative density

of states [33]. The final ensemble of sampled structure has the

approximate property that the distribution of samples within each

energy bin is the proposal distribution. In other words, we

generate samples from BARNACLE that are conditional upon

belonging to a low energy bin.

Proposal distribution. We use three different models

(BARNACLE, the mixture model and the uniform model) for

the proposal distributions. For all three models, the proposals are

constructed in the following way.

Let x be the current candidate structure with the angle sequence

xa. The next candidate structure, x9, is then proposed by

resampling a stretch of angles in xa according to the model, and

calculating the atom positions corresponding to the new angle

sequence x9a. For BARNACLE the resampling is efficiently done

using the forward-backtrack algorithm (for a description see

section on Sampling). For the mixture model and the uniform

model, each angle in the subsequence can be resampled

individually, since all angles are independent according to these

models.

The length of the sequence to be resampled is drawn from a

Poisson distribution with mean 2 that is truncated at the maximum

number of angles in the target structure.

We require that all sampled structures are clash free; if a clash

occurs, the structure is immediately rejected. We define a clash as

a pair of non-covalently bonded atoms that are closer to each

other than 1.8 Å.

Energy function. We use a distance-based energy function

that enforces a desired secondary structure (Watson Crick and G–

U wobble base pairs). The energy function is constructed in the

following way.

Let d1, . . . ,dk be the distances between the donors and

acceptors in each of the hydrogen bonds making up the desired

secondary structure in a structure x (every A–U and G–U pair

contributes two distances, and every C–G pair contributes three

distances). The base paring energy of x is then defined as

EBP xð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

i~1

d̂di{di

� �2

vuut ,

where d̂di is a reference value for the hydrogen bond distance in the

particular type of base pair. The reference value for each of the 7

donor-acceptor distances is calculated as the mean distance in the

structures from the 2005 version of the RNA data set compiled by

Murray et al. [9]. The energy is measured in Å, and the minimal

base pair energy of 0 Å is only obtained for structures with perfect

base paring.

For the simulations presented in Table 1, the enforced

secondary structure is the secondary structure of the target

structure.

Availability
A software implementation of BARNACLE is freely available

on SourceForge (http://sourceforge.net/projects/barnacle-rna/).

Supporting Information

Figure S1 The marginal distributions of all seven individual

angles.

Found at: doi:10.1371/journal.pcbi.1000406.s001 (0.06 MB PDF)

Figure S2 Histograms of pairwise angle distributions with the

highest and lowest KL difference.

Found at: doi:10.1371/journal.pcbi.1000406.s002 (0.49 MB PDF)

Table S1 The KL divergences for the seven individual angles.
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Found at: doi:10.1371/journal.pcbi.1000406.s003 (0.01 MB PDF)

Table S2 The KL divergences for angle pairs.

Found at: doi:10.1371/journal.pcbi.1000406.s004 (0.02 MB PDF)

Table S3 Execution time of the MCMC algorithm.

Found at: doi:10.1371/journal.pcbi.1000406.s005 (0.02 MB PDF)

Table S4 The 5% and 25% quantiles of the RMSD distributions

for decoys with correct base pairing.

Found at: doi:10.1371/journal.pcbi.1000406.s006 (0.02 MB PDF)
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