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Abstract

Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend
sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the
human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us
to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects
of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous (‘‘resting-
state’’) neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant
regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion
location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical
midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional
connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic
lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects
may be related to known behavioral and cognitive consequences of brain lesions.
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Introduction

Recent advances in noninvasive imaging technology have

allowed the creation of comprehensive whole-brain maps of the

structural connections of the human cerebrum [1–7]. These maps

have led to the quantitative characterization of various aspects of

the network architecture of the brain, including degree distribu-

tions, small-world attributes, centrality and modularity. Compar-

ative studies of structural and functional connectivity indicate that

the presence of structural links between pairs of cortical regions is

predictive of the occurrence of endogenously driven (resting-state)

functional connectivity [4,8,9]. The mapping of structural

connectivity has also enabled the construction of computational

models of resting state activity [10,11]. The direct comparison of

empirically observed and computationally modeled resting state

functional connectivity revealed a high degree of overlap,

supporting the idea that large-scale structural brain networks do

indeed shape and constrain endogenous patterns of functional

connectivity [8].

The structural or functional robustness of networks has been

investigated in a number of complex systems [12,13], including

biological networks [14–16] In the case of the brain, acute injuries

from trauma, tumor, or stroke, as well as chronic or degenerative

disturbances due to disease, correspond to node and edge deletions

in the structural brain network. Many of the cognitive and

behavioral effects of brain lesions are highly variable and their

mechanistic origins remain difficult to discern. Nevertheless,

lesions of specific brain regions are often associated with specific

cognitive and behavioral disturbances, and lesions of some areas

tend to have more severe effects than others [17–19]. Vulnerability

analyses [20–24] of several non-human primate cortical networks

suggest that lesion effects show regional specificity as well as non-

local and distributed effects.

We describe a model of lesion effects in the human brain, based

on a previously published map of structural connections [4] and a

biophysical model of endogenous neural dynamics [8]. We

investigate the effects of focal lesions (removing a spatially

localized set of nodes and connections) on the endogenous

dynamics of the remaining brain. We identify structural measures

of brain connectivity that are predictive of the magnitude of the

perturbations in the endogenous neural dynamics. We discuss our

results in light of known behavioral and cognitive lesion effects.

The computational and complex network approach taken in this

paper provides a new link between localized structural damage of

brain networks and global disruptions of dynamic interactions.

Methods

Connectivity Data Set
The structural connectivity (SC) data set used in the present

paper is identical to the one described and displayed in ref [8],

based on diffusion MRI data first described in ref [4]. Briefly,

structural connections were derived from diffusion spectrum

imaging (DSI) of five healthy right handed male participants.
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The segmented cortical gray matter was partitioned into 66

anatomical regions according to anatomical landmarks using

Freesurfer (surfer.nmr.mgh.harvard.edu) and 998 regions of

interest (ROIs). The 998 ROIs were chosen to provide a roughly

uniform tiling of the cerebral cortex (each ROI,1.5 cm2) so that

their borders aligned with those of the 66 anatomical regions.

White matter tractography was performed with a custom

streamline algorithm and fiber connectivity was aggregated across

all voxels within each of the 998 predefined ROIs. The fiber

strengths produced by the streamline tractography algorithm were

exponentially distributed and spanned several orders of magni-

tude. Since connection weights in our model are meant to express

physiological efficacy rather than fiber counts or the thickness of

fiber tracts, we resampled the raw fiber strengths into a Gaussian

distribution with a mean of 0.5 and a standard deviation of 0.1

dimensionless units. This transformation does not alter the rank-

ordering of strong to weak pathways, but it compresses the scale of

physiological efficacies (connection strengths). We created an

‘‘average SC matrix’’ from the resampled connection maps of

individual participants. In this average SC map, structural

connections were deemed absent overall, i.e. set to zero, if they

were absent in more than 3 participants.

Modeled Neural Dynamics
Neuronal dynamics were simulated using a system of neural

masses coupled to one another with strengths linearly proportional

to the resampled fiber strengths at each edge. Each neural mass

represents a population of densely interconnected excitatory and

inhibitory neurons, in which the effects of both ligand- and

voltage-gated membrane channels are accounted for. This model

was first developed in [25] and has previously been employed in an

anatomically-informed model of large-scale functional connectivity

in the macaque monkey [10] as well as for modeling human

resting-state functional connectivity [8]. The model was simulated

in Matlab R2007a (Mathworks, Natick, MA) at a time resolution

of 0.2 msec. Before data analysis, resulting data sets are down-

sampled to a time resolution of 1 millisecond. After an initial

transient of 2 minutes which was discarded, runs proceeded for a

total of 8 minutes. Simulated BOLD signals were computed by

using a nonlinear hemodynamic model as previously described

[8,10,26]. While all simulations were carried out with the same set

of haemodynamic parameters, future studies may incorporate

individual variations, e.g. to take into account effects of disease

state on blood vessel compliance, or regional variations of the

haemodynamic response across different brain regions. Cross-

correlation matrices of BOLD time-series (functional connectivity,

FC) were derived without regressing out the global signal average,

as this procedure may affect correlation pattern and magnitude.

For each lesion, as well as for unlesioned controls, we conducted

five simulation runs starting from random initial conditions. Data

analyses were carried out on correlation matrices averaged over

these five runs. For more details see refs. [8,10,25].

Lesions
The structural connectivity matrix was lesioned in two ways:

sequential single node deletions and localized area removal. The

first method was aiming at a structural failure analysis, and

included both ‘‘random’’ and ‘‘targeted’’ node deletions, involving

the sequential removal of nodes (ROIs), one by one, until the

network had shrunk to a single remaining node. For random node

removal, we removed a single randomly chosen node at each step.

This process was repeated 25 times. For targeted node removal,

we first computed the node degree (defined as the number of

connections at each node), node strength (defined as the sum of all

the weights of the connections at each node) or the node

betweenness centrality [27] for all nodes in the network. Then we

removed the single node with the highest degree, strength or

centrality. Degree, strength and centrality were then re-computed

and the next node was selected for removal, until one last node

remained. At each step during random and targeted node removal

we calculated several structural network measures, including the

size of the largest connected component of the remaining network

and the global efficiency. Global efficiency is computed as the

average of the inverse distance between all nodes and captures the

network’s capacity for communication along short paths [28].

The second lesion type, localized lesions, was aiming at dynamic

and functional failure analysis. These lesions were carried out by

removing all nodes and their connections within a spatially defined

region around a central location. The central location was defined

by a standard x,y,z Talairach coordinate and a fixed number of

ROIs closest to this central location were deleted. Closeness was

determined by the Euclidean distance. Lesions involved the

deletion of nodes (‘‘gray matter’’) and their afferent/efferent

connections only – we did not attempt to model ‘‘white matter’’

volume, for example by including lesions of ‘‘fibers of passage’’.

Computational considerations prevented us from simulating

lesions centered on all 998 ROIs, and from varying the lesion

extent. We selected a lesion size of 50 ROIs, corresponding to

about 5% of the cortical surface, which was large enough to have

significant effects on neural dynamics, and small enough to

preserve the regional specificity of the lesions. A complete list of all

lesions, their central locations, spatial coordinates, and affected

anatomical subregions are provided in Table 1. The spatial

location and extent of all lesions is depicted in Figure 1. Jointly, all

lesions described in this paper cover about 80 percent of the

cortical surface. Figure 1 also illustrates the relation of all lesions to

the default mode network (DMN). The DMN was comprised of

200 ROIs which had earlier been determined from empirical

fMRI studies [8], and contained portions of the precuneus/

posterior cingulate cortex, medial and superior frontal cortex, and

lateral parietal cortex.

Author Summary

Every year, millions of people suffer the consequences of
brain damage, as a result of stroke, traumatic brain injury,
cancer or degenerative brain disease. The cognitive and
behavioral symptoms of focal lesions of the brain are
highly variable and in many cases depend on the location
of the lesion site. Can we predict the functional impact of
such lesions on the basis of a computational model of the
brain’s structure and dynamics? Numerous other systems
that form complex networks have been analyzed for their
vulnerability to structural damage. In many cases, the
degree to which such systems are perturbed depends on
network attributes of the deleted nodes and connections.
We apply this network approach to investigate the
structural and functional impact of localized lesions of a
model of the cerebral cortex. When we delete nodes that
occupy, in the intact brain, a highly central position, we
find that the dynamic interactions between nodes in the
remaining brain are greatly disturbed. In contrast, deletion
of less central nodes has relatively little effect. In the
model, some of the most disruptive lesion sites correspond
to locations in the brain where lesions produce complex
cognitive disturbances. Our modeling approach aims
towards linking disturbances of structural brain networks
to specific clinical outcomes.

Modeling Lesions in Human Brain
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All graph-theoretical measures (path length, centrality, efficien-

cy) reported in this study were computed from a structural network

that preserved edge weights, as previously described [4].

Measures of Lesion Effects
The nature of the computational model does not allow us to

probe directly for behavioral or cognitive lesion effects. Thus, our

measures of lesion effects are confined to estimates of the lesion’s

immediate structural and dynamic impact. Examples of structural

(SC) and BOLD cross-correlation matrices (FC) before and after a

lesion are shown in Figure 2. Lesion effects were quantified in

several ways, all of which produced similar patterns of results

(Table 2). The distance between the unlesioned and lesioned FC

matrix was calculated as

dFC~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
runlesioned

ij {rlesioned
ij

� �2
r

Where rij is the functional connectivity measure (cross-correlation)

between nodes i and j. This distance dFC was computed for both

the high-resolution FC matrices (998 ROIs) and for the regionally

averaged FC matrix (66 regions). We computed two distances, one

of which included functional connections of all ROIs (dFC), while

the other only measured the distance between ROI pairs that were

not involved in the lesion itself (dFC9).

A second way to measure the difference between two

correlation matrices was computed as follows. First, we converted

the two correlation matrices (before and after lesioning) to a

normal distribution by using Fisher’s z-transform. To test the

hypothesis that the two sets of correlations were drawn from

different distributions we computed z-scores, according to

z~ ruunlesioned
ij {rlesioned

ij

� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= df {3ð Þz1= df {3ð Þð Þ

p

where df corresponds to the effective degrees of freedom. The

value for df was estimated following procedures used for analyzing

Table 1. Modeled lesions and lesion locations.

Right Hemisphere

Lesion name ROI center Talairach coordinate Center region Lesioned regions

Cortical midline L323 323 (6, 256, 38) rPCUN rCUN, rISTC, rPCUN

L194 194 (5 16 31) rCAC rCAC, rCMF, rSF

Parietal and temporal cortex L308 308 (47 251 22) rIP rBSTS, rIP, rSMAR

L247 247 (62 231 28) rSMAR rPSTC, rSMAR, rTT

L472 472 (65 232 10) rST rBSTS, rMT, rST, rSMAR, rTT

L439 439 (50 211 229) rIT rENT, rIT, rST, rTP

Frontal cortex L86 86 (7 48 21) rSF rCAC, rFP, rRAC, rRMF, rSF

L138 138 (39 9 51) rCMF rCMF, rPREC

L57 57 (40 9 21) rPOPE rCMF, rPOPE

Sensory, motor L360 360 (26 294 26) rLOCC rLOCC, rLING, rPCAL

L162 162 (34 223 46) rPREC rPSTC

Left Hemisphere

Lesion name ROI center Talairach coordinate Center region Lesioned regions

Cortical midline L821 821 (28 257 47) lPCUN lISTC, lPCUN, lSP

L692 692 (27 26 26) lCAC lCAC, lRAC, lSF

Parietal and temporal cortex L810 810 (245 250 20) lIP lBSTS, lIP

L746 746 (258 225 28) lSMAR lPSTC, lSMAR

L971 971 (261 236 12) lST lBSTS, lMT, lSMAR, lTT

L938 938 (244 210 226) lIT lENT, lIT, lMT, lPARH, lST, lTP

Frontal cortex L584 584 (28 52 17) lSF lCAC, lFP, lRAC, lRMF

L636 636 (239 7 42) lCMF lCMF, lPREC

L555 555 (242 22 18) lPOPE lCMF, lPOPE, lPTRI, lRMF

Sensory, motor L856 856 (225 293 27) lLOCC lLOCC, lLING, lPCAL

L661 661 (234 29 52) lPREC lPREC

Lesions are named after the number of the central ROI and all lesions comprise a total of 50 ROIs. ‘‘Center region’’ refers to the name of the anatomical subdivision to
which the central ROI belongs. ‘‘Lesioned regions’’ lists all anatomical subdivisions that are removed by at least 50% or their constituent ROIs. Anatomical subdivisions
are named as follows: each label consists of two parts, a prefix for the cortical hemisphere (r = right hemisphere, l = left hemisphere) and one of 33 designators:
BSTS = bank of the superior temporal sulcus, CAC = caudal anterior cingulate cortex, CMF = caudal middle frontal cortex, CUN = cuneus, ENT = entorhinal cortex,
FP = frontal pole, FUS = fusiform gyrus, IP = inferior parietal cortex, IT = inferior temporal cortex, ISTC = isthmus of the cingulate cortex, LOCC = lateral occipital cortex,
LOF = lateral orbitofrontal cortex, LING = lingual gyrus, MOF = medial orbitofrontal cortex, MT = middle temporal cortex, PARC = paracentral lobule,
PARH = parahippocampal cortex, POPE = pars opercularis, PORB = pars orbitalis, PTRI = pars triangularis, PCAL = pericalcarine cortex, PSTS = postcentral gyrus,
PC = posterior cingulate cortex, PREC = precentral gyrus, PCUN = precuneus, RAC = rostral anterior cingulate cortex, RMF = rostral middle frontal cortex, SF = superior
frontal cortex, SP = superior parietal cortex, ST = superior temporal cortex, SMAR = supramarginal gyrus, TP = temporal pole, TT = transverse temporal cortex.
doi:10.1371/journal.pcbi.1000408.t001

Modeling Lesions in Human Brain
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empirically obtained correlation matrices (e.g. ref [29]). Using a

correction factor for independent frames (estimated according to

Bartlett’s theory [30]) of 3, and computing correlations from 5

independent runs of 8 minutes each, with 30 data samples/

minute, we obtained df = 400. We then counted the number of

functional connections that exceeded a significance threshold of

|z|.3.3. To test the validity of this threshold we compared two

correlation matrices computed from independent sets of 5

unlesioned runs against each other. After normalization, z-score

transformation and thresholding at |z|.3.3, we detected 91 false

positives out of nearly 500,000 comparisons (Figure 2D), indicat-

ing that the error rate is p,0.001. We concluded that for

simulations of lesions the occurrence of a large number of

functional connections with |z|.3.3 reflected specific lesion

effects with very high probability. Choosing higher thresholds (e.g.

|z|.5) did not affect the main conclusions of the study (data not

shown).

Results

Several previous studies have examined the direct effects of

node deletions on network structure and connectivity. Thus, we

first examined the effects of random and targeted node removal on

the structural integrity of the network, measured as the size of the

largest connected component (Figure 3). Random removal of

nodes did not affect network integrity until almost all of the nodes

had been deleted. Targeted removal of nodes on the basis of node

degree or node strength disconnected the network only after

approximately three quarters of all nodes had been deleted. In

contrast, targeting nodes on the basis of their centrality resulted in

the appearance of disconnected components after deletion of only

164 nodes. Targeting highly central nodes also resulted in a rapid

decrease in the network’s global efficiency, while targeted removal

of nodes with high degree or high strength resulted in a more

gradual decline in efficiency.. We performed identical analyses on

a set of control networks whose global topology had been

randomized while preserving the sequence of node degrees. These

randomized controls were highly resilient to removal of nodes

based on centrality or strength, remaining strongly connected until

more than 700 nodes had been deleted (results not shown). These

results indicate that the structural network is relatively insensitive

to random node deletion, or to node deletion targeting nodes

according to their degree or strength, while showing much greater

vulnerability to targeted node deletion on the basis of centrality.

The potential dynamic effects of focal brain lesions on neural

activity have remained relatively unexplored. Here, we compared

functional connectivity patterns due to endogenous neural

dynamics before and after a lesion was made. Despite equal

lesion size (50 nodes) dynamic lesion effects exhibited marked

differences depending on lesion location. These differences

Figure 1. Lesion locations. Diagrams show a rendering of a standard cortical surface, with ROIs that form part of the DMN indicated in light red.
Outlines indicate approximate lesion locations. All lesions are comprised of 50 ROIs. Lesion labels correspond to lesion names in Table 1 and 2.
doi:10.1371/journal.pcbi.1000408.g001
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involved both the magnitude and the spatial pattern of changed

functional connections (Table 2). Posterior and anterior lesions

along the cortical midline, as well as a subset of lesions in frontal,

parietal and temporal cortex, had extensive effects. With few

exceptions lesion effects were stronger in the ipsilateral hemi-

sphere, and mostly involved weakening of functional coupling.

Lesions closer to the midline tended to be more disruptive of cross-

hemispheric coupling than more lateral lesions. A subset of lesions

in frontal cortex and in the anterior cingulate had disproportion-

ately strong effects on functional connections involving the default

mode network.

Figures 4, 5 and 6 show the spatial distribution of functional

connections that exhibited significant differences for a selection of

lesion locations many of which were highly impactful overall,

including lesions along the cortical midline (Figure 4), the

temporo-parietal junction (Figure 5) and the frontal cortex

(Figure 6). Other lesions altered functional connectivity less, for

example lesions in primary sensory and motor regions (Figure S1).

Lesions along the cortical midline were characterized by

widespread effects involving both cerebral hemispheres and all

major cortical lobes. L194 (Figure 4A), centered in the right caudal

anterior cingulate cortex resulted in lower functional connectivity

between most ipsilateral subregions of right medial cortex,

extending from orbitofrontal cortex to the cuneus. Some

functional connections along the contralateral midline were also

weakened, but to a lesser extent. Interhemispheric functional

connections were profoundly suppressed. Lesions placed in the

posterior medial cortex, e.g. L821 (Figure 4B) also affected

functional connectivity in both hemispheres but had less

widespread effects. Contralateral effects consisted of increasing

coupling between several regions, including between superior

parietal and anterior cingulate cortex.

Lesions near the temporo-parietal junction were highly

disruptive of functional connectivity within their own cortical

hemisphere as well as between hemispheres. L472 (Figure 5A) was

centered in right superior temporal cortex and resulted in sharply

lowered functional connectivity among all subdivisions of the

ipsilateral parietal and posterior temporal cortex. In addition,

coupling between regions in posterior medial cortex and frontal

cortex were decreased in both hemispheres. A lesion in the left

inferior parietal cortex in the vicinity of the left angular gyrus

(L810, Figure 5B) significantly increased functional coupling

Figure 2. Structural connectivity, functional connectivity, and measurement of lesion effects. (A) Top: Intact ‘‘unlesioned’’ structural
connectivity (SC). Bottom: lesioned SC. The lesion shown here is L194 and the lesioned portion of the matrix is indicated in light yellow. (B) Top:
Unlesioned functional connectivity (FC) matrix, obtained after averaging BOLD cross-correlations from 5 simulation runs. Bottom: lesioned FC matrix
(L194), averaged over 5 runs. (C) z-score matrix after subtraction of normalized cross-correlations. (D) Cumulative distribution of z-scores of functional
connections after subtraction of lesioned (L194) from unlesioned FC (blue dots) and after subtraction of two sets of 5 unlesioned runs (black dots).
The dashed line marks z = 3.3, and the number of functional connections at this threshold was taken as one measure of lesion impact.
doi:10.1371/journal.pcbi.1000408.g002

Modeling Lesions in Human Brain
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within the left hemisphere, while suppressing cross-hemispheric

functional connectivity.

Lesions involving parts of frontal cortex resulted in pronounced

and widespread loss of functional coupling within the lesioned

hemisphere as well as across hemispheres. A lesion of right

superior frontal cortex (L86, Figure 6A) strongly reduced

functional coupling of many right hemispheric brain regions,

including interactions between frontal, temporal, and parietal

cortex, extending over the entire length of the anterior-posterior

axis. Weaker, but significant, suppression of functional connectiv-

ity is also seen in the contralateral hemisphere, including reduced

coupling between the posterior cingulated/precuneus and the

superior and middle frontal cortex. Lesioning left lateral frontal

cortex centering on the pars opercularis (L555, Figure 6B) reduces

functional coupling more locally.

Lesions of primary sensory and motor cortices (Figure S1) leave

the functional connectivity of the remainder of the brain largely

unchanged. Lesions centered in visual cortex (L360) or somato-

motor cortex (L162) have little effect on functional connectivity

outside of the immediate vicinity of the lesion itself.

In addition to node removal, lesions may be modeled as edge

deletions, i.e. disruptions of white matter pathways. One of the

most dramatic examples is the complete transection of the corpus

callosum. We performed simulations after deleting all cross-

hemispheric connections and compared the resulting functional

connectivity patterns to those obtained from the intact brain

(Figure S2). In the model, callosal transection resulted in the

complete loss of all inter-hemispheric functional connectivity, as

well as a more restricted pattern of significant changes in intra-

hemispheric functional coupling.

Finally, we examined whether the extent of dynamic lesion

effects could be predicted on the basis of the impact of the lesion

on structural network measures. Specifically, we asked if dynamic

lesion effects were more pronounced if the lesion lengthened

network paths, removed a larger number of long-range connec-

tions, or removed more highly connected or more highly central

Table 2. Magnitude and pattern of dynamic lesion effects.

Right Hemisphere

Lesion
name Magnitude of Lesion Effects Pattern of Lesion Effects

z9 top 50% RH.LH CC.(RH+LH) DMN.non-DMN W.S

Cortical midline L323 8694 $ $

L194 26384 $ $ $ $ $

Parietal and temporal cortex L308 2636 N N N

L247 830 N N

L472 11253 $ $ $

L439 1369 N N N

Frontal cortex L86 21448 $ $ $ $

L138 9255 $ $ $ $ $

L57 7077 $ $ $ $

Sensory, motor L360 1621 N N N

L162 1851 N N

Left Hemisphere

Lesion
name Magnitude of Lesion Effects Pattern of Lesion Effects

z9 top 50% LH.RH CC.(RH+LH) DMN.non-DMN W.S

Cortical midline L821 7614 $ $ $

L692 10518 $ $ $ $

Parietal and temporal cortex L810 22630 $ $ $ $

L746 4799 N

L971 24560 $ $ $ $

L938 331 N N N

Frontal cortex L584 15627 $ $ $ $ $

L636 2639 N

L555 1925 N N N

Sensory, motor L856 358 N N

L661 1655 N N

Lesions are tabulated as in Table 1. Magnitude of lesion effects measures: z9 = sum of all significantly altered functional connections (|z|.3.3), excluding functional
connections of lesioned nodes; top 50% = lesions whose z9 is in the top half. Pattern of lesion effects measures: RH.LH, LH.RH = number of significant functional
connections in the left versus right cerebral hemisphere; CC.(RH+LH) = greater number of significant cross-hemispheric versus intra-hemispheric functional
connections; DMN.non-DMN = greater proportion of significantly changed functional connections at ROIs that are part of the DMN versus ROIs that are not part of the
DMN; W.S greater number of significantly weakened versus significantly strengthened functional connections; $= yes (large-effect lesion); N = yes (small-effect lesion).
doi:10.1371/journal.pcbi.1000408.t002
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Figure 3. Analysis of robustness on the basis of random/targeted node deletions. The plots show the size of the largest network
component (A) and the global efficiency (B) as a function of the number of deleted nodes. The curve for random node deletion is an average of 25
different random sequences. The other three curves represent unique sequences of node deletion determined by node degree (blue) strength
(green) or node centrality (red).
doi:10.1371/journal.pcbi.1000408.g003

Figure 4. Dynamic effects of lesions along the brain’s midline. (A) L194. (B) L821. In this plot, as well as in Figures 5, 6 and S1, a dorsal view of the
brain (middle panel) and two lateral views of the left hemisphere (left panels) and the right hemisphere (right panels) are shown. The middle panel plots
all significantly different functional connections, while the left and right panels only show significantly different functional connections within the left
and right hemispheres, respectively. The 998 ROI z-score FC matrix was aggregated to 66 subregions, and pathways between these 66 subregions are
plotted if at least 10% of their constituent connections linking ROI pairs are significantly changed (|z|.3.3) as a result of the lesion. Pathways are plotted
in red or blue, if their coupling has been weakened or strengthened, respectively. The approximate lesion center is marked with a green ‘‘+’’.
doi:10.1371/journal.pcbi.1000408.g004
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nodes. Table 3 and Figure 7 summarize the relationship between

these structural measures and several measures of the dynamic

impact of the lesion. The reported correlations are calculated for a

subset of 22 lesion sites covering about 80 percent of the cortical

surface, and for a single lesion size (50 nodes). The extent of

dynamic lesion effects was only weakly predicted (r<0.4–0.5) by

the degree or strength of the nodes within each lesion. A better

predictor was the number of connections between the lesion site

and the rest of the brain (these connections are lost as a result of

the lesion), and how much the lesion increased the path length of

the remaining network (r<0.45–0.7). Node and edge centrality of

the lesioned nodes or edges predicted functional lesion impact

about equally well (r<0.45–0.7). The most robust prediction was

made by the extent to which the lesion damaged the default mode

network (r<0.6–0.85).

Discussion

The availability of whole-brain structural connectivity data sets

[3–7], for the first time, allows for the computational study of the

effects of localized structural lesions on neural dynamics. In this

study, lesions are modeled as structural perturbations with specific

dynamic effects. We find that lesions in different regions of the

cerebral cortex have specific effects on the pattern of endogenous

functional connectivity of the remaining brain that differ in both

extent and spatial pattern. Generally, lesions along the cortical

midline, the temporo-parietal junction and the frontal cortex result

in the largest and most widespread effects on functional

connectivity. Many lesions affect the functional coupling of brain

regions outside of the lesion itself, including effects in the

hemisphere contralateral to the lesion site.

The first part of our study involved random and targeted node

deletions and their impact on the structural integrity of the

network (Figure 3). Some of our results expanded upon

observations made by other investigators who examined the

vulnerability or robustness of brain networks [21–23]. Our

structural network is relatively resilient against random node

removal and against targeting of nodes on the basis of their high

degree or high strength, a finding also reported for human

functional networks [21]. However, the network is much less well

protected against loss of nodes that are highly central, a finding

that is consistent with the overall network architecture which

consists of modules linked by hubs [4]. Targeted node removal by

centrality may have a physiological basis. There is a potential link

between node centrality and baseline metabolic activity [4] and it

has been suggested that a high rate of metabolism may render

neurons vulnerable to neurodegenerative processes [31,32]. We

hypothesize that at least some forms of degenerative brain disease

may involve the ‘‘targeted’’ removal of network components.

Confirming earlier results obtained from a much smaller

connection matrix of macaque cortex [24], modeling lesions in

the human brain resulted in non-local dynamic effects. Several

empirical studies have demonstrated such non-local effects, for

example changes a distributed pattern of functional connectivity

following in patients with focal brain lesions due to tumor or stroke

[33–35]. Early theoretical accounts had predicted and attempted

to explain such nonlocal effects, invoking concepts such as

‘‘diaschisis’’ [36] or ‘‘disconnection’’ [37]. The complex network

approach adopted in this paper supports these concepts and

provides a new opportunity to establish links between physical

brain damage and functional disturbances. As suggested by studies

of structural network measures [23,38], including our own results

Figure 5. Dynamic effects of lesions near the temporo-parietal junction. (A) L472. (B) L810. For plotting conventions see legend to Figure 4.
doi:10.1371/journal.pcbi.1000408.g005
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regarding the effects of targeted node removal (Figure 3), we found

that dynamic lesion effects were particularly large and widespread

when lesions included nodes or edges of high centrality (Figure 7,

Table 3). Another good predictor of functional change was the

number of connections between the lesion site and the rest of the

brain that were lost. This result underscores that ‘‘disconnection’’

may occur not only for areas that are directly anatomically linked

but also account for changes in dynamic coupling among remote

and structurally unconnected areas of cortex. Dynamic lesion

effects were especially pronounced for several highly connected

hub nodes within the brain’s default mode network, for example in

medial parietal and cingulate cortex. We believe that this result

applies generally to the type of network and neural dynamics

investigated here, and will hold even as the human connectome

[39] continues to be refined.

The significant computational requirements involved in con-

ducting large-scale simulations of endogenous brain activity

necessitated we limit our analysis to a set of brain lesions selected

for their neurological interest (Figure 1, Table 1). In the model,

lesions of regions along the cortical midline were particularly

disruptive. In patients, lesions of posterior medial cortex (in the

vicinity of L323 and L821) are described as rare but resulting in

profound disorders of consciousness [40], while lesions of the

anterior cingulate cortex result in severe disruptions of personality

and emotional processing, apathy and inattention [41]. In the

model, lesions centered on the temporo-parietal junction also

resulted in widespread changes in functional coupling. Empirical-

ly, the left angular gyrus (near L810) has been implicated in

dyslexia [42], while lesions centered on the posterior portion of the

right superior temporal cortex (near L472) often result in spatial

hemineglect [43]. In contrast to these large effects of midline and

temporo-parietal lesions, modeled lesions of primary visual and

somatomotor cortex had little effect outside of their respective

target regions. In patients, lesions of visual cortex or motor cortex

result in deficits that are severe, but largely limited to loss of

function within a specific modality. While our study does not

provide complete coverage of all possible lesion sizes and locations

in cortex we note that the magnitude and dispersion of the lesion’s

dynamic impact is correlated with the clinically observed severity

and range of cognitive deficits.

In the current model we did not attempt to include the effects of

lesions of brain nodes on white matter ‘‘fibers of passage’’, and

neither did we attempt to systematically explore the functional

impact of disruptions of specific white matter pathways. We

provided a single example of fiber damage by modeling the effects

of cutting all inter-hemispheric connections (Figure S2). The

observed pattern matches empirical observations of a striking loss

of inter-hemispheric functional connectivity immediately following

callosotomy in a human patient [29]. Contrasting this observation,

residual functional connectivity between the two cerebral

hemispheres observed in a patient several decades after a complete

commissurotomy [44] may be due to inter-hemispheric coupling

via subcortical pathways. An extension of the current model to

include subcortical nodes and connections may provide a

structural basis for the long-term restoration of inter-hemispheric

functional connectivity following callosal transection.

At the present stage, the model cannot be tested for behavioral

or cognitive deficits. While future studies may include a

quantitative evaluation of the structure of pre-/post-lesion effective

brain networks resulting from specific task-related perturbations,

Figure 6. Dynamic effects of lesions in frontal cortex. (A) L86. (B) L555. For plotting conventions see legend to Figure 4.
doi:10.1371/journal.pcbi.1000408.g006
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here we relied exclusively on the pattern of endogenous neural

dynamics to measure dynamic lesion impact. These endogenous

dynamics may be viewed as a proxy for the cortical ‘‘resting state’’

in the human brain [45,46], which has been shown to be disrupted

or altered in the course of disease states [31]. For example,

changes in resting-state activation and functional connectivity may

serve as diagnostic markers for the onset, progression or severity of

Alzheimer’s disease [32] and schizophrenia [47,48]. Both

conditions are known to be associated with disturbances of

structural brain connectivity, including portions of the default

Figure 7. Summary diagram of relationships between structural lesion measures and dynamic lesion effects. Structural lesion
measures are the sum of the node strengths of the lesion (‘‘lesion strength’’), the sum of the node centrality of the lesion (‘‘lesion centrality’’) and the
extent to which the lesion included nodes within the DMN. Dynamic lesion effects are the number of significantly changed functional connections
(outside of the lesioned nodes) and the distance between lesioned and unlesioned FC. Compare r-values to those in Table 3. * = p,0.05, ** = p,0.01,
*** = p,0.001.
doi:10.1371/journal.pcbi.1000408.g007

Table 3. Magnitude of correlation between structural measures of the lesion and its dynamic effects.

Structural Measure of Lesion

Degree Strength Fiber Count Path Length Node Centrality
Edge
Centrality DMN

Functional Measure
of Lesion Effect

dFC(998) 0.4705 * 0.4253 * 0.6682 *** 0.6976 *** 0.6877 *** 0.6814 *** 0.7616 ***

dFC9(998) 0.5364 * 0.5158 * 0.4872 * 0.4248 * 0.4237 * 0.4467 * 0.5979 **

dFC (66) 0.2956 n.s. 0.2385 n.s. 0.5883 ** 0.5759 ** 0.5747 ** 0.5956 ** 0.8406 ***

dFC9(66) 0.5168 * 0.4856 * 0.5461 ** 0.4455 * 0.4484 * 0.4788 * 0.7095 ***

z 0.5019 * 0.4562 * 0.6864 *** 0.7393 *** 0.7201 *** 0.7190 *** 0.7587 ***

z9 0.4404 * 0.4136 * 0.4503 * 0.4503 * 0.4257 ** 0.4519 * 0.6153 **

Structural measures are: Degree = sum of the degrees of the lesioned nodes; Strength = sum of the strengths of the lesioned nodes; Fiber Count = total number of all
connections made between the lesioned nodes and the rest of the brain; Path Length = characteristic path length of the lesioned network; Node Centrality = sum of the
centrality of all lesioned nodes; Edge Centrality = sum of the centrality of all lesioned edges; DMN = proportion of the DMN included in the lesion. Functional measures
are: dFC(998) = distance between unlesioned and lesioned functional connectivity (998 nodes); dFC9(998) = same as dFC(998), but excluding all lesioned nodes; dFC(66),
dFC9(66) = as before, for the low resolution (66 nodes); z = sum of all functional connections with |z|.3.3; z9 = same as z, but excluding functional connections of
lesioned nodes. * = p,0.05, ** = p,0.01, *** = p,0.001, n.s. = non-significant.
doi:10.1371/journal.pcbi.1000408.t003
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mode network. Here, we observed that lesions that included

portions of the default mode network had particularly large and

widespread effects on functional connectivity throughout the brain.

This is consistent with previously observed strong structural and

functional coupling among ROIs in the DMN [8] and its association

with major hubs in the cortex [4,32]. Our model suggests that the

pattern of endogenous neural activity, in particular within the

default mode network, may serve as a marker of the degree of

functional disturbance. A further implication is that the restoration

of the topology of resting-state functional connectivity may aid in

cognitive repair and recovery [49].

The structural connectivity pattern used in the present model

was obtained by noninvasive diffusion imaging [4]. Future

mapping studies of the human connectome will likely provide

improved imaging and reconstruction of crossing, highly curved,

or long-distance fiber pathways, thus providing a more accurate

structural model. In addition, several current limitations of the

model should be addressed: a) The model contains only cerebral

cortical regions and pathways, and does not account for axonal

conduction delays; b) The model does not take into account white

matter damage of ‘‘fibers of passage’’ in addition to node deletion;

c) The model captures only immediate lesion effects without

including mechanisms of neural plasticity which may support

reorganization and functional recovery. We believe these limita-

tions can be overcome as available data sets and computational

modeling tools improve. A particularly fruitful avenue for future

work is the incorporation of longitudinal data on structural and

functional processes following acute brain injury. The further

development of noninvasive imaging technology in combination

with sophisticated computational modeling may eventually allow

the design of individualized treatment and recovery protocols that

help improve behavioral outcomes following acute cortical lesions.

Supporting Information

Figure S1 Dynamic effects of lesions in primary sensory and

motor regions. For plotting conventions see legend to Figure 4

(main text).

Found at: doi:10.1371/journal.pcbi.1000408.s001 (1.55 MB TIF)

Figure S2 Dynamic effects of the complete transection of all

interhemispheric connections (corpus callosum). The panel on the

left shows the intact pattern of functional connectivity, estimated

from a seed region located near the right hemispheric frontal eye

fields at [28, -7, 54], matching the seed location in Figure 2 of ref.

[29]. The intact pattern shows positive coupling between frontal

and parietal cortex, as well as between homologous structures in

the two hemispheres. The panel on the right shows the pattern of

functional connectivity, again seeded at [28, -7, 54], after complete

transection of all callosal connections. Interhemispheric functional

connections are abolished, while intrahemipsperic functional

connections are largely preserved.

Found at: doi:10.1371/journal.pcbi.1000408.s002 (5.05 MB TIF)
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