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Abstract

Knowledge of the Free Energy Landscape topology is the essential key to understanding many biochemical processes. The
determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular
isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape
answering questions such as how many meta-stable conformers there are, what the hierarchical relationship among them
is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations,
the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph
reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the
Conformational Markov Network, relevant kinetic magnitudes as dwell times and rate constants, or hierarchical relationships
among basins, completes the global picture of the landscape. We show the power of the analysis studying a toy model of a
funnel-like potential and computing efficiently the conformers of a short peptide, dialanine, paving the way to a systematic
study of the Free Energy Landscape in large peptides.
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Introduction

Polymers and, more specifically, proteins, show complex

behavior at the cellular system level, e.g. in protein-protein

interaction networks [1], and also at the individual level, where

proteins show a large degree of multistability: a single protein can

fold in different conformational states [2–4]. As a complex system

[5,6], the dynamics of a protein cannot be understood by studying

its parts in isolation, instead, the system must be analyzed as a

whole. Tools able to represent and handle the information of the

entire picture of a complex system are thus necessary.

Complex network theory [7,8] has proved to be a powerful tool

used in seemingly different biologically-related fields such as the

study of metabolic reactions, ecological and food webs, genetic

regulatory systems and the study of protein dynamics [7]. In this

latter context, diverse studies have analyzed the conformational

space of polymers and proteins making use of network represen-

tations [9–12], where nodes account of polymer conformations.

Additionally, some studies have tried to determine the common

and general properties of these conformational networks [13,14]

looking at magnitudes such as clustering coefficient, cyclomatic

number, connectivity, etc. Recently, trying to decompose the

network in modules corresponding to the free energy basins, the

use of community algorithms over these conformational networks

have been proposed [15]. Although this approach has opened a

promising path for the analysis of Free Energy Landscapes (FEL),

the community based description of the network leads to multiple

characterizations of the FEL and thus it is difficult to establish a

clear map from the communities found to the basins of the FEL.

A similar approach, commonly used to analyze the complex

dynamics, is the construction of Markovian models. Markovian

state models let us treat the information of one or several

trajectories of molecular dynamics (MD) as a set of conformations

with certain transition probabilities among them [9,16,17].

Therefore, the time-continuous trajectory turns into a transition

matrix, offering global observables as relaxation times and modes.

In [16–18] the use of Markovian models is proposed with the aim

of detecting FEL meta-stable states. However, the above

approaches to analyze FELs of peptides involves extremely large

computational cost: either general community algorithms or large

transition matrices.

Finally, other strategies to characterize the FEL that have

successfully helped to understand the physics of biopolymers, are

based on the study of the Potential Energy Surface (PES) [3,4,19–

21]. The classical transition-state theory [22] allows us to project

the behavior of the system at certain temperature from the

knowledge of the minima and transition states of the PES. This

approach entails some feasible approximations, such as harmonic

approximation to the PES, limit of high damping, assumption of

high barriers, etc. These approximations could be avoided

working directly from the MD data.

In this article we make a novel study of the FEL capturing its

mesoscopic structure and hence characterizing conformational

states and the transitions between them. Inspired by the
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approaches presented in [12,15] and [16,17], we translate a

dynamical trajectory obtained by MD simulations into a

Conformational Markov Network. We show how to efficiently

handle the graph to obtain, through its topology, the main features

of the landscape: conformers and their basins of attraction, dwell

times, rate constants between the conformational states detected

and a coarse-grained picture of the FEL. The framework is shown

and validated analyzing a synthetic funnel-like potential. After this,

the terminally blocked alanine peptide (Ace-Ala-Nme) is studied

unveiling the main characteristics of its FEL.

Methods

In this section we show the round way of the FEL analysis: the

map of microscopic data of a MD into a Conformational Markov

Network (CMN) and, by unveiling its mesoscopic structure, the

description of the FEL structure in terms of macroscopic

observables.

Translating the FEL into a network
First, we encode a trajectory of a stochastic MD simulation into

a network: the CMN. This map will allow us to use the tools

introduced henceforth to analyze a specific dynamics of complex

systems such as biopolymers.

Conformational Markov Network. The CMN has been

proven to be a useful representation of large stochastic trajectories

[10,11,15]. This coarse grained picture is usually constructed by

discretizing the conformational space explored by the dynamical

system and considering the hops between the different

configurations as dictated by the MD simulation. In this way,

the nodes of a CMN are the subsets of configurations defined by

the conformational space discretization and the links between

nodes account for the observed transitions between them. The

information of the stochastic trajectory allows to assign

probabilities for the occupation of a node and for the transitions

between two different configurations. Defined as above, a CMN is

thus a weighted and directed graph.

Our CMN is constructed as follows. The conformational space

is divided into N cells of equal volume, therefore every node i
(i~1, . . . ,N) of the CMN contains the same number of possible

configurations. Next, by evolving a stochastic trajectory enough

time steps (of length Dt) to assure the ergodicity condition we can

define the final CMN set up. We assign to each node a weight, Pi,

that accounts for the fraction of trajectory that the system has

visited any of the configurations contained in node i (the following

normalization
P

i Pi~1 holds). Second, a value Pij is assigned to

each directional link, accounting for the number of hops from

node j to node i. Note that transitions between configurations

contained in the same node are also considered by Pii, i.e. the

network can also contain self-loops. Finally, the weights of the

outgoing links from a node j, Pij

� �
, are conveniently normalized

so that
P

i Pij~1.

The CMN constructed in this way, is described by a single

matrix S~ Pij

� �
and a vector whose components are the

occupation probabilities ~PP~ Pif g. Hence, the matrix S is the

transition probability matrix of the following Markov chain,

~vv tzDtð Þ~S~vv tð Þ ð1Þ

where ~vv tð Þ is the instant probability distribution of the system at

time t. Since the matrix S is ergodic and time invariant, one can

compute the stationary distribution associated to the Markov

chain, ~vve, that satisfies ~vve~S~vve. The latter stationary distribution

has to be identical to the computed weights of the network nodes,

Pi~ve
i (i~1, . . . ,N ), provided the stochastic trajectory is long

enough. Moreover, the detailed balance condition,

PjiPi~PijPj ð2Þ

must hold thus relating the elements of matrix S to the stationary

probability distribution. Therefore, the transition matrix S appears

to be the minimal descriptor of the stochastic trajectory and, as

consequence, of the CMN.

Markovity. Provided the MD trajectory is long enough to

consider the sample in equilibrium, the weight-distribution of nodes

in the CMN will be the stationary solution of Eq. (1) and detailed

balance condition (2) will be fulfilled [23]. However, this property is

not enough to consider the model Markovian: Although the

continuous trajectory will be produced using Langevin dynamics

(and therefore inherently Markovian in the phase space [24,25]) the

discrete representation of the CMN and the integration of momenta

defies the Markovian character of our model [24,26–28]. Several

methods are proposed in the literature to validate Markov models

[16,27,29]. In order to obtain a reliable description, specially about

those magnitudes related to the time evolution of the system (see

subsection Temporal hierarchy of basins), the time step Dt must be

large enough to avoid memory effects [27].

A detailed check and discussion about the Markovian character

of the networks shown in this article can be found in the Text S1.

Funnel-like potential. To illustrate the CMN approach and

the methods presented below, we introduce here a synthetic

potential energy function, that serve us as a toy model where

results can be easily interpreted. This potential energy is

reminiscent of that funnel surfaces recurrently found when the

FEL of proteins are studied [30,31]. In particular, we have

considered a two-dimensional system where a particle moves in

contact with a thermal reservoir and whose potential energy is

given by,

Author Summary

A complete description of complex polymers, such as
proteins, includes information about their structure and
their dynamics. In particular it is of utmost importance to
answer the following questions: What are the structural
conformations possible? Is there any relevant hierarchy
among these conformers? What are the transition paths
between them? These and other questions can be
addressed by analyzing in an efficient way the Free Energy
Landscape of the system. With this knowledge, several
problems about biomolecular reactions (such as enzymatic
activity, protein folding, protein deposition diseases, etc.)
can be tackled. In this article we show how to efficiently
describe the Free Energy Landscape for small and large
peptides. By mapping the trajectories of molecular
dynamics simulations into a graph (the Conformational
Markov Network) and unveiling its structural organization,
we obtain a coarse grained description of the protein
dynamics across the Free Energy Landscape in terms of the
relevant kinetic magnitudes of the system. Therefore, we
show the way to bridge the gap between the microscopic
dynamics and the macroscopic kinetics by means of a
mesoscopic description of the associated Conformational
Markov Network. Along this path the compromise
between the physical nature of the process and the
magnitudes that characterize the network is carefully kept
to assure the reliability of the results shown.

Exploring the Free Energy Landscape
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V x,yð Þ~ 1

2
x2zy2
� �

{ a0za1 sin b1xð Þza2 sin b2xð Þð

za3 sin b3yð ÞÞe{1
2 x2zy2ð Þ2 ,

ð3Þ

where we have set a0~4, a1~1:6, a2~0:8, a3~1:2, b1~6, b2~15
and b3~6. As shown in Figure 1A the above potential energy

confines the movement of the stochastic trajectory inside a finite

region of the conformational space. However, thermal fluctuations

allow the particle to jump between several basins of attraction.

A stochastic trajectory has been simulated using an overdamped

Langevin dynamics and the equations of motion have been integrated

with a fourth order stochastic Runge-Kutta method [32]. Figure 1C

shows the region of the conformational space visited by the particle.

We have conveniently discretized the two-dimensional space into

pixels of equal area and computed their corresponding occupation

probabilities. Thereby, with the transition probabilities between

pixels, the trajectory is represented as the CMN shown in Figure 1B.

The question now is: can we recover the topology of the FEL (derived

from Eq. (3)) from the CMN representation?

Analyzing the FEL through the network
Up to now, we have illustrated the conversion of molecular

dynamics data into a graph (the CMN). Now, we show how to

efficiently obtain the thermo-statistical data from the mesoscopic

description of the CMN.

Revealing structure: Conformational basins. Inspired by

the deterministic steepest descent algorithm to locate minima in a

potential energy surface we propose a Stochastic Steepest Descent

(SSD) algorithm to define basins on the discretized FEL. Dealing

with the nodes and links as we describe below, the proper structure

of the CMN is unveiled to call the modules obtained

conformational macro-states or basins.

Picking at random one node of the CMN, say a, and an initial

probability distribution Pi 0ð Þ~di,a (i~1, . . . ,N), the Markov

process relaxes according to ~PP Dtð Þ~S~PP 0ð Þ. The whole probabil-

ity concentrated in node a at time 0, in a single time step Dt,

evolves driving the maximum amount of probability down hill

over the FEL. The next node b in the descendent pathway from a

is taken by following the link that carries maximum probability

flux. Focusing again all the probability in node b, Pi 1ð Þ~di,b we

continue the pathway from a towards a local FEL minimum by

identifying the next node c for which the probability current Pc,b is

maximal. Iterating this operation for each node of the CMN, we

obtain a set of disconnected descent pathways that help us to

define the basins of attraction.

We establish formally the above procedure assisted by a vector
~VV~ vif g (with i~1, . . . ,N) that label the nodes:

(i) We start by assigning ~VV~~00.

(ii) Select at random a node l with vl~0 (i.e., l has not been

labeled yet) and start to write an auxiliary list V of nodes

adding l as the first entry in this list.

Figure 1. SSD algorithm applied to a synthetic funnel-like potential. (A) 2D funnel-like potential. (B) A stochastic trajectory is translated into
a CMN where 6 sets of nodes (corresponding to different color) are the result of the SSD algorithm. (C) Recovering the spatial coordinates, the
stationary probabilities of each node are shown in color code. The 6 basins detected are represented as color striped regions. (D) A coarse-grained
CMN is built where new nodes take the role of the basins.
doi:10.1371/journal.pcbi.1000415.g001

Exploring the Free Energy Landscape
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(iii) Search, within the neighbors of the node l, a node m so that

Pml~max Pj,l ,Vj=l
� �

(If the max value of Pj,l is reached for

several neighbors of l (degeneracy), we choose at random

one of them.) and check which of the following options is

fulfilled:

A If PmlwPlm and vm~0: add m to the list V and go

again to (iii) taking m in the place of l.

B If PmlwPlm and vm=0 then write the labels of all the

nodes in the list V as vj~vm Vj[V . The process

continues going to step (ii).

C If PmlƒPlm the link l?m is removed from the graph.

The process returns to step (iii) with the next exception:

since this step has been iterated 2D times for the same

node l (being D the number of coordinates discretized to

construct the CMN), l is stated as local minimum and

vl~l. In this case vj~l for those nodes j[V and the

process comes back to step (ii).

The whole procedure ends when no nodes unlabeled remain in

the CMN, vi=0 Vi. The restriction introduced in step (iii.C) with

the dimensionality D avoids a transition from a local minimal

energy configuration to any other node of the same basin or to a

deeper local minimum of a different basin. When every node of

the CMN has been visited, the conformational space is completely

characterized and we have thus traced all the maximum descent

pathways from any node to the local FEL minima. Finally, all

those nodes with the same label vi belong to the same FEL basin

and therefore they are associated to the same conformational state.

The result of the procedure is the partition of the CMN in a set of

modules which correspond to basins of attraction of the discretized

conformational space.

To illustrate the basin decomposition of a CMN, the SSD

algorithm has been applied to the funnel-like potential. The result

is the detection of six basins in agreement with the number of local

minima in its FEL (Figure 1B and 1C).

Comparing with other community algorithms. With the

aim of studying biomolecules and systems with high degree of

dimensionality, the way to detect these FEL basins must be

computationally efficient. The method described above takes a

computational time O 2DNð Þ, once the 2D largest hooping

probabilities Pji are computed for all the nodes in the network.

Additionally, the method is deterministic providing with a unique

partition of the CMN into different modules. These two characteristics

make this analysis faster and more straightforward than any other

partitioning method [33]. These advantages come from the knowledge

of the physical meaning of links and nodes of CMNs. In Text S2 other

community algorithms (Newman’s modularity and Markov Clustering

algorithm) are tested over our toy model system. None of the

algorithms reported in the Text S2 give a satisfactory result mapping

the modules obtained with the free energy basins.

Coarse-grained CMN. To get a more comprehensible

representation of the FEL studied, a new CMN network can be

built by taking the basins as nodes. The occupation probabilities of

these nodes as well as the transition probabilities among them can

be obtained from those of the original CMN as

Pa~
X

i[a

Pi, ð4Þ

Pba~

P
i[a

P
j[b PjiPiP

i[a Pi

, ð5Þ

where i and j are indexes relative to the nodes of the original

CMN and a and b are indexes for the basins (new nodes). Note

that the new coarse-grained CMN has its weights normalized and

fulfills the detailed balance condition Eq. (2). Figure 1D shows the

corresponding coarse-grained for the funnel-like potential.

The weighted nodes and links have a clear physical meaning

[19]. Considering the transition state a?b and assuming local

‘‘intra-basin’’ equilibrium, the rate constant of this transition is

kab~Pba

�
Dt (where Dt is the time interval between snapshots

used to make the original CMN). The relative free energy of the

basin a, taking basin b as reference, is DFa~{kBTlog Pa

�
Pb

� �
.

Besides, the expected waiting time to escape from a to any

adjacent basin is ta~Dt= 1{Paað Þ [34]. Other magnitudes, such

as first-passage time for inter-basins transitions and other rate

constants relaxing the local equilibrium condition [19,34] can also

be computed from the original CMN.

The ability to define the proper regions of the conformational

space in an efficient way let us compute physical magnitudes of

relevance. For instance, the coarse-grained CMN is nothing but a

graphical representation of a kinetic model with n (the number of

basins) coupled differential equations:

dPa tð Þ
dt

~{
X

b=a

kbaPa tð Þz
X

b=a

kabPb tð Þ: ð6Þ

Free Energy hierarchical basin organization. The first

hierarchy aims to answer the following question: What is the

structure of the CMN when nodes with lower weight than a

certain threshold are removed together with their links? Let us take

the control parameter F=kBT as the threshold to restrict the

existence of the nodes in the original CMN. Where

Fi=kBT~log Pwð Þ{log Pið Þ is the ‘‘adimensional free energy’’ of a

node i relative to the most weighted node w.

With the above definitions we start a CMN reconstruction by

smoothly increasing the threshold from its zero value. At each step

of this process, we obtain a network composed of those nodes with

free energy lower than the current threshold value. As the free-

energy cut-off increases, new nodes emerge together with their

links. These new nodes may be attached to any of the nodes

already present in the network or they can emerge as a

disconnected component. At a certain value of F=kBT , some

components of the network become connected by the links of a

new node incorporated at this step. A Hoshen-Kopelman like

algorithm [35] is used to detect the disconnected components of

the network at each value of the threshold used: from zero until all

the N nodes of the CMN were already attached.

This bottom-up network reconstruction provides us with a

hierarchical emergence of nodes along with the way they join

together. This picture can be better described by a process of

basins emergence and linking that is easily represented by means

of a basin dendogram. This representation let us guess at first

glance the hierarchical relationship of the conformational macro-

states and the height of the barriers between them. Let us remark

that the transition times cannot be deduced from these qualitative

barriers since the entropic contribution or the volume of the basin

are not reflected in this diagram. The basins family-tree obtained

for the funnel-like (see Figure 2A) reveals that, despite of having a

two-dimensional potential with the shape of a funnel, one cannot

describe it as a sequence of metastable conformations that drive

the system to the global minimum. Moreover, the diagram shows a

roughly similar behavior as for a double asymmetric well,

composed by two sets of basins: a|b|cð Þ and d|e|fð Þ.

Exploring the Free Energy Landscape
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Temporal hierarchy of basins. The CMN representation

of a MD simulation provides with another hierarchical

relationship that is meaningful to understand the behavior of the

biological systems. The links of the original CMN have been

weighted according to the stochastic matrix S~ Pij

� �
. Taking into

account the Markovian character of the process, we can make use

of the Chapman-Kolmogorov equation to generate new transition

matrices at times t~2Dt, 3Dt, etc… Formally, the Markov chain

at sampling time mDt is defined by the matrix:

S mDtð Þ~ S Dtð Þ½ �m: ð7Þ

For each value of m a new CMN is defined. This family of

CMNs have different weighted links but the same weights Pi for

the nodes as the original one (m~1). It is worth to discuss the

behavior of the matrix S mDtð Þ. In the limit m?? we have
~PP~S mDtð Þ~PP 0ð Þ independently of the initial state ~PP 0ð Þ. This

means that any node is connected to a given node of the network

with the same weight, regardless of the initial source. Therefore,

only one basin would be detected by the SSD algorithm since

every node is connected with the most weighted link to the most

weighted node in only one step.

From the original Dt-description of the FEL to the integrated

(mDt??) one, we can devise another algorithm to establish a

second hierarchy of the basins by performing the next two

operations: First, for each value of m a new CMN is generated by

constructing the matrix S Dtð Þ½ �m and second, the SSD algorithm is

applied to this new CMN. The process finishes when only a basin

(the whole network) is detected (for large enough values of m). By

using this technique we can observe how basins merge with others

at different time scales (labeled by the integer m).

The result of this procedure performed for the funnel-like

potential is shown in Figure 2B. At t&500 only two basins are

observed: a|b|cð Þ and d|e|fð Þ, being the largest plateau

observed for any of the nontrivial arrangement of basins found.

Therefore, the macroscopic description in time is in agreement

with the Free Energy hierarchy described previously. It is clear

that the number of basins decrease as m increases. One should be

aware that the concept of basin depends dramatically on the time

resolution at which the CMN is built, and this time limits also the

resolution in the FEL structure. Note also that this procedure

provides with useful information similar to the structural decorrelation

time [36].

Results

The alanine dipeptide
The alanine dipeptide, or terminally blocked alanine peptide

(Ace-Ala-Nme, Figure 3A), is the most simple ‘‘biological

molecule’’ that exhibits the common features shown by larger

biomolecules. Despite of its simplicity, this system has more than

one long-life conformational state with different transition

pathways. Since the first attempt by Rossky and Karplus [37] to

model this dipeptide solvated, this system has been widely studied

in theoretical works [38–41]. The alanine dipeptide has been also

the appropriate molecule to test tools to explore the FEL

[15,16,42] and, specifically, to study reaction coordinates [41,43].

The alanine dipeptide has two slow degrees of freedom, the

rotatable bonds w (C-N-Ca-C) and y (N-Ca-C-N) (see Figure 3A).

The FEL projected onto these dihedral angles let us identify the

conformational states that characterize the geometry of biopoly-

mers, namely: alpha helix right-handed (aR), alpha helix left-

handed (aL), beta strands (C7eq, C5), etc. The number of local

minima in the (w, y) space depends on the effective potential

model used to simulate the system. Up to date, electronic structure

calculations have identified a total of nine different conformers

[44]. Regarding MD simulations different conformational states

have been observed: (i) using classical force fields with explicit

solvent up to six conformers are detected [16,38,39], (ii) at least

four stable states by using implicit solvent [15,38,40], and (iii) two

stable conformers in vacuum conditions [38,41]. On the other

hand, since the angles w and y seem appropriate to distinguish the

metastable states, the kinetics between them is not accurately

described with this choice of reaction coordinates, the solvent

coordinates and/or other internal degrees of freedom must be

taken into account [41,43].

We have used SSD algorithm to detect the local minima and

their corresponding basins for this molecule in the w-y space. For

this purpose, a Langevin MD simulation of 250 ns has been

performed at a temperature of 400 K (see Text S3 for further

details). Additionally the CMN has been built dividing the w,yð Þ
Ramachandran plot into cells of surface 9u69u (40640) and taking

dialanine conformations at time intervals of Dt~0:01 ps. The

resulting CMN have a total of n~1505 nodes and e~26324
directed links.

The SSD algorithm applied to the CMN network reveals 6

basins. Figure 3B shows the resulting network where nodes

belonging to the same basin take the same color. Bringing back

Figure 2. Hierarchies of the basins detected for the funnel-like
potential. (A) Free Energy hierarchy: based on the relative free-energy
of the nodes. (B) Temporal hierarchy: number of basins defined by SSD
for the different networks built by Eq. (7). The original basins merge in
function of time. Both hierarchies reveals a coarse-grained behavior of
two macro-states: a|b|cð Þ and d|e|fð Þ.
doi:10.1371/journal.pcbi.1000415.g002

Exploring the Free Energy Landscape
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this information to the Ramachandran map, these 6 sets of nodes

define 6 regions represented in Figure 3C. To better illustrate this

division, other representation, where each region has a different

color, is shown. By comparing with previous studies on this

molecule, we identify the regions in orange, red, yellow and pink

with conformers aR, aL, C7ax and C7eq respectively [38,45]. Besides,

region green corresponds to conformer C5 and the blue one to a’
[16,45]. Remarkably, the basin aL (one of the less populated state)

has been visited 1155 times with a mean stay time of 4.20 ps.

We now look at the coarse-grained picture of the FEL by

describing the properties of the 6 basins detected. The different

weights of the basins are related to the free energy of the

corresponding conformational macro-states. In Table 1 these

energy differences DFa~{kBTlog Pa

�
PC7eq

� �
are shown, taking

the most populated basin as the energy reference FC7eq
~0. The

lowest free energy basins correspond to configurations with w#0u
(C7eq, aR, C5 and a’), whereas the two other conformers located in

the region w$0u have the highest free energy but the largest dwell

time. Moreover, we have also analyzed the trapping efficiency of

each basin by reporting the mean escape time (Dt= 1{Paað Þ) as

well in Table 1.

The FEL can be represented as a dendogram, see Figure 4,

where the hierarchical map of the conformers based on Free

Energy gives at first glance a global picture of the landscape.

Remarkably, the conformer aL, despite of having one of the

highest free energy, looks like the metastable state with longest life.

This result is supported by the values of Mean Escape Time shown

in Table 1.

Figure 3. Free energy basins of the Alanine dipeptide. (A) The dialanine dipeptide with the angles w and y. (B) Plot of the CMN generated. The
6 sets of nodes (corresponding to different colors) are the result of the SSD algorithm. (C) Left: Ramachandran plot with the probability of occupation
of the cells used to build the CMN. The boundaries of the free energy basins are shown in white. Right: the 6 basins represented as regions of
different color. (Color code: orange~aR , red~aL, yellow~C7ax, pink~C7eq , green~C5 and blue~a’).
doi:10.1371/journal.pcbi.1000415.g003
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The alanine dipeptide has been also studied because of its ‘‘fast’’

isomerization C7eq?aR and a ‘‘slow’’ transition aR?C7ax. Our

coarse-grained picture of the FEL also allows us to extract

information about these transitions. In Table 2 we show some of

the relevant characteristic transition times from a basin a to an

adjacent basin b, 1=kba. [The whole data is shown in the Text S3.]

Transitions between basins with the same sign of w are remarkably

faster (e.g C7eq<aR and aL<C7ax). While slow transitions are

observed for those hops crossing the line w = 0u (C7eq?aL and

aR?C7ax), showing them as rare events. Instead, the alanine

dipeptide finds more easily paths to go to w$0u conformers

through C5?C7ax and a’?aL by crossing w = 180u.
To round off the description of the FEL, the dendogram

corresponding to the temporal hierarchy is shown in Figure 5.

From the figure, it becomes clear that the behavior of the dialanine

depends on the time scale used for its observation. Again, the same

two different sets of conformers are distinguished from this

hierarchy. Additionally, the global minimum conformer is reached

in around 100 ps from any basin.

Finally, the magnitudes computed here for the alanine dipeptide

would allow to construct a first-order kinetic model of 6 coupled

differential equations as Eq. (6) (assuming equilibrium intra-basin).

This model contains the same information as the kinetic model by

Chekmarev et al. for the irreversible transfer of population from

aR?C7ax [40].

Discussion

Hierarchical landscapes characterize the dynamical behavior of

proteins, which in turn depends on the relation between the

topology of the basins, their transitions paths and the kinetics over

energy barriers. The CMN analysis of trajectories generated by

MD simulations is a powerful tool to explore complex FELs.

In this article, we have proposed how to deal with a CMN to

unveil the structure of the FEL in a straightforward way and with a

remarkable efficiency. The analysis presented here is based on the

physical concept of basin of attraction, making possible the study

of the conformational structure of peptides and the complete

characterization of its kinetics. Note that this has been done

without the estimation of the volume of each conformational

macro-state in the coordinates space and without the ‘a priori’

knowledge of the saddle points or the transition paths from a local

minimum to another.

On the other hand, the framework introduced in the article

provides us with a quantitative description of the dialanine’s FEL,

Table 1. Relative free energies and Mean Escape Time of the
basins defined by SSD.

Basin Fi{FC7eq
kcal=mol Mean Escape Time (ps)

C7eq 0.00 0.52

aR 0.45 0.42

aL 2.42 4.20

C7ax 3.84 0.71

C5 0.55 0.28

a’ 0.90 0.23

doi:10.1371/journal.pcbi.1000415.t001

Figure 4. Dendogram based on the relative Free Energy of the CMN nodes. Two sets of basins are clearly distinguished with a high free
energy barrier in between: (C7eq , aR , C5, a’) and (C7ax, aL). Note that aL looks like the conformer with the largest dwell time, in agreement with data
in Table 1.
doi:10.1371/journal.pcbi.1000415.g004

Table 2. Characteristic times for direct inter-basins
transitions.

aRb 1/Kba (ps)

C7eq?aL 1968.34 aL?C7eq 88.24

aR?C7ax 58011.74 C7ax?aR 815.87

C5?C7ax 393.75 C7ax?C5 6.63

a’?aL 400.57 aL?a’ 58.47

C7eq?aR 3.32 aR?C7eq 1.88

aL?C7ax 4.80 C7ax?aL 0.78

doi:10.1371/journal.pcbi.1000415.t002
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coming up directly from a MD dynamics at certain temperature.

The peptide explores its landscape building the corresponding

CMN and the success of extracting the relevant information is up

to the ability of dealing with it. Neither the FE basins were defined

by the unique criterion of clustering conformations with a

geometrical distance [46], nor the rate constants were projected

from the potential energy surface [19,20]. Moreover, the

conformers and their properties were computed from the MD

with the only limitation of the discretization of time and space.

Although we have applied the method to low dimensional

landscapes, we expect that high dimensional systems could be also

studied, by the combination of this technique with the usual

methods to reduce the effective degrees of freedom (like principal

component analysis or essential dynamics). In conclusion, the large

amount of information obtained by working with the CMN, its

potential application to any peptide with a large number of

monomers, and the possibility of performing the analysis on top of

CMN constructed via several short MD simulations [47], make the

approach presented here a promising way to describe the FEL of a

protein.

Supporting Information

Text S1 Checking Markovity.

Found at: doi:10.1371/journal.pcbi.1000415.s001 (0.56 MB ZIP)

Text S2 Comparing with community algorithms.

Found at: doi:10.1371/journal.pcbi.1000415.s002 (0.18 MB ZIP)

Text S3 More on Alanine dipeptide.

Found at: doi:10.1371/journal.pcbi.1000415.s003 (,0.01 MB

ZIP)
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