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Abstract

Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex
diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining
these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing
diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and
experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing
high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing
tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to
address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs
and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context
in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing
high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal
data.

Citation: Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG (2009) Global Prediction of Tissue-Specific Gene Expression and Context-Dependent Gene
Networks in Caenorhabditis elegans. PLoS Comput Biol 5(6): e1000417. doi:10.1371/journal.pcbi.1000417

Editor: Gary D. Stormo, Washington University, United States of America

Received January 6, 2009; Accepted May 14, 2009; Published June 19, 2009

Copyright: � 2009 Chikina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research is partially supported by NSF CAREER award DBI-0546275 to OGT, NIH grant R01 GM071966, NIH grant T32 HG003284, and NIGMS Center
of Excellence grant P50 GM071508. OGT is an Alfred P. Sloan Research Fellow. CTM is a Pew Scholar, a McKnight Scholar, and a Keck Young Scholar. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ctmurphy@princeton.edu (CTM); ogt@cs.princeton.edu (OGT)

Introduction

Tissue-specific gene expression is a fundamental aspect of

multicellular biology, underlying the development, function, and

maintenance of diverse cell types within an organism. Accounting

for tissue-specific expression is a precursor to any systems-level

understanding of metazoan organismal development and function

and large-scale studies of spatio-temporal gene expression both at

the single-gene and whole-genome level have been performed in

several organisms [1–5]. Additionally, tissue specificity is an

important aspect of many complex diseases; notable examples of

tissue interactions associated with disease include stroma-tumor

interactions in cancer [6] and tissue-specific effects of insulin

signaling in diabetes [7]. Although several experimental tech-

niques have been developed to identify tissue-specific gene

expression signatures, both at the single-gene and whole-genome

level, our current knowledge of tissue-specific expression is

incomplete.

The model organism Caenorhabditis elegans provides a good

framework for the study of tissue-specific expression. Its invariant

cell lineage allows single-cell resolution of tissue-specific expression

patterns through a variety of experimental techniques [5,8]. In situ

hybridizations of the entire transcriptome are in progress [9], and

GFP-promoter tagging has been applied on a large scale [8,10,11];

as a result, the expression of approximately 3500 genes has been

studied at the single-gene level [12], providing a ‘‘gold standard’’

for gene expression. Additionally, several methods have been

developed to isolate mRNA samples enriched for a specific tissue

or cell type, allowing global analysis using microarrays or SAGE

[13–22].

Despite the variety of techniques available and the number of

studies performed thus far, our understanding of tissue-specific

expression in C. elegans is not yet complete; most genes have not

been analyzed at the single-gene level, nor under diverse

conditions and developmental stages. Additionally, each of the

individual techniques for measuring tissue-specific expression

suffers from drawbacks. GFP-promoter constructs, though they

present the most accurate method amenable to high-throughput

analysis, may incompletely capture endogenous expression or may

fail to express well, a problem that is particularly severe in the

germ line due to silencing [23]. Directed microarray studies, while

powerful, depend on the ability to isolate mRNA from a particular

tissue, since dissection is not possible in most cases, and methods to

achieve this each have disadvantages: studies using mutants may

report non-endogenous expression; embryonic cell sorting misses

expression that only occurs in later stages of development, as post-

embryonic cell sorting is not yet feasible; and poly-A binding

studies depend on the ability to introduce the binding protein

construct into and extract the protein out of the tissue of interest

[21]. Thus, the ability to directly study the expression specificity of

PLoS Computational Biology | www.ploscompbiol.org 1 June 2009 | Volume 5 | Issue 6 | e1000417



each gene across tissues, especially small tissues, and ideally to also

account for the effects of development and environmental

conditions, remains challenging.

Here we present a computational method that leverages existing

experimental information to expand and improve our knowledge

of tissue-specific expression. Using data from whole-animal

microarrays, we accurately predict tissue-specific expression in

all major tissues and even for several tissues that comprise only a

few cells. Our approach not only outperforms directed high-

throughput studies in all but one case, but also captures

information that complements existing experiments, for example,

by uncovering tissue-specific expression that is only seen under

specific conditions. To confirm our predictions, we experimentally

verified the expression of several genes. We have made our

predictions available through a dynamic web-based interface at

http://function.princeton.edu/worm_tissue to enable hypothesis

generation and further experimental follow up by the community.

Using this accurate large-scale, tissue-specific information, we

perform further computational analyses, such as prediction of

transcriptional regulatory motifs specific to understudied tissues as

well as tissue-specific miRNA target regulation. In addition, we

extended our algorithm to produce tissue-specific functional

interaction networks that provide a framework for discovering

protein function specific to particular tissues. Our ability to

uncover tissue-specific information should allow higher-detail

analysis of expression and further hypothesis testing to identify

expression changes that are important for biological function.

Results

Tissue-specific signals in whole-animal microarrays
We compiled a large compendium of C. elegans microarray data

(comprised of 916 experiments from 53 datasets). A few (16) of these

microarray studies address tissue-specific expression, but most

studies examined changes in gene expression in the animal as a

whole (see supplementary website at http://function.princeton.edu/

worm_tissue for a list of microarray experiments used). Using a rank-

based statistic, we evaluated the level of under- or over-expression of

genes associated with each tissue in a given microarray experiment

against a ‘‘gold standard’’ of 2872 genes known to be expressed in a

particular tissue. Our gold standard is composed of information

derived from single gene studies such as promoter-GFP tagging,

antibody staining, and in situ hybridizations (WormBase), which we

hand curated to account for tissue naming synonyms. The gold

standard also includes the 1872 promoter –GFP fusions from the C.

elegans Tissue Expression Consortium [10,11,24]. Importantly, the

gold standard is completely independent from the microarray or

SAGE gene expression data in our compendium. This gold standard

of tissue-specific gene expression allowed us to identify substantial

tissue bias in the transcriptional responses of microarray experi-

ments. We quantified over or under-expression of tissue-specific gene

sets using a rank-based statistic (Figure 1A). Despite the fact that only

a small number of studies isolated specific tissues, we found that

tissue-specific signals can be observed in many whole-animal

experiments. For example, analysis of two developmental time

courses [24] revealed dramatic tissue-specific temporal patterns that

reflect developmental timing; as might be expected because neurons

are born in early larval stages, earlier developmental stages are

enriched for neuronal transcripts, while later stages are enriched for

germ line transcripts, correlating with the development of repro-

ductive tissues and the onset of reproduction (Figure 1B). We can

also quantify a number of previously uncharacterized tissue-specific

responses. For example, motor and sensory neurons have distinct

developmental profiles (Figure 1B) and, in contrast to other non-

reproductive somatic tissues, intestinal expression steadily increases

with developmental stage.

Tissue-specific responses can also be observed when experimental

treatments are applied to animals in the same developmental stage.

For example, our analysis of tissue-specific signals in a whole-animal

microarray study of unfolded protein response [25] revealed that

various mutations in UPR pathway genes have different effects on

tissue-specific expression (Figure 1C). Consistent with previous

studies [26,27], we observed that an ire-1 mutation has a strong effect

on epithelial tissues such as the intestine and the excretory cell, as

genes expressed in those tissues are significantly down-regulated as a

result of ire-1 mutation. On the other hand, an atf-6 mutation causes

a decrease in neuronal transcripts suggesting greater reliance on the

atf-6 branch of the UPR in neurons. Distinct tissue-specific profiles

can be observed for other treatments as well. Thus, our analysis

demonstrated that we can identify both known and novel tissue-

specific expression information from existing gene expression

microarray experiments.

A computational method to accurately predict tissue-
specific expression

The previous examples suggest that substantial information

about tissue-specific expression can be gained by a directed

analysis of whole-animal microarray data. As such, we applied a

state-of-the-art machine learning algorithm, support vector

machines (SVM) [28], to build a predictive model of tissue-

specific microarray profiles. Intuitively, SVM automatically

identifies expression patterns in our compendium whose combi-

nation maximally separates genes expressed in a particular tissue

(e.g., neurons) from other (e.g., non-neuronal) genes. This classifier

can locate hidden tissue-specific expression patterns that are

scattered through only a few experiments in the compendium and

might come from diverse types of studies. By contrast, clustering

methods (e.g. standard hierarchical clustering [29] or the C. elegans

TopoMap [30]), while clearly important for functional data

exploration, cannot detect these signals at resolution sufficient for

prediction of tissue-specific expression (see Table S1 for compar-

ison between correlation and SVM). Using the SVM classifier to

predict tissue-specific gene expression based on the microarray

compendium, we achieved a high degree of accuracy, outper-

forming directed microarray-based studies of tissue-specific

expression in most cases. Our evaluation is based on the standard

cross-validation technique, where only a fraction of the genes with

known expression is used for building the classifier while the rest is

held out for evaluation. Our predictions reach a precision of 90%

Author Summary

In animals, a crucial facet of any gene’s function is the
tissue or cell type in which that gene is expressed and the
proteins that it interacts with in that cell. However,
genome-wide identification of expression across the
multitude of tissues of varying size and complexity is
difficult to achieve experimentally. In this paper, we show
that microararray data collected from whole animals can
be analyzed to yield high-quality predictions of tissue-
specific expression. These predictions are of better or
comparable accuracy to tissue-specific expression deter-
mined from high-throughput experiments. Our results
provide a global view of tissue-specific expression in
Caenorhabditis elegans, allowing us to address the
question of how expression patterns are regulated and
to analyze how the functions of genes that are expressed
in several tissues are influenced by the cellular context.

Tissue-Specific Expression Prediction
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for all of the major tissues of the worm (intestine, hypodermis,

muscle, neurons, and pharynx) except germ line (Figure 2A). It is

likely that germ-line performance is substantially underestimated,

since the expression of many of the genes in the gold standard was

investigated using promoter-GFP fusions, which are often germ-

line silenced [23].

We also evaluated performance of other tissue-enriched gene

lists acquired from directed microarray experiments against the

same gold standard, using the processed lists from each

publication. In all but one case, our approach outperforms these

studies, predicting more genes at higher accuracy (Figure 2A). The

single exception is the neuronal gene list published by Von Stetina

et al. [22] that correctly recalls 384 of our gold standard neuronal

genes with 89% accuracy, somewhat above what we are able to

predict at the same recall.

Our method accurately predicts tissue-specific gene expression

even from whole-animal microarray data alone. When we exclude

the 16 studies that directly address tissue-specific expression, our

prediction accuracy remains high; in some cases it is even

unchanged (Figure 2A, ‘‘tissue data excluded’’). In particular, even

for the intestine, for which there are a number of high-quality

directed studies [17,18], our prediction accuracy is not decreased

when we use only whole-animal data.

Functional analysis of the top tissue-specific predictions (GO

enrichment analysis) demonstrates that many of the genes we predict

to express in specific tissues have functions consistent with that tissue.

For example, predictions for germ line expression were enriched for

cell cycle-related GO terms, those for muscle included ‘‘muscle

contraction’’ and ‘‘respiration’’, intestine included terms related to

digestion and metabolism such as ‘‘fatty acid biosynthetic process’’,

neuron predictions were associated with ‘‘synaptic transmission’’ and

‘‘memory’’, and hypodermis-expressed predictions included enrich-

ment for terms related to molting and cuticle components. The

pharynx is a complex organ that is comprised of muscle, structural

and gland cells and genes predicted to express in the pharynx are

enriched for diverse functions related to cytoskeleton, cuticle

components, and secretion. (See supplementary website for all GO

enrichment results.)

Predicting tissue-specific expression for smaller tissues
While techniques for isolating tissue-specific mRNA are steadily

improving, it remains a particular challenge to examine the

expression of genes in smaller tissues. Therefore, it is of particular

interest to be able to predict expression in tissues that are

comprised of only a few cells. Using our approach, we were able

make high-quality predictions for many tissues where biochemical

methods have yet not been successfully applied. While we do not

achieve the high level of precision we observe in major tissues

(which is expected, as far fewer genes are reported to express in the

smaller tissues, making new candidates significantly more difficult

to identify), we were able to identify genes that are significantly

enriched for expression in the small tissue of interest when

compared to the genomic background (Figure 2B). For example,

among the genes in our gold standard, only 1 in 10 express in the

vulva. However, we were able to correctly recall 30% of all vulval

genes with a precision of 20% percent, a two-fold improvement

above the genomic background rate, and likely an under-estimate

as our GFP-based gold standard is far more incomplete for these

small tissues than for larger tissues. Among the genes that scored

highly in vulval predictions is dgn-1, a homolog of human

dystroglycan. The gene was not a top prediction for any major

tissue except pharynx, suggesting that it is not widely expressed.

Among small tissues, dgn-1 was predicted to express in the uterus,

distal tip cells, and the excretory cell in addition to the vulva.

While dgn-1 was not included in our gold standard, expression in

these tissues, including expression in pharyngeal epithelia, has

been confirmed recently [31]. Additionally, this gene has been

shown to be functionally important for the development of the

vulva and the excretory cell [31,32], in contrast to its vertebrate

homolog, which functions in muscle.

Among other small tissues, we were also able to make

reasonable predictions for the excretory cell, the spermatheca,

the uterus, ceolomocytes, and distal tip cells. In many cases the

predicted genes have annotations that are consistent with the

function of the tissue. For example, our distal tip cell predictions

are enriched for many GO terms including ‘‘cell migration,’’

‘‘protein localization,’’ and several ‘‘cellular component’’ terms

associated with exocytosis. These GO associations appear

reasonable, as distal tip cells are two highly polarized cells that

lead gonad migration during development. Secretion from these

cells is known to play an active role in gonad migration [33], and

the cells’ morphology (as visualized by EM) is indicative of active

endo/exocytosis [34]. In addition, the top 200 distal-tip cell

predictions significantly (p,1022, hyper-geometric test) overlap

with the list of genes associated with distal tip cell migration

phenotypes compiled in a recent RNAi study [35]. Thus, our

results demonstrate that even small tissues that are challenging to

isolate experimentally have distinct expression profiles within

whole-animal microarray data. Our ability to make such

predictions will likely improve as new gene expression experiments

are added to the compendium.

In vivo validation of predicted genes
We experimentally verified tissue-specific expression of six top

genes with previously unreported tissue-specific predictions by

creating transgenic lines carrying promoter-GFP constructs

(Figure 3). Three of these genes were predicted to express in

hypodermis. We chose to focus on hypodermis since, to our

knowledge, no large-scale study investigating hypodermal expres-

sion has been reported. Promoter-GFP constructs of two of the

predicted hypodermal genes, K08B12.1 and F58H1.2, were most

prominently expressed in the hypodermis at earlier stages

(Figure 3A and 3B and Figure S4). The third gene, F55H12.4,

showed strongest hypodermal expression during L4 and adult

stages (Figure 3C). We also verified the expression of genes that we

predicted to be expressed in muscle (C29F5.1, Figure 3D),

Figure 1. Over- or under-expression of tissue-specific transcripts is quantified using a rank-sum statistic corrected to 0.05 false
discovery rate. Tissues with no significant results are omitted. (A) A global view of all microarray experiments (clustered on both axes). Significant
tissue biases can be observed across the compendium, with neuronal and germ line signals being especially prevalent. Yellow square for a specific
tissue and condition combination indicates that genes known (in our gold standard, see Methods) to be expressed in that tissue are over-expressed -
(as compared to background) in that microarray condition. (B, C) Detailed views of parts of the matrix in (A). (B) Levels of over- or under-expression of
tissue-specific transcripts in developmental time course experiments on SAGE and Affymetrix platforms [24] (clustered on both axes). Over- and
under-expression of tissue-specific genes coincides with the timing of tissue development. (C) Levels of over- or under-expression of tissue-specific
transcripts in the unfolded protein response study Shen et al. [25] (clustered on the y axis). Mutations in the UPR pathway genes invoke tissue-specific
responses. Treatment with tunicamycin is denoted as (tun.).
doi:10.1371/journal.pcbi.1000417.g001
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Figure 2. Classifier performance. (A) Accuracy of predictions for major tissues. These precision-recall plots demonstrate the trade-off between the
number of genes predicted and the fraction of the predictions that is correct. Red lines show the performance of our approach using all available
microarray data, while green lines show performance using only whole-animal studies. High precision can be achieved by using whole-animal
experiments alone. The accuracy and coverage of existing high-throughput studies is shown with triangles and circles. The use of datasets addressing
tissue-specific expression improves accuracy in some but not all cases. (B) Precision at 10% recall for small tissues compared with expected precision
based on the genomic background. We compare the fraction of true positives in the top 10% of our predictions against the fractions that would be
expected if the genes were chosen randomly (genome background).
doi:10.1371/journal.pcbi.1000417.g002
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intestine (F13D12.6, Figure 3E), and neurons (gnrr-1, Figure 3F).

The tissue specific expression of gnrr-1, a homolog of the human

gonadotropin releasing receptor, was previously studied using

antibody staining [36]. While our algorithm predicted with high

confidence that gnrr-1 expresses in neurons, neuronal expression

was not reported in that study, and the gene was not included in

the Von Stetina et al. list of neuronally-enriched genes [22].

Nevertheless, our promoter-GFP (Pgnnr-1::gfp) construct expressed

primarily in head neurons and ventral cord neurons (Figure 3D),

validating our prediction. It is likely that the protein product of

gnrr-1 is heavily post-translationally modified, as species of multiple

molecular weights are observed [36]. Thus, it is possible that

differences in such modification explain the discrepancy between

our gene expression results and the previous antibody staining

experiment, due to epitope differences. Furthermore, gnrr-1 is

strongly over-expressed in L1 and L2 larval stages in multiple

developmental microarray time courses, which is the pattern

observed for many neuronal genes

Regulatory motifs associated with tissue-specific
expression

Our ability to make high-quality predictions also provided

potential insights regarding the transcriptional regulation associated

with the tissue-specific expression signal in whole animal data. We

used a motif-finding program, FIRE [37], to identify motifs that are

overrepresented in the upstream regions of our top-scoring

predictions for each of the major tissues (Figure 4). While no

genome-wide study of hypodermal expression has been published

thus far, we were able to use our predictions to uncover motifs that

are promising candidates for regulators of hypodermal transcription.

A GATA-like motif was enriched among our top hypodermal

predictions. This is consistent with previous studies showing that

GATA transcription factors are essential for hypodermal cell

specification, and that a GATA consensus sequence is required for

hypodermal expression [38,39]. In addition, we have identified a

motif that is similar to the binding site for the CF1/USP-like nuclear

hormone receptor that affects molting and developmental transitions

in insects [40]. An intriguing possibility is that this motif and a

functional USP homolog are involved in the nematode molting

process as well, despite the fact that no direct USP homologs have

been detected in the genome [41].

Using our germ-line predictions, we recovered an E2F-like

motif (ETF). The C. elegans homolog of mammalian E2F, efl-1, is

expressed exclusively in the germ line and is involved in oogenesis,

regulating the expression of genes whose promoters contain the

E2F binding motif [42]. Another motif, TAC.GTA, was also

Figure 3. Expression of GFP-reporter constructs. (A) K08B12.1 was predicted to express in hypodermis; the reporter construct expressed
exclusively in hypodermis. Expression was variable, strongest in embryo-L1, though detectable in all stages. (B) F58H1.2 was predicted to express in
hypodermis; the reporter construct expressed exclusively in hypodermis. Expression was variable, strongest in embryo-L1 and not detectable in
adults. (C) F55H12.4 was predicted to express in the hypodermis. pF55H12.4::GFP expressed in hypodermis, vulva, anus, and to a lesser extent
pharynx. Hypodermal expression was highly variable and was strongest in L4 and Adult stages. (D) C29F5.1 was predicted to express in muscle. The
reporter construct was observed in body wall, vulval, and anal but not pharyngeal muscle in all stages. (E) F13D12.6 was predicted to express in the
intestine and the reporter construct expressed exclusively in intestinal cells at all stages. (F) gnrr-1 was predicted to express in neurons. Strong
expression of pgnrr-1::GFP was seen in various head neurons at all stages. Expression was also observed in the anterior pharynx and ventral nerve
cord neurons. (A,B) Seam cell exclusion is observed in these lines, which is typical of hypodermally expressed genes; see Gilleard et al. [77] for
examples of hypodermal expression.
doi:10.1371/journal.pcbi.1000417.g003
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strongly represented among germ-line predictions. We could not

detect a clear match to any known transcription factor consensus

sequence, but a similar motif was previously discovered in a C.

elegans-C. briggsae sequence comparison [43].

A GATA-like motif was also overrepresented among intestine

predictions. GATA transcription factors are known to regulate

expression of intestinal genes [44], and this motif is very similar to

those reported by previous whole genome intestinal expression

studies [17,18] and aging studies [45,46]. Our pharynx prediction

yielded the largest number of motifs of any tissue. One of the

motifs represents a possible match to the pha-4 consensus

([T[AG]TT[TG][AG][TC] [15]) though other motifs did not

resemble any known binding sites (see Table S2 for a complete list

of motifs). Surprisingly, there was a shortage of neuronally-

overrepresented motifs. In fact, the most significant result for

neurons was instead motif avoidance. This is consistent with the

hypothesis, supported by many experimental observations in C.

elegans (see for example [47,48]) that neuronal differentiation is a

‘‘ground state’’ that is superseded in non-neuronal cells.

Identification of miRNA target tissue bias
The identification of global tissue-specific expression patterns

allows us to address biological questions that are difficult to address

experimentally, such as the question of tissue bias in microRNA

targets. Non-coding microRNAs have emerged as critical

developmental regulators, and are predicted to regulate the

expression of a large fraction of all mammalian genes [49,50].

Specific miRNAs direct development in particular tissues [51,52],

yet experimental identification of miRNA targets in individual

tissues remains difficult. This is in part because expression of

miRNA targets may be unchanged if translational inhibition, as

opposed to mRNA degradation, is involved. Moreover, the ability

Figure 4. Motifs over-represented in the promoters of top predictions. (*) indicates motifs that have not been previously reported to be
enriched in promoters of tissue-specific genes in C. elegans.
doi:10.1371/journal.pcbi.1000417.g004
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to identify all targets for all miRNAs simultaneously is still more

challenging.

Previous studies using human data have detected cell type-

specific signatures among miRNA targets [53]. To address this

problem in C. elegans, we leveraged our predictions of tissue-specific

expression to investigate tissue bias, as measured by a rank-based

statistic, among a list of likely C. elegans miRNA targets predicted

by Miranda [54], TargetScan [49], and PicTar [55]. While many

miRNAs had no detectable tissue bias among their targets, a

subset showed significant tissue preference or tissue avoidance (see

Figure S3 for all microRNAs-tissue interactions). In particular,

robust tissue avoidance for three microRNAs was detected in all

three sets of target predictions (Figure 5). The miR-124

mammalian homolog is known to induce neuronal differentiation

[52]. Our analysis demonstrates that its predicted targets are

depleted for neuronal genes, while enriched for genes specific to

other somatic tissues; these results suggest that its function is

conserved in C. elegans. miR-2 showed a pattern of neuronal

depletion similar to mir-124’s pattern, implying that it is also

involved in neuronal differentiation; this is consistent with the

exclusively neuronal pattern of GFP expressed from the miR-2

promoter [56]. The mir-71 target set, on the other hand, is

significantly depleted for intestinal genes but enriched for genes

expressed in muscle, hypodermis and pharynx. In contrast to miR-

2, the anatomical expression of miR-71 appears to be ubiquitous,

suggesting that tissue-centric target analysis provides complemen-

tary information that is not captured by expression studies.

Exploration of tissue-specific function of genes through
functional networks

We have been able to leverage diverse microarray data to

predict tissue-specific expression, including for genes expressed in

more than one tissue. However, many genes that are expressed in

several tissues (or ubiquitously) perform different functions in

different cellular contexts. A natural way to explore such

functional roles is through functional interaction networks, which

connect genes that participate in the same biological process, an

approach that has been used by us and others to examine

functional roles of proteins on whole-genome scale [32,57]. In

contrast to previous approaches, in the case of tissue-specific

functional networks, a network for a given set of genes may vary

depending on the tissue of interest, as the same set of gene

products may not perform the same function or share the same

physical or other interactions in different tissues.

We have developed an SVM-based algorithm to predict tissue-

specific functional networks from our compendium of C. elegans

transcriptional data. Although simple expression correlation has

often been used to investigate gene function on a global (non

tissue-specific) level, our analysis above (and in Figure S1)

demonstrates that a single global correlation computation is

unable to distinguish between tissue-specific effects. On the other

hand, the observation that whole-animal microarrays may contain

a strong tissue specific signal suggests that it is possible to assess the

tissue-dependent functional roles of genes given the right analytic

approach. Thus, we have developed a network generation

Figure 5. Tissue bias in microRNA target predictions. Our tissue-specific expression predictions allow us to systematically evaluate which C.
elegans microRNA genes have a tissue bias in their predicted targets and thus are candidates for regulating tissue specific processes. For each
microRNA gene we evaluate list of potential targets (as generated by three target prediction algorithms) against our tissue expression prediction
scores using a rank test. (Average AUC is plotted, (*) indicates the interaction was significant (p,0.01) based on two out of three target sets, (**) was
significant in all three. For each microRNA-tissue pair, enrichment (red) signifies that the targets of that microRNA are predicted to express in that
tissue with scores that are significantly higher than would be expected if no bias is present. Avoidance (green) signifies that the microRNA targets
have expression prediction scores that are significantly lower than expected. Since microRNAs down-regulate the levels of their targets, avoidance in
one tissue coupled with preference in several others may imply involvement in differentiation, whereby the microRNA downregulates alternative
tissue expression profiles.
doi:10.1371/journal.pcbi.1000417.g005
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algorithm in which certain experiments are trusted more or less

depending on the extent to which they reflect a particular tissue-

specific functional signal.

Similarly to previous network integrations, we define a gold

standard of functional interactions that is then used to determine

how data is combined into a network. However, in contrast to

previous studies [32,58], we define several tissue-specific gold

standards, one for each tissue, and we use an SVM rather than a

Bayesian formulation to combine microarray data. An advantage

of the SVM for this problem is that SVMs have the ability to

adjust weights of individual experiments while Bayesian integra-

tion typically assigns weights to whole datasets. In the case of the

C. elegans compendium, the ability to treat each experiment

individually is crucial for prediction of tissue-specific networks, as a

single dataset can contain experiments that are informative for

different tissues. For example, within a single developmental time

course (see Figure 1B), early larval stages are informative of

neurons, when neuronal cells are overrepresented, while the adult

stage is highly informative of germ-line.

Using an SVM-based approach, we are able to integrate

microarray data into different tissue-specific functional interaction

networks. Such networks link genes that are likely to participate in

the same process within a specific tissue context and contain

information that may otherwise be overwhelmed in a global view

of co-expression. As an example, we considered exc-7, an RNA-

binding protein that is involved in the formation of the excretory

canal, but that also plays a role in neuronal development, affecting

cholinergic synaptic transmission [59]. Several of the interaction

partners present in its neuron-specific interaction network support

our understanding of exc-7 neuronal function (Figure 6A): hmr-1 is

required for the outgrowth of some motor neurons [60]; unc-38 is

an acetylcholine receptor [12]; and the mammalian homolog of

abl-1 is involved in post-synaptic acetylcholine receptor clustering

[61]. Another partner, rhgf-1, a RhoGEF, is known to regulate

neurotransmitter release at the neuromuscular junction [62]. Our

network results also suggest an interaction between exc-7 and smg-

1, a key component of the nonsense-mediated mRNA decay

pathway, and spk-1, which is involved in mRNA splicing [12]. The

presence of RNA processing genes among the interaction partners

is potentially related to exc-7’s RNA-binding function. A standard

correlation computation produces an entirely different, non-

neuron-specific set of genes associated with exc-7, including

aquaporins and a gene involved in excretory cell formation

(Figure S2). Our technique, on the other hand, automatically

identifies a subset of microarray experiments with strong neuronal

signals, and thus we are able to uncover neuron-specific functional

interactions that are not immediately visible in a global correlation

network.

Apart from finding tissue-specific interactions that can be lost

in a global view, as in the above example, tissue-specific

networks have the potential to tease out how the same gene may

perform different functions within different tissue contexts. The

C. elegans homolog of Ras, let-60, is a canonical example of a

ubiquitously-expressed gene that participates in diverse process-

es. For example, let-60 promotes progression through meiosis

during oogenesis [63] and affects olfaction in neurons [64]. To

explore these tissue-specific functions of this gene, we queried

our germ line and neuronal networks with let-60. Two of the

genes in the neuronal network are involved in chemosensation

(Figure 6B): rgs-3 is a regulator of G-protein signaling required

for normal response to a variety of sensory stimuli [65], and ckk-

1 is a CaM kinase kinase that regulates the expression of

chemosensory receptor genes [66]. Other neighbors in the

network are involved in further aspects of neuronal function: zaf-

1, syd-9, and sad-1 function in synapse development, and egl-19

is a calcium channel that contributes to fate specification in

olfactory neurons [67].

By contrast, the germ line let-60 network is comprised of an

entirely different set of genes that are consistent with let-60’s

function in meiosis: cej-1(cpg-1) is required for proper meiotic

chromosome segregation [68], and zyg-11 is part of a ubiquitin-

ligase complex that promotes meiotic anaphase II [69]. Other

interactors are likely to participate in related processes: zen-4 is a

kinesin protein that localizes to midzone microtubules [70]; kbp-1

localizes to kinetochores [71]; and both rfc-4 and pos-1 affect a

large number of events in the oocyte to embryo transitions [72].

Our networks focus on interaction information within a tissue-

specific context, providing a framework for generating precise

hypotheses about tissue-specific gene functions that can help direct

follow-up experiments.

Discussion

We have developed a computational method that accurately

predicts tissue-specific expression based on expression profiles of

primarily whole-animal microarrays. We show that strong tissue

biases can be observed in data from microarray experiments,

despite the fact that most C. elegans microarray experiments isolate

mRNA from the whole animal, with the resulting expression

values representing a population average of many cell types. With

our SVM classifier, we were able to leverage these signals in

existing whole-animal microarrays to produce predictions of

tissue-specific gene expression and generate networks of tissue-

specific functional interactions.

In addition to achieving accuracy higher than most directed

microarray studies, our algorithm captures information about

tissue-specific expression that is complementary to standard

approaches. Microarray experiments analyzing tissue-specific

expression are able to discover tissue-specific genes based on the

difference in mRNA levels, a method that is ultimately sensitive to

total mRNA abundance. Our method instead relies on co-

expression with known tissue-specific genes in some informative

condition, and thus identifies tissue-specific expression even for

genes that have very low levels of expression in any one

experiment. As we analyze microarray experiments from a variety

of conditions, our approach can uncover genes expressed in a

particular tissue in a condition-dependent manner which may be

difficult to directly detect experimentally. For example, a

promoter-GFP tagging study reported expression of ins-7 exclu-

sively in neurons [73], while our method predicts expression in

both neuron and intestine. In fact, a recent study has shown that

ins-7 is indeed expressed in the intestine at a low level, with

expression increasing significantly in aging animals and under

conditions of high insulin signaling [74]. The earlier GFP study

focused on young wild-type adults and thus did not identify this

age-related expression. Thus, our method provides a valuable tool

for study of tissue-specific expression that is relatively unbiased, as

it does not rely on mRNA abundance directly and can leverage

existing whole-animal compendia that provide a variety of

developmental stages and conditions represented in these

collections.

From a more general perspective, our method extracts tissue-

specific expression and interaction information from large

compendia of diverse microarray studies. Even in the case of

larger animals where it may be feasible to perform microarray

studies on dissected tissues, the underlying samples are neverthe-

less typically comprised of multiple cell types; a method to predict

gene expression in tissue subtypes will be applicable to other

Tissue-Specific Expression Prediction
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organisms, limited only by the existence of an appropriate ‘‘gold
standard’’ gene expression set. Our results demonstrate that
sample heterogeneity, when appropriately analyzed, can provide
valuable information regarding cell-type specific gene expression
and function.

Methods

Gold Standard construction
Tissue localization data was retrieved from WormBase 170 [12]

and parsed in a semi-automated way. Since a variety of terms are

Figure 6. Tissue-specific weighted correlation networks allow elucidation of tissue-specific gene function. Top 20 predicted
interactions partners and strongest inter-partner interactions are shown. Genes are colored according to known tissue-specific function: yellow
indicates neuronal function, and red indicates involvement in a germ-line/oocyte process. (A) Neuron-specific network around exc-7. An extended
SVM algorithm was used to predict tissue-specific functional interactions. Although exc-7 is best characterized as playing a role in the formation of the
excretory cell, it has also been shown to regulate cholinergic synaptic transmission. Many of its functional interaction partners are consistent with this
neuron-specific function. (B)Tissue-specific networks for let-60. let-60 is the homolog of mammalian Ras protein that is involved, among other
processes, in chemosensation and progression through meiosis during oogenesis. The functional interaction partners identified for let-60 are
completely different in the neuron and germ line networks, reflecting that this gene plays a different functional role in the context of different tissues.
doi:10.1371/journal.pcbi.1000417.g006
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used to describe the same tissue and/or organ, we hand-compiled a

table of tissue synonyms. In addition we applied some hierarchical

propagation to tissue labels, such as assigning specific neurons to

their neuron class (sensory, motor, interneurons). A majority of

genes were reported to express in multiple tissues and each gene was

considered a positive example for all tissue where it was found to

express. This data includes all 1,872 genes investigated by the C.

elegans Tissue Expression Consortium [8,24] as well as expression

patterns from smaller scale experiments, for a total of 2872 genes in

the gold standard. These data did not include any large-scale

expression studies (microarray or SAGE), and was limited to single-

gene GFP or in situ experiments.

Microarray data retrieval and formatting
We collected microarray data from 53 publications (see

Supplementary website for complete list). The microarray values

from a single publication were considered a coherent dataset and

processed together. Data for single-channel platforms was

transformed by dividing every gene value by its average over the

dataset and taking the log of the result. All missing values were

imputed using the KNN impute algorithm [75] (k = 10). For input

to SVM learning the gene values within a single dataset were

normalized to mean 0 and variance 1 before all datasets were

concatenated. Since the SVM algorithm does not accommodate

missing values, genes that were present in some datasets but not

others were assigned a value of 0 when absent.

Tissue bias in microarray experiments
For each tissue we used our gold standard to assign genes with

known expression into 2 classes (tissue expressed and not tissue

expressed). We the used the two classes and the microarray

expression values to calculate an AUC score and the associated

probability. The probabilities were used to correct the results for

multiple hypothesis testing at a false discovery rate of 0.05.

Single gene predictions
Single gene predictions were made using linear support vector

machines (SVM). Given a set of genes known to be expressed in a

particular tissue, the SVM identifies specific patterns of gene

expression in a subset of experiments that differentiates these genes

from those not expressed in the tissue. We performed 5-fold cross

validation and optimized the parameters for maximal precision at

30% recall (fraction of genes in the gold standard correctly

recalled) for major tissues and 10% recall for small tissues. SVMs

are a maximal margin classifier that optimizes classification

performance on the training set while maximizing model

generalizing power by maximizing the distance of the nearest

correctly classified examples to the separating plane. If ~ww and b
define the plane that separates the positive and negative examples,

~xxi are the vectors of microarray data, ci [ {1,1f g are the training

labels, and ji denote the degree of misclassification for each

example, the SVM problem is to minimize

1

2
~wwk k2

zC
X

i

ji

subject to ci ~ww:~xxi{bð Þ§1{ji. The constant C is empirically

optimized to achieve the best performance at classifying new

examples.

GFP-promoter lines
Genes were selected based on the following criteria: top

prediction scores that are specific to a single tissue, no previously

reported tissue-specific localization to that tissue, and absence of

any tissue-bias that could be inferred from sequence information

alone. In particular, we avoided all collagen-related genes

predicted to express in hypodermis due to ease of prediction of

this particular tissue-specific expression from sequence. In

addition, we specifically selected gnrr-1 because of the discrepancy

between our predictions (made with a top prediction score) and

previously published results ([36]). Based on the above criteria we

picked 14 genes, for which we obtained 9 lines; 6 of these

fluoresced and these 6 are all shown in Figure 3. The GFP-

promoter constructs were made using the Gateway system with the

unc-119 rescue plasmid pDestDD03 and promoter clones from the

C. elegans promoterome [10]. The resulting constructs were

bombarded into unc-119(ed3) mutants.

Motif discovery
Motif discovery was performed for each tissue separately. For a

single tissue, all the genes that were present in our microarray

compendium were assigned a cluster number of 1 if they were in

the top 500 predicted genes and a cluster number of 0 otherwise.

This cluster assignment was used as input to the FIRE algorithm.

Kmer length was set to 9 and default values were used for all other

parameters.

Network predictions
To generate the tissue-specific interaction standard we first

generated a global functional interaction standard using a

combination of GO, KEGG, and Textpresso-curated interactions

[12,76]. We then defined a set of tissue-specific interactions by

cross-referencing with our gold standard of tissue expression used

for single gene expression prediction. A tissue-specific interaction

was defined as a pair of genes that were co-annotated to a specific

GO term (see Supplementary methods) and were also both found

to express in a particular tissue in our expression gold standard.

The negative set was composed of positive interactions from other

major tissues as well as random pairs of GO annotated genes. The

classification problem is then to differentiate interactions specific to

a particular tissue from interactions in other tissues as well as non-

interacting gene pairs.

The algorithm computes a weighted sum of single experiment

similarity measures. Since the expression values are normalized to

have mean 0 and variance 1, single experiment similarity measures

are thus single terms within a per-dataset Pearson correlation. The

contribution of expression data to the final value is thus

Pn
i~1 ai xi{xð Þ yi{yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 xi{xð Þ2 yi{yð Þ2
q ,

where xi and yi represent the expression values of genes x and y in

experiment i and ai is the weight assigned to that experiment by

the SVM classifier. (See Text S1 for a detailed description).

Supporting Information

Figure S1 Method flow for SVM predictions. Five-fold cross

validation was used to generate precision-recall plots, optimize

learning parameters, and calculate estimated precision for novel

predictions.

Found at: doi:10.1371/journal.pcbi.1000417.s001 (0.22 MB PDF)

Figure S2 All miRNA target tissue interactions as measured by a

ranksum statistic significant at 0.01. Numbers inside the cells

represent how many target prediction sets gave a significant result

(out of 3, Mirna, Pictar, Targetscan). When multiple target sets
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give significant results the ranksum statistic is averaged. ‘‘D’’

signifies that multiple target prediction sets gave significant results

but disagreed in the direction.

Found at: doi:10.1371/journal.pcbi.1000417.s002 (0.04 MB PDF)

Figure S3 A correlation network for exc-7 computed across the

same expression data as was used for SVM learning. In contrast to

the neuron-specific network generated by our method, this

network is more representative of exc-7’s excretory cell function.

aqp-3 and aqp-10 are aquaporins, while eor-1 is known to affect

excretory system development.

Found at: doi:10.1371/journal.pcbi.1000417.s003 (0.03 MB EPS)

Figure S4 Additional imaged of strains expressing hypodermal

GFP.

Found at: doi:10.1371/journal.pcbi.1000417.s004 (0.07 MB PDF)

Table S1 Comparison of area under precision-recall curve

(corrected for base-line) between a correlation-based method (sum

of correlations with known tissue-specific genes) and an SVM

based method.

Found at: doi:10.1371/journal.pcbi.1000417.s005 (0.01 MB PDF)

Table S2 All significant motifs. Top 500 predictions for each

tissue were used do define a cluster for FIRE motif analysis [1].

The regular expressions corresponding to significantly enriched or

depleted motifs are shown.

Found at: doi:10.1371/journal.pcbi.1000417.s006 (0.02 MB PDF)

Text S1 Network Prediction Methods

Found at: doi:10.1371/journal.pcbi.1000417.s007 (0.03 MB PDF)
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