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Abstract

Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions,
while others claim that arm movements satisfy geometric constraints and are composed of elementary components.
However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth
(minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the
geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments
provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of
practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following
practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2–4 clusters, and
there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that
well-practiced spontaneous scribbling movements can be represented as sequences (‘‘words’’) of a small number of
elementary parabolic primitives (‘‘letters’’). A movement primitive can be defined as a movement entity that cannot be
intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated
after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments.
Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic
template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to
a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal
representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are
employed in internal movement representations (due to the special role of parabolas in equi-affine geometry).
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Introduction

Despite decades of research on the formation of human hand

trajectories, the basic mechanisms of neuromotor control under-

lying the generation of even the simplest drawing movements

remain poorly understood [1]. Various studies have proposed that

human movement preparation aims at optimizing either kinematic

[2–4] or dynamic [5] criteria, or minimizing movement variance

[6–9]. Studies in vertebrates have suggested that voluntary

movements are composed of basic movement elements combined

in parallel or sequentially [10–17]. Such modular organization can

account for the versatility of animal and human movements and

for their ability to acquire new skills.

Geometrically invariant properties of drawing movements were

formalized by the two-thirds power law [18]. These kinematic

constraints were shown to hold both with respect to movement

production [19] and perception [20,21]. Earlier studies also

showed that the two-thirds power law is equivalent to moving at a

constant equi-affine speed [22–24] and there is psychophysical and

neurophysiological evidence for the significant role of the

invariance of human motion with respect to equi-affine transfor-

mations [25–27]. We argue that geometric invariance may provide

a more compact representation of complex movements composed

of geometric primitives.

Straight point-to-point movements show geometric invariance

under dynamic perturbations involving the use of either elastic or

viscous loads [15,28]. Point-to-point movements retain the

invariance of their geometric properties even when subjects are

required to control the movements of a cursor on a computer

screen by moving their fingers in an instrumented data glove [29].

Recent studies in monkeys [25,27,30] and humans [31] have

indicated that repeatable geometric (curved) shapes used in the

construction of complex trajectories emerge after extensive

practice in the generation of drawing and sequential movements.

The ability to unify different kinds of movement constraints

(optimality, compositionality, geometric invariance) in the model-

ing of human and animal movements could lead to further insights

[4,27]. Parabolic movement primitives meet the demands of

geometric invariance, kinematic optimality of movements and

simplicity of movement representation, and may subserve as

underlying building blocks in arm trajectory formation [25,27].

Here, the hypothesis that parabolic segments are geometric
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primitives in practiced movements was experimentally tested using

spontaneous scribbling movements made by two monkeys. Our

choice of the source of the data (studying monkey rather than

human drawings) was motivated by the feasibility of subsequently

analyzing the underlying activity of motor cortical neurons [27].

The predictions of both the two-thirds power law [18] and the

constrained minimum-jerk model [4] are identical for a single

parabolic stroke [27,30]. The fit of the recorded trajectories to the

predictions of these two models was assessed (based on modeling

and analysis of equi-affine speed) and is described in detail in Text

S1. Preliminary version of our findings was presented at the Tenth

Biennial Conference of the International Graphonomics Society in

2001 (URL of the proceedings paper: http://www.wisdom.

weizmann.ac.il/,felix/texts/IGS2001.pdf) and at the Computa-

tional Motor Control Workshops at Ben-Gurion University in

2005 and 2006.

Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies, and all animal work was approved by the

appropriate committee Permit No. OPRR-A01-5011.

Brief overview of equi-affine invariance
Parabolas play a special role in equi-affine geometry and motor

control [27]. In particular, parabolas are the only equi-affine

invariant curves for which predictions of the constrained

minimum-jerk and the two-thirds power law coincide. Equi-affine

invariant curves are considered because of the importance of equi-

affine invariance in both human production and perception. Equi-

affine transformations of curves differ from the widely known

Euclidian transformations. Euclidian transformations preserve

distances, whereas equi-affine transformations preserve only areas

and parallelism of lines.

Two important equi-affine invariant parameters are equi-affine

length (s) and equi-affine curvature. Time derivative of the equi-

affine length of the trajectory (ds tð Þ=dt) called equi-affine velocity

is exactly the piece-wise constant velocity gain factor from the two-

thirds power law relating movement speed and Euclidian

curvature [22,24]. Equi-affine transformations constitute the

largest subgroup of affine geometric transformations that preserves

the velocity gain factor of the two-thirds power law. Equi-affine

curvature can be used to classify curves in equi-affine geometry:

whenever two curves have the same equi-affine curvature, one

curve can be obtained from the other by applying a unique equi-

affine transformation. Parabolas have zero equi-affine curvature;

therefore any two parabolic segments can be aligned by some

affine transformation [27]. The notions of equi-affine geometry

and the rationale for its application in motor control studies are

described elsewhere [22–25,27,32,33]. We provide essential

definitions, explanations, and methods of analysis of movements’

kinematic parameters in the framework of equi-affine geometry in

Text S1.

The behavioral task and data acquisition
The subjects in this study were two monkeys, O and U (female

Macaca fascicularis, 2.6/3.5 kg, respectively). Animal handling

procedures conformed to the NIH Guide for the Care and Use of

Laboratory Animals (1996), complied with Israeli law, and were

approved by the Ethics Committee of the Hebrew University.

During the experiments, each monkey sat in a primate chair with

the left hand restrained and the right hand operating a two-joint

low-friction manipulandum. Following a period of practice, the

monkeys created smooth and continuous scribbling movements

(Figure 1A). During the entire recording session the monkeys saw

nothing but a circular cursor (diameter: 10/4 mm, monkey O/U

respectively) indicating the position of the hand.

To motivate the monkey to generate continuous scribbling

movements, the working plane was tiled with a grid of 19 possible

targets (monkey O circles with radius of 20 mm, monkey U

hexagons with edge length of 20 mm). At the beginning of each

session, a single target was randomly chosen. As soon as the cursor

entered this invisible target, a short beep was produced, and a juice

reward was released and delivered for 50 msec. The beep comes

with the valve’s release of the juice, but it takes a while before the

juice actually starts dripping from the spout. We found that when

the monkey does not protrude its lips and starts licking the juice

spout, much of the reward-juice is spilled down creating a sticky

mess on both the monkey’s fur and the monkey’s chair.

Following a successful hit, another target (also invisible) was

randomly selected. Whenever the monkey did not succeed in

locating the target within 5 seconds, the target was randomly

changed.

The monkey had no knowledge of target location. It adopted a

strategy of producing trajectories that covered the entire work-

space. The monkey was not required to stop at any stage of the

experiment. Figure 1 depicts the grid and task sequence. In a

typical session, the monkeys worked for 1.5–2 hours and received

800–1500 rewards. During the first 4 days of practice for both

monkeys, the average inter-reward time intervals within each

session decreased from 4–5 seconds to 2–3 seconds simultaneously

with the increase in the speed of drawing. There was nothing in

the training to hint to the monkey that it should search for the

target.

The total length of monkey’s U arm including the upper arm

and forearm segments was 215 mm, and the length of its open

hand was 75 mm; the corresponding measurements for monkey O

were almost the same. The diameter of the working area was

Author Summary

Although our movements are flexible and versatile, they
are nonetheless highly stereotypical. This versatility is
similar to that of natural language sentences, which are
composed of words which, in turn, are constructed from a
small alphabet of elementary phonemes. Parabolic draw-
ings are simple, smooth and remain parabolic even when
undergoing a specific kind of geometric transformations.
Smoothness, invariance and compactness of representa-
tion are important in motion planning and in visual
feedback processing. Hence stereotypical parabolic sub-
movements may serve as appropriate building blocks of
complex movements. Given the similarities between motor
organization in monkeys and humans and the greater
opportunity to record brain activities in monkeys here we
study the spontaneous emergence of stereotypical arm
movements in monkeys following practice. We show that
practice has indeed led to the emergence of a small
alphabet of parabolic elements during spontaneous
drawing movements. We further use this alphabet to
study sequences of parabolic sub-movements with respect
to possible decisions concerning the animal’s choice of
what elements to concatenate into words and sentences.
We also propose that the relative simplicity of movement
data compared, for example, to acoustic or semantic data
makes their analysis a useful tool in studies of binding and
cognitive processing.

Behavioral Evidence for Parabolic Primitives
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approximately 173 mm (Figure 1A). Therefore, the production of

hand movements within the workspace demanded movements of

the shoulder and elbow. Hence, the monkeys indeed operated the

manipulandum by moving their limbs and not only through wrist

rotations (power grip movements).

Hand position in the two dimensional plane was sampled at

100 Hz and logged on a custom-designed data acquisition system.

Coordinate data were smoothed using a Gaussian filter with a low-

pass cutoff frequency of 8 Hz. Velocity, acceleration and jerk of

the hand coordinates were estimated using finite difference

approximations of the first- second- and third-order derivatives

of position with respect to time:

_ff tz
Dt

2

� �
&

f tzDtð Þ{f tð Þ
Dt

:

The equi-affine parameters (equi-affine velocity _ss and curvature

k) were numerically estimated using a geometrical approximation

method [34] which is based on fitting the position data with conics

at 5 consecutive data points along the measured path.

To analyze the strategy of the monkeys’ drawings, we applied

the notion of dwell distribution for the endpoint of the

manipulandum position. It is defined here as the frequencies

of visiting small parts of the workspace weighted by the

movement tangential velocity. That is, visiting some location

once with a tangential velocity of 450 mm/s makes the same

contribution as visiting the same location 3 times with a

tangential velocity of 150 mm/s. This weighting helps to avoid

high contributions of slow movements or of periods of rest in

the dwell distributions.

Segments of motion and rest
The monkeys spontaneously switched between periods of rest,

with no or very slow motion, and periods of active drawing. We

analyzed data from movement segments of the drawings detected

by the following procedure:

1. Segments during which the tangential velocity was above a

threshold of 150 mm/s were detected.

2. Rest was defined as those portions of the trajectory whose

tangential velocity was slower than the threshold for at least

0.2 s. Segments of active motion separated by segments of rest

were then identified.

3. The identified movement segments were prolonged for 0.1 s.

forwards and backwards in time, or to the closest minima in the

tangential velocity, whichever came first.

An example of the tangential velocity profile for 3 movement

segments is shown in Figure 2. The least number of movement

segments (57) was registered for monkey U’s first practice session.

After a period of practice, at least 500 movement segments were

typically obtained from a recording session. It should be noted that

movement segments are identified based on the values of the

tangential velocity of the spontaneously generated movements and

that the segmentation procedure did not consider rewarding the

monkeys.

Fitting drawings with parabolic segments
A parabola is defined by 4 parameters: the focal parameter p,

two coordinates of the location of the vertex (point of maximal

curvature), and the orientation of the parabola (defined by the

direction of the normal vector at the vertex). Direct verification

shows that the focal parameter p equals the radius of curvature

(reciprocal of the curvature) at the vertex of a parabola. Every

parabola can be transformed by rigid rotation and translation into

the canonical coordinate system in which the orientation of a

parabola is 270u, and its vertex is located at the point whose

coordinates are (0, 0). In the canonical coordinate system, the

parabola is described by a simple relationship with a single free

parameter p : y~x2
�

2 pð Þ. Such a parabola is shown in

Figure 3A. The three typical parabolas emerging from the fitting

of the monkey drawing (dots) are given in Figure 3B. The mean of

their R2-based estimate of the goodness of fit D~1{R2~0:002
indicates a very good fit. Several typical examples of the fitted

parabolas and estimates of the goodness of fit can be found in [27].

The focal parameters, orientations and locations of the vertices of

these three fitted parabolas are all different. Note that for rest-to-

rest movements through a single via-point, minimum-jerk

trajectories can be very well approximated by parabolic segments,

Figure 1. The behavioral procedure used with monkey U. Shown are the grid of possible targets (monkey O had an equivalent grid of circles)
and an example of a scribbling movement produced by the monkey. The grey hexagons indicate the single currently active targets. Both the
trajectory and the grid were invisible to the monkey. The only visual feedback was produced by the cursor (circle), which indicated the online hand
position. A. The monkey’s hand is near the target. B. As soon as the monkey’s hand entered the target, a beep was heard, the monkey received a little
orange juice reinforcement, and another target was randomly selected.
doi:10.1371/journal.pcbi.1000427.g001

Behavioral Evidence for Parabolic Primitives
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Figure 2. Segments of motion and rest. Three movement segments and four intervals of rest.
doi:10.1371/journal.pcbi.1000427.g002

Figure 3. A parabola in the canonical coordinate system and fitted parabolic strokes. A. Parabola is shown using the canonical coordinate
system. The orientation of the normal at the point of maximal curvature is 270u and the focal parameter p = 1. B. An example of a pattern of monkey
drawing that emerged after several practice sessions and could be well approximated by three parabolic pieces with different orientations. C. These
parabolic strokes were fitted to monkey drawings. Different strokes have similar orientations and are grouped according to their focal parameter p.
doi:10.1371/journal.pcbi.1000427.g003

Behavioral Evidence for Parabolic Primitives
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though they are not exact parabolas [27]. Such trajectories are

characteristic of obstacle-avoidance human movements or curved

movements through a single via-point [3].

The fitting of parabolic segments to the monkey hand

trajectories was implemented in a consistent way using the greedy

algorithm described in Text S2. By consistent, we mean that the

outcome of the fit is invariant under those equi-affine transfor-

mations of the path which preserve the location of the point of

maximal curvature on the fitted parabolic segment. Thus, our

procedure applied in the same manner to both ‘‘narrow’’ and

‘‘wide’’ path segments. Examples of ‘‘narrow’’ and ‘‘wide’’

parabolic segments are shown in Figure 3C.

To quantitatively assess the amount of incongruence between any

path segment and the corresponding parabolic segment fitted to it, a

measure of discrepancy was defined. For each segment i of the

recorded movements, this discrepancy measure was evaluated by

calculating the value of spath, i{spar, i

�� ��� spath, i

�� ���2z spar, i

�� ���2
� �

,

where spath, i and spar, i are the estimated equi-affine lengths of that

path segment and of the corresponding fitted parabolic segment,

respectively. The discrepancy measures ranged from 0 to 2.0. The

more similar the two equi-affine lengths are, the smaller is the

discrepancy between the recorded path and the parabolic segment

fitted to it. Higher discrepancy measures usually correspond to

practically straight movement segments which contain inflection

points causing larger errors in the numerical estimation of the equi-

affine invariants. Equi-affine analysis is not appropriate near

inflection points. Examples of movement segments and fitting

parabolas corresponding to different discrepancy measures, having

low (0.08) to high (1.5) values, are depicted in Figure S1.

Results

We analyzed the scribbling trajectories recorded during 17

consecutive recording sessions for monkey O and 16 consecutive

recording sessions for monkey U. These recording sessions started

from the beginning of practice for both monkeys. We also

analyzed movement data from 17 recording sessions of well-trained

behavior in monkey U that were recorded almost a year after the

beginning of monkey U’s practice. Well-trained data for monkey

O were not available.

The monkeys began by producing trajectories composed of

short and nearly straight movements and with practice converged

towards systematically clockwise (monkey O) or counter-clockwise

(Monkey U) patterns of movement. The movements became

smoother, increasingly simpler and composed of a series of

parabolic segments (Figure 4A).

The dwell distributions for the endpoint of the manipulandum

(defined in Methods) indicated that the monkey movements

became more stereotypical following a period of practice

(Figure 4B). The monkey movements became mostly confined to

the plausibly rewarded area (target areas). Hence, in our analysis

we did not make a distinction between movements within or

outside these areas. Figure 4C shows examples of averaged

tangential velocity profiles with respect to the locations of the

monkeys’ hands (speeds are indexed according to the locations of

the end-effector and are averaged for each location).

The data analysis produced similar results for both monkeys in

spite of the following differences in their behavior:

1. After the first few practice sessions monkey O and monkey U

mostly scribbled in opposite directions (clockwise and counter

clockwise, respectively), though both monkeys used their right

hands.

2. Monkey O scribbled noticeably faster than monkey U.

We started from the direct test of the convergence to piece-wise

parabolic behavior by analyzing the properties of parabolas fitted

to the scribbling movements. Next we tested the same phenom-

enon using our definition of a movement primitive. Minimum-jerk

modeling and equi-affine analysis of trajectories are described in

Text S1.

Dimensionality reduction and convergence to sequences
composed of parabolic-like segments

After both monkeys had practiced the drawing task, the

parabolic segments that were fitted to the recorded movements

fell into 2–4 clusters based on their orientation. The focal

parameter p and orientation h define a unique parabola up to

translation (see Figure 3). Figure 5A shows typical histograms of

the number of parabolic strokes tabulated according to the values

of the quantized pairs of (h, p) and according to the orientation

parameter h. In comparison to the lack of distinct clusters in the

histograms for the parabolic segments derived from the beginning

of practice, the practiced movements clearly showed convergence

to well separated clusters, based on the orientation of the fitted

parabolic strokes.

Apart from the parabolas’ focal parameter and orientation, we

also examined the remaining two parameters that define a

parabola, namely the x and y coordinates of the location of the

vertex. Figure 5B shows the locations of the vertices of the fitted

parabolic segments and their orientations for every tenth fitted

parabola (to make the data easier to visualize) from the same

recording sessions as in Figure 5A. The example shows that after a

period of practice, the locations of vertices of similarly oriented

parabolas were separable into distinct clusters as well. In Figure 5,

the clusters are labeled 1–3, corresponding to the order of the

performed trajectories. Note that monkeys O and U scribbled in

opposite directions and therefore the orders of the clusters for the

two monkeys are opposite.

Figure 6 shows typical histograms of the equi-affine and

Euclidian lengths of the recorded movement strokes and the

corresponding parabolic strokes. Histograms of the equi-affine

lengths of the monkey path strokes for all different practice periods

are depicted in Figure 6A. Histograms of the equi-affine lengths of

the parabolic strokes fitted to these path segments are shown in

Figure 6B. Corresponding histograms in Figure 6A and 6B are

more similar to each other for the sessions that followed a period of

practice. This indicates that with practice the equi-affine lengths of

the path strokes became more similar to those of the correspond-

ing fitted parabolic strokes (the similarity was assessed quantita-

tively using the discrepancy measure introduced in Methods).

Typical distributions of the calculated discrepancy measures

derived for different practice periods are depicted in Figure 6C.

Indeed, practice led to a decrease in the values of the discrepancy

measures. Euclidian lengths of the fitted parabolic strokes were all

quite similar to the Euclidian lengths of the recorded parabolic-like

paths (which can be fit well with parabolas) and therefore these

lengths are not shown separately. Typical distributions of

Euclidian lengths of the fitted parabolic strokes are depicted in

Figure 6D. The data depicted in Figure 6 are summarized in

Figure 7A–C for all analyzed recording sessions.

Figure 7A shows the mean equi-affine arc lengths of the fitted

parabolic segments and the parabolic-like path segments they fit

for all the movement recording sessions together with 95%

confidence interval. Figure 7B depicts the median values of the

discrepancy measures for all the recording sessions analyzed and

the corresponding 95% confidence intervals. The median values of

the discrepancy measures decreased and the equi-affine lengths of

the fitted parabolic segments increased (i.e. the fitted parabolas

Behavioral Evidence for Parabolic Primitives
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became longer) as both monkeys had more practice. Euclidian

lengths of the fitted parabolic strokes and the corresponding path

segments were very similar; they became larger with practice. The

average values of the Euclidian lengths for all recording sessions

and their 95% confidence intervals are shown in Figure 7C.

The error in fitting parabolic strokes to movement paths was

also estimated using the R2 measure as described in Text S2. For

every recording session analyzed, the median error was very small

and in the range of 1023–1022 of data variance. Taking parabolic

strokes from all recording sessions together, the resulting value of

Figure 4. Demonstration of behavior at different stages of practice. A. Paths drawn by monkeys O and U at the beginning of the practice
period (left), during the 16th practice session (middle), and path drawn by monkey U during the period of well-trained performance. The dotted
segments in each plot have the same duration of 1.98 sec. Although slow and jerky in the beginning, with practice the movements became
smoother, faster and more regular. B. Dwell distributions for the end-point position, same sessions as in A. Depicted are the frequencies of visits
weighted by tangential velocity; that is, visiting the same location once with a tangential velocity equal to 450 mm/s has the same contribution as
visiting 3 times with a tangential velocity equal to 150 mm/s. These weighted frequencies indicate that monkey movements become more
stereotypical after a period of practice. C. Average tangential velocities of the end-point, same sessions as in A.
doi:10.1371/journal.pcbi.1000427.g004

Behavioral Evidence for Parabolic Primitives
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(12R2) was 2.6661023 (median; 95% confidence interval: [2.65

2.67]61023). However an R2 based measure, unlike the

discrepancy measure, is not sensitive to modifications of the

drawn trajectories during practice.

The goodness of fit of the monkeys’ drawing movements to

other (non-parabolic) curves was also evaluated. In particular,

ellipses, higher order polynomials (of orders 3–5) of the form

y~f xð Þ and triplets of superimposed point-to-point movements

(which fit parabolic paths quite well, see Text S3) were fitted to the

same movement parts that were fitted with parabolas. The R2

based measures of the deviation from the recorded paths for all the

above-mentioned kinds of curves were small (12R2,0.01). To

estimate the trade-off between goodness of fit and model simplicity

(number of parameters), the SIC score [35] was used (see [27] for

details of using the SIC score). This analysis indicated that out of

all the different curves considered here, the parabolic model

yielded the highest SIC score. That is, the parabolic model

provided the best trade-off. The same conclusion was drawn in

[27] for segmentation of the trajectories into parabolic segments

using a different segmentation algorithm than the one used in the

Figure 5. Emerging parabolic clusters and dimensionality reduction. A. Typical histograms for the fitted parabolic segments. In the one-
dimensional histogram (left), the segments were tabulated according to their orientation. In the color histogram, they were tabulated in bins
identified by two values: the orientation and the focal parameter of the parabola. B. Location of the vertex and orientation of the parabola for every
10th parabolic segment for the recording sessions in (A). Locations of the vertices of the similarly oriented parabolas are also clustered. The clusters
are marked by ellipses and the mean orientations of the parabolas within each cluster are indicated by arrows.
doi:10.1371/journal.pcbi.1000427.g005

Behavioral Evidence for Parabolic Primitives
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present manuscript. More specifically, in [27] curves were fitted to

movement parts, where the end-points of the fitted curves were

anchored at consecutive points of minima of the curve’s Euclidian

curvature. This fitting scheme did not aim at providing the longest

possible path segments which can be well fitted with parabolic

strokes by contrast to the fitting scheme used here.

Figure 6. Properties of the paths and fitted parabolic strokes at different stages of practice, demonstration. Histograms of the
parameters of the fitted parabolic strokes for recording sessions taken from different practice periods of both monkeys. A. Equi-affine lengths of the
path strokes fitted with parabolic strokes. B. Equi-affine lengths of the fitted parabolic strokes. Practice makes the measures from A and B more
similar. C. Discrepancy between the path strokes and the parabolic strokes fitted to them. Practice decreases the discrepancy. D. Euclidian lengths of
the fitted parabolic strokes.
doi:10.1371/journal.pcbi.1000427.g006

Behavioral Evidence for Parabolic Primitives
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So far we have shown that parabolic segments grouped into

clusters over the course of practice and therefore could capture the

geometric regularities of the well-practiced movements. We also

observed that about 60%–80% of trajectory durations recorded

during each session could be well approximated by large

parabolic-like segments. Hence, between rest periods and for

movements generated within different parts of the workspace the

monkeys completed motion sequences which were composed of

several piece-wise parabolic segments. Furthermore, when the

monkeys became well-practiced, they rarely reversed their

Figure 7. Properties of the paths and fitted parabolic strokes during practice and examples of drawing patterns. A–C. First column:
monkey O from the beginning of practice. Second column: monkey U from the beginning of practice. Third column: well-trained behavior of monkey
U. A. Mean values of the equi-affine length of the path strokes fitted with parabolas (continuous line), mean values of the equi-affine length of the
fitted parabolic strokes (triangles). B. Parabolic discrepancy, an estimate of the deviation of the fitted paths from piece-wise parabolicity. C. Mean
values of the Euclidian length of the path strokes fitted with parabolas. D. Different drawing patterns corresponding to the well-trained behavior of
monkey U. D1, D2. Correspond to typical patterns described by ordered sequences of parabolic strokes taken from the different identified clusters.
The examples depicted in D3–D8 are relatively rare. D3–D5. Different patterns with reversals in movement direction. D6–D8. Movement patterns with
‘‘irregular’’ parabolic strokes, i.e., some of the fitted parabolic strokes fell outside the directionally identified clusters.
doi:10.1371/journal.pcbi.1000427.g007

Behavioral Evidence for Parabolic Primitives
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movement direction which was either clockwise (for monkey O) or

counterclockwise (for monkey U).

The fitted parabolic segments can be labeled according to the

clusters to which they belong. Note that the order of clusters for

each monkey is identified according to the direction of the

drawing; i.e., sequence (1-2-3) for monkey O would correspond to

a clock-wise direction of motion, while for monkey U the same

sequence of labels (1-2-3) would correspond to a counter-clockwise

direction of motion. The clusters corresponding to different

monkeys cannot be identically labeled because the monkeys

generated movements in different directions. Therefore, as

Figure 5 demonstrates, the clusters for monkey O are labeled

differently than the clusters for monkey U.

The alphabet of labels for practiced sessions of monkey O

consisted of 3 labels because 3 parabolic clusters were found in that

session (Figure 5). The sequence (1-2-3) represents a repeatable

word because the orientation of the well-practiced drawings was

mostly constant. Over the course of practice, the monkeys’ drawings

could be represented more and more precisely in terms of

repeatable sequences of labels identifying parabolic clusters, where

each series of labels constitutes a ‘‘word’’. For example, the drawing

of monkey O depicted in Figure 3B can be represented by the

sequence (1-2-3)-1, where, following the labeling shown in Figure 5,

1 denotes upward oriented parabolas, 2 denotes downward oriented

parabolas, and 3 denotes leftward oriented parabolas. Note that in

Figure 3B, the parabola fitting the initial part of the drawing (which

corresponds to cluster 1) was not depicted (to make the amount of

information depicted in this plot comprehensible). Three parabolas

fitted to the scribbling of monkey O (in Figure 3B) are associated

with cluster sequence 2-3-1.

In Figure 7D1 and 7D2 we show typical examples of drawing

patterns consisting of ordered sequences of parabolic-like strokes.

These are quite characteristic patterns including relatively rare

cases in which the direction of motion was reversed (Figure 7D3–

D5). Nevertheless, in a few cases, elemental parabolic strokes

identified as belonging to cluster 1 were not followed by other

parabolic elements. This happened either when the movement was

stopped or when reversing movement direction. Examples of paths

partially composed of the fitted parabolic segments not belonging

to any one of the three clusters are depicted in Figure 7D6–D8.

Analysis of drawing movements based on the two-thirds
power law and the constrained minimum-jerk models

Parabolas are the only equi-affine invariant curves which

provide identical predictions to the constrained minimum-jerk

model and the two-thirds power law [25,27]. We therefore

estimated the degree of fit of the monkeys’ scribbling movements

to these two models and the detailed description of this analysis is

presented in Text S1. In particular, an example of a movement

segment, its corresponding equi-affine invariants and the predic-

tions of the two models are presented in Figure S3 (while the

procedure of regularizing the equi-affine speed is demonstrated in

Figure S2). As Figure S4A and S4B show, monkey scribbling

movements deviate to some extent from both models.

Note that the degree of fit of the movements to the predictions

of the two models was estimated for movement segments

composed of several concatenated parabolic strokes, while the

predictions of both models are identical only for a single parabolic

segment, and not for sequences of parabolas. Drawing each

separate parabolic segment within a sequence at a constant equi-

affine speed would lead to very high values of jerk at the transitions

between adjacent segments, resulting in non-smooth movements.

This implies that although on the geometric level the movements

were indeed shown to be approximately composed of simply

concatenated parabolas, on a kinematic level constant equi-affine

speed could not be maintained. Hence the spatial (geometric)

aspects might be planned separately or even precede the temporal

aspects of planning (e.g. concatenation is observed only on the

geometric level).

Interestingly, the trajectories predicted by the constrained

minimum-jerk model fit the two-thirds power law better for more

practiced movement paths (see Text S1 and Figure S4C and S4D).

We also examined another kinematic optimality criterion, the

minimum-acceleration model, according to which movements

tend to minimize an integrated second derivative of the drawn

trajectories (rather than the third derivative as in case of the

minimum-jerk model). Using the same approach as in the case of

the minimum-jerk model in [27], we derived an equation whose

solutions define paths providing identical predictions for the two-

thirds power law and the minimum-acceleration model:

x’’2zy’’2{2x’ x’’’{2y’ y’’’~const,

which is equivalent to x’ x 4ð Þzy’ y 4ð Þ~0 for smooth enough

curves. Here a prime denotes differentiation with respect to s, and

the numbers in brackets denote the corresponding higher order

derivatives with respect to s. Using the same approach as in [27],

it can be shown that parabolas constitute the only class of equi-

affine invariant curves satisfying above equation. Nevertheless,

there is no ambiguity as to which model provides a better fit for the

data. An implementation of the minimum-acceleration modeling

to the scribbling paths showed that the degree of deviation of the

minimum-acceleration trajectories from the recorded movements

was higher than that of the minimum-jerk trajectories.

Decision strategies, movement variability, and definition
of a movement primitive

In this study of the compositional nature of movements, we

attempt to go beyond analyzing separate movement components.

In particular, we investigate the nature of the underlying

movement primitives by examining modifications in scribbling

strategies that were associated with well-identified behavioral

events: receiving or not receiving a reward. The quantitative

analysis was based on using the parabolic components of the

recorded trajectories introduced above.

The effect of rewards on the drawings was especially

pronounced in the well-practiced movements of monkey U. After

almost a year of practice, monkey U tended to decelerate and

sometimes almost stop its arm movement after it had been

rewarded. Rewards were obtained near the target boundary

(Figure 8A, upper plot). Hence, the locations rewarded within a

session did not cover the workspace uniformly. To examine the

kinematic differences between rewarded versus non-rewarded

trajectories for the movements performed by the well-trained

monkey U, in each session, 19 areas within the workspace where

the reward density was high were selected based on the 19 targets

where the reward was delivered.

For convenience, every such area with a relatively high density

of rewarded locations was represented by an ellipse whose main

axes correspond to the principal components of the x and y
coordinates of the rewarded locations within this area (Figure 8A,

lower plot). The lengths of ellipses’ main axes are equal to the

unbiased standard deviation along the corresponding directions:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k~1 vi

:Drkð Þ2
.

n{1ð Þ
r

vi. Here, for n rewarded locations

corresponding to target #i, vi denotes a unit vector parallel to

one of the two main axes of the ellipse, and Drk corresponds to the

vector connecting the ellipse’s center with the kth rewarded
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location identified with this target. In the lower plot of Figure 8A,

different colors were used to depict rewarded locations identified

with the different targets as well as the corresponding ellipses.

The scribbling strategy that the monkey tended to use consisted

of initiating movements within the proximal part of the workspace

with respect to the monkey and only then exploring the distal part

Figure 8. Rewarded and non-rewarded trajectories. A. Selection of areas with high density of rewarded locations. (Upper) Locations at which
the monkey received a reward. (Lower) Same locations as in the upper plot, different colors correspond to different targets. PCA ellipses designate
areas with a high density of rewarded locations. B. Three movement patterns that cross ellipses #18 and #16 without being rewarded there. For 2
trajectories, red and purple, the monkey completes the primitive sequence (1–2) and continues to scribble further via parabolic element 3 without
stopping. For the green trajectory, the monkey completes the primitive sequence as well and decelerates after its completion. If the monkey is
rewarded at target 18, it completes parabolic segments 1 and 2 and then nearly stops (see Figure 8C). If the monkey is not rewarded at target 18, and
gets a reward at target 16, it completes parabolic segment 2, decelerates and nearly stops after that (see Figure 8D). In general, after obtaining a
reward at targets 18 and 16 (at the beginning of parabolic strokes 1 or 2) the monkey decelerates and nearly stops after completing the sequence (1–
2) (the data from all 17 recording sessions are summarized in Figure 9A). C, D. After receiving a reward inside ellipses 16, 18 during an ongoing
movement the monkey tended to decelerate and even stop moving but only after completing a movement sequence composed of several parabolic
segments. The set of rewarded locations is marked by a blue ellipse. The monkey scribbled counter clockwise. C. An example of the completed
(before stopping) particular cycle that consisted of two parabolic segments (oriented downward and rightward). D. The last parabolic element of the
cycle mostly corresponded to the parabolic strokes whose orientations ranged from 0u to 100u. The trajectories which were not rewarded inside the
ellipse were more variable than the rewarded ones, which may have resulted from the composition of an ongoing movement sequence with another
movement element.
doi:10.1371/journal.pcbi.1000427.g008
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of the workspace. The rewarded trajectories which passed through

the areas of the designated ellipses were compared to movements

that crossed these ellipses without being rewarded there. In

general, both the rewarded and the non-rewarded trajectories

were composed of several piece-wise parabolic segments. A careful

analysis indicated clear differences between the rewarded versus

the non-rewarded trajectories.

Three examples of unrewarded trajectories are shown in

Figure 8B. These movement patterns cross the ellipses centered

on targets #18 and #16 without being rewarded there. In 2 of

these 3 trajectories, marked in red and purple, the monkey

completed the sequence which was composed of primitives (1–2)

and continued to further generate parabolic segment 3 without

stopping the movement after completing the sequence (1–2). In the

case of the trajectory marked in green, the monkey decelerated the

movement after completing the sequence (1–2).

Plots in Figure 8C display the hand paths (left panel, upper row)

and tangential velocity profiles (left panel, lower row) of the

rewarded trajectories from one recording session, passing through

the ellipse corresponding to 18th target. Figure 8C also shows the

paths and tangential velocity profiles of the non-rewarded

trajectories (right panel), from the same recording session as in

the left panel, passing through target #18. Similar plots are shown

in the corresponding panels of Figure 8D for both the rewarded

and non-rewarded trajectories passing through the ellipse

corresponding to the 16th target. In the case of the unrewarded

trajectories passing through the 18th target, the monkey completed

a movement sequence composed of two parabolas (labeled 1–2)

and continued the sequence by also completing the third parabolic

element. By contrast, for the rewarded trajectories, after being

rewarded at target #18, the monkey completed parabolic

segments 1 and 2 and then nearly stopped its movement (see

Figure 8C). The paths and tangential velocity profiles are clearly

more variable for the non-rewarded trajectories.

When rewarded at target #16 and not at target #18, the

monkey completed parabolic segment 2, and only then the

movement was decelerated and subsequently was nearly halted

(see Figure 8D). Hence, in general, after obtaining a reward at

targets #18 or #16 (at the beginning of either strokes 1 or 2,

respectively) the monkey tended to decelerate and nearly stop its

movement only after completing sequence (1–2) in the case of

target #18 or element 2 in the case of target #16.

There were other targets which were followed by rewarded

movement sequences composed of two parabolas. These targets

corresponded to the stage following the initiation of drawing

parabolas belonging to cluster 1 (as depicted in Figure 8B). In

particular, some of the sequences generated following reward

delivery at target #14 consisted of two parabolic strokes. A more

general observation follows from inspecting the lower-right plot

depicted in Figure 4B which shows a typical path produced by the

highly trained monkey U: a parabola belonging to cluster 1 is

typically initiated at targets #13, #14 or #17. It typically crosses

target #18 only after its initiation, that after crossing either of the

targets #13, #14, #17. Therefore trajectories following reward

delivery occurring at targets #13, #14 or #17 were typically

more variable than those generated following reward delivery at

target #18.

For the movements passing through the ellipse centered on

target #16 (Figure 8D), similarly to the case of target #18, both

rewarded paths and tangential velocity profiles were more

stereotypical than non-rewarded paths and tangential velocity

profiles. When plotted time is aligned on the event of receiving a

reward at target #16, or the mean time of crossing the boundary

of the ellipse of target 16 for the non-rewarded trajectories, the

rewarded trajectories showed a clear halt within about 0.8 sec

following the reward with no such clear halt for the non-rewarded

trajectories.

Hence, based on these observations, we operationally define a

movement primitive as a movement entity that cannot be

intentionally stopped before its completion once it has been

initiated. Furthermore, the above observations indicate the

existence of ‘‘words’’ or ‘‘sentences’’ composed of several

parabolic-like strokes (e.g. sequences (1–2)) which serve as higher

level geometric primitives.

Following the observations of the influence of drawing strategies

on movement variability described above, for all 17 recording

sessions with a well-trained behavior (Monkey U), we then

quantitatively examined the validity of the claim that the monkey

indeed tended to slow down and almost stop movement after

receiving a reward at targets #18 or #16 but only after either

being able to complete the drawing of a parabolic element (in the

case of target 16), or after completing the generation of a sequence

composed of 2 parabolic segments (in the case of target 18). Since

the monkey could complete a sequence of 2 parabolic-like

segments within 1–2 s., (see the left panel in the lower part of

Figure 8C) it was assumed that the monkey nearly stopped its

movement within a time interval of 1 to 2 s after receiving a

reward as compared to simply passing through target ellipse #18

without being rewarded there. Similarly, for target #16 we

assumed that the monkey nearly stopped its movement within a

time interval of 0.5 to 1 s from the time it was rewarded (see the

left lower panel of Figure 8D).

The speeds (corresponding to the above-mentioned time

intervals) across rewarded and non-rewarded trajectories were

further averaged. The graphs in Figure 9A show that for

trajectories rewarded inside ellipses #16, #18, the average values

of the hand speeds at their minima were always smaller than the

velocity threshold which we used to mark periods of rest (i.e.

150 mm/sec, Methods), thus indicating that the movements were

nearly halted after receiving a reward. They were also always

smaller than the minima of the average speed for the

corresponding non-rewarded trajectories. The differences between

the minimal tangential velocity values of the rewarded versus the

non-rewarded trajectories averaged across all 17 sessions were

significant (Mann–Whitney U test, p = 0.05).

The ellipse corresponding to target #16 (see Figure 8B and 8D)

was specifically chosen because it is positioned at the location

which corresponded to the beginning of the parabolas constituting

the last elements in the sequence (1–2). This allowed us to use our

parabolic fitting algorithm to estimate the degree to which a single

movement primitive isolated from other movement elements was

indeed stereotypical. For 10 of the 17 recording sessions (1–5, 10,

14–17), we visually observed a greater variability in the non-

rewarded trajectories that crossed ellipse #16 versus the

trajectories that were rewarded inside this ellipse. We then defined

a time interval of 0.05–0.4 seconds from the event (of either

getting a reward or the mean time of crossing the ellipse

boundaries in case the reward was not obtained). As can be seen

in the lower left plot of Figure 8D, this interval includes two local

maxima and one local minima of the tangential velocity of the

trajectories crossing the ellipse. This tangential velocity pattern

usually corresponded to a single parabolic-like drawing.

For each trajectory examined, we selected the point with the

highest path curvature for the time interval of 0.05–0.4 seconds

from the event. A parabola containing this point was then selected.

All the rewarded trajectories shown in Figure 8D could be fitted

with parabolas oriented at about 50u as compared to more

variable orientations of the parabolas fitted to the non-rewarded
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trajectories. These parabolic elements from the rewarded and non-

rewarded trajectories were then used to statistically demonstrate

the greater variability of the trajectories that crossed the ellipse

#16 without being rewarded there as compared to trajectories

rewarded inside this ellipse.

Figure 9B demonstrates that the orientations of the rewarded

segments are concentrated within the interval [0u, 70u]. In fact,

orientations of only 5.2% of the rewarded segments lay outside this

interval, compared to 15.8% of the non-rewarded segments. This

implies that parabolic strokes identified with the non-rewarded

trajectories which crossed the ellipse corresponding to target #16

(Figure 8D) were more variable than the parabolic strokes fitted to

the trajectories rewarded inside this ellipse (binomial test,

p = 0.01). These parabolic elements of the rewarded trajectories

may be less variable because the movement nearly stopped and

was not followed by a consecutive movement element (whose

choice could be based on making a decision).

The upper left plots in Figure 8C and 8D show that the

locations of the termination of the parabolic stroke belonging to

the 2nd cluster mainly correspond to the second quadrant of the

workspace (locations above and to the left of the central target);

i.e., these locations are not uniformly distributed within the

workspace. In order to quantitatively analyze this phenomenon,

we define the location at which the movement stopped as the end

of a movement segment having a speed threshold of 100 mm/s

within 2 seconds after an event occurred. Such an event involved

either getting a reward or corresponded to the mean time of

crossing the ellipse boundary when the reward was not obtained.

In cases when the end of a movement segment did not occur

within 2 seconds after such an event, the location of a halt to

movement was defined as the location at which the speed was the

lowest within a 2 second interval after the event. Further analysis

of the movements (both rewarded and not rewarded) which

crossed all targets 1–19, and not only targets 16 and 18, showed

that indeed the locations of movement halts were not uniformly

distributed within the workspace.

Taking all targets together, 40.36% of the rewarded trajectories

stopped (as defined in the paragraph above) within the second

quadrant of the workspace whereas only 29.8% of the non-

rewarded trajectories stopped within this quadrant. The difference

was significant (binomial test, p = 0.01). Therefore, frequent

stopping within the second quadrant of the rewarded trajectories

was related to getting a reward and not simply to the monkey’s

purported intention to stop there irrespective of the preceding

movement history. Rather, stopping within the second quadrant of

the workspace supports the notion that a post-rewarded sequence

was halted after completion of the last element belonging to the

2nd cluster more often than a non-rewarded sequence.

Figure 9. Differences between the rewarded and non-rewarded trajectories, statistical estimates. Differences between rewarded and
non-rewarded trajectories. A. Minimal values of the average tangential velocities of the rewarded and non-rewarded trajectories for the sequence (1–
2) which is a higher level primitive (target #18, as in Figure 8C) and for the last parabolic element (target #16, as in Figure 8D). B. Corresponds to
parabolic strokes fitted to the trajectories constituting the last parabolic element (ellipses corresponding to target #16, as in Figure 8D). The
orientations of 15.8% of the non-rewarded and 5.23% of the rewarded segments were outside the orientation interval [0, 70] degrees. This difference
in variability was statistically significant (see text).
doi:10.1371/journal.pcbi.1000427.g009
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In some cases, although the monkey tended to decelerate its

motion after receiving a reward, it did not entirely stop the

movement. Because of the existence of such cases, there were post-

rewarded movement sequences with more than 2 parabolic

elements. However, the number of post-rewarded sequences

rapidly decreased with the increase of the number of their

elements and the sequences composed of 1 or 2 post-rewarded

parabolic elements constituted 52.2% of all the post-rewarded

sequences. Only one post-rewarded sequence contained 20

elements and this sequence was the longest one observed for all

the recording sessions in the well-trained monkey U. Post-

rewarded sequences with more than 2 elements mainly corre-

sponded to the sessions with a higher speed of motion; e.g. sessions

15 and 16 as seen in the upper plot of Figure 9A.

Discussion

We analyzed modifications in spontaneous scribbling move-

ments of two monkeys over the course of practice and the

properties of well-practiced scribbling movements. Our results

show that after the monkeys practiced with the motor task, the

variability of the parabolic pieces fitted to these movements,

decreased and could be classified as belonging to only 2–4 groups

of parabolas, clustered according to their orientations. The lengths

of the fitted parabolic strokes also tended to increase. This finding

therefore indicates that a reduction in the dimensionality of the

generated movements evolved through practice. This reduction in

dimensionality indicates that parabolas capture essential features

of the fitted drawings, a property that is required from any possible

movement primitive in order to be considered as a likely building

block in movement compositionality. Analysis of motor cortical

activity recorded during the same scribbling movements also

suggests that the emergence of parabolic patterns has central

origin [27].

By analyzing differences between the rewarded and non-

rewarded trajectories, we introduced a general definition of a

movement primitive defined at the geometric level of hand

trajectory planning. This analysis also suggests that decision-

making processes should be taken into account in studies of

movement compositionality.

Parabolic primitives
Fitting parabolas to the scribbling movements robustly allowed

us to determine the focal parameters and orientations of the fitted

parabolic strokes. We also fitted parabolas to the paths which

connect consecutive local minima of the Euclidian curvature. The

orientations of these parabolic segments formed clusters which

were similar to those derived based on the orientations of the

parabolic strokes obtained through the application of the greedy

algorithm applied here (see Methods). Note that we fitted

parabolas to the movement data and did not decompose the

trajectories into the underlying strokes. That is, each shape was

fitted independently of the others and an arbitrary amount of

overlap between two consecutive fitted shapes was allowed.

An important implication of fitting parabolas to the recorded

movements is the dimensionality reduction of the data. In our

fitting procedure, each parabola corresponds to a single local

maximum of Euclidian curvature. No two maxima of Euclidian

curvature correspond to the same parabola and no two parabolas

correspond to the same maximum; that is, there is no ambiguity

among movement elements. The existence of overlaps between

consecutive parabolic elements allows for smooth transitions

between these elements and strengthens our claim that the

movements are well described by parabolic segments.

However, there were also gaps between consecutive parabolic

elements. The gaps corresponded either to occasional very slow

motion within segments or to nearly straight motions. The case of

occasional very slow motion within movement segments does not

correspond to actively preplanned movements and therefore is not

relevant to our analysis [27]. The case of nearly straight

movements (occurring near inflection points) cannot be treated

within the framework of equi-affine geometry because the equi-

affine length of straight paths is zero and their equi-affine

curvature is not defined. Straight movements are geodesics in

Euclidian geometry and should be treated within the framework of

Euclidian geometry, while parabolas are equi-affine geodesics

[24,36].

Our study suggests the existence of a central representation of

movements in terms of parabolic primitives. The emergence of the

recorded parabolic-like patterns during practice cannot be

described solely as a reflection of the generation of smoother

movements per se [27]. Considering the fit with non-parabolic

curves (ellipses, polynomials of order 3–5, and triplets of

superimposed point-to-point movements), although the fit is very

good and superior to the fit with parabolas, parabolas provide the

best trade-off between goodness of fit and simplicity of the curve

and are equi-affine invariant. As regards parsimony of represen-

tation, a complicated planar curve can be represented by means of

an affine invariant model composed of parabolic polygons [37].

Hence, parabolic strokes cannot be considered as simply useful

basis functions selected only because they provide a successful

numerical approximation to the recorded movements.

Our data were limited to the end-effector locations and

therefore our analysis did not address the issue of what degree

of motion smoothness combined with the biomechanical proper-

ties of the limb may have led to the observed piece-wise parabolic

movement paths. Concerning the origin of the smoothness of hand

trajectories, several empirical and modeling studies have proposed

that muscle properties by themselves are sufficient to account for

much of the observed smoothness and bell-shaped speed profiles

which are characteristic of point-to-point movements, e.g. [38–

40]. It has also been argued that the two-thirds power law also

originates from low pass biomechanical properties of the muscles,

e.g. [41], or other peripheral factors such as the effects of the non-

linearities of the forward kinematic transformations [42–44], or

the inherent noise present in the motor system [45].

Nevertheless, a number of studies have supported the central

origin of the two-thirds power law. These include, for example, the

demonstration that variations in the magnitudes and directions of

the neural population vectors are consistent with the kinematic

properties of monkey trajectories that obey the two-thirds power

law [46,47]. Our analysis also showed that the firing rates of some

of the cells in the motor cortical area (recorded while the monkeys

were performing the drawing movements reported here) were

more strongly correlated with the equi-affine movement speed

rather than with Euclidian speed [25,27]. The two-thirds power

law also affects the perception of motion. Movements performed

according to the two-thirds power law are perceived as being more

uniform [20,21]. Recently [26], demonstrated that compliance

with the two-thirds power law in motion perception is reflected in

stronger fMRI activations of different cortical regions and in

particular, of brain areas that subserve motor production, visual

motion processing, and action observation functions. Interestingly,

analysis of equi-affine invariant primitives in planar movements

has been recently generalized to the spatial case in empirical and

theoretical studies [25,27,48–50].

Earlier studies proposed the existence of movement primitives at

different hierarchical levels, suggesting corresponding syntactical
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rules for combining them in order to compose complex

movements; for more details see [51]. The use of geometric

primitives in our study differs from other investigations, as we

suggest a specific malleable geometric shape acted upon by a

group of geometric transformations, without a vectorial basis of

units of composition. This differs from vectorial superposition of

elements from a fixed set of basic functions/force fields/muscle

synergies, e.g. [11–13,52,53].

Our results suggest that parabolic movements identified in

monkey scribblings may, through the process of practice, form a

behavioral output of dynamically-switching cortical ‘‘attractors’’

(states) [27]. Convergence toward attractor-like neural activity

during practice via Hebbian learning may underlie the superpo-

sition/co-articulation of sequences of point-to-point motion units

into more compact and smoother parabola-like movement

components. Rehearsal of a sequence of elementary planar

point-to-point movements by human subjects leads to the

formation of more complex smooth geometric primitives [31],

thus supporting this suggestion. Moreover, the smooth movements

that emerged following practice were well approximated by

minimum-jerk trajectories passing through a single via-point.

Geometrically, such minimum-jerk trajectories have a parabolic-

like shape; therefore the geometric primitives observed by [31]

might be parabolic-like segments.

A single parabolic drawing can be approximated with three

superimposed point-to-point movements, each having a bell-

shaped speed profile (Figure S5A). Each bell-shaped speed profile

can, in turn, be approximated with three smaller identical bell-

shaped speed profiles, and so on (Figure S5B). However, a triplet

of point-to-point movements is defined by at least seven

parameters while a parabola is defined by only four parameters,

thus providing a more compact representation. One possibility is

that in the hierarchy of geometric primitives, point-to-point

movements constitute the lowest level which is below the hierarchy

of curved movements; another possibility is that there is no

hierarchical relationship between straight and curved movement

primitives (see also Text S3). Elementary parabolic-like shapes

(‘‘letters’’ of the ‘‘alphabet’’ used to achieve a compact represen-

tation) constitute the lowest level in the hierarchy of curved

movements, and sequences of parabolic-like shapes (‘‘words’’)

belong to the next level above. Elementary parabolic primitives

and their sequences are acquired during learning to achieve more

efficient representation of complex well-trained movements (in

terms of complexity) as the present study has demonstrated.

The observed reduction in variability of the fitted parabolic

components of the scribbling movements indicates a tendency of

the CNS to increase the parsimony of movement representation

through practice (hypothesis of greater parsimony). The geometric

reduction of dimensionality in drawing movements also has an

equi-affine interpretation. Piece-wise parabolic trajectories can be

generated based on affine transformations (equi-affine transfor-

mations and spatial scaling) of a single parabolic template; equi-

affine curvature of monkey scribbling movements became closer to

zero through practice [27,30]. Parabolas have a constant zero

equi-affine curvature. Therefore, empirical evidence for greater

parsimony implicitly imposes a geometric constraint on the

movement path in terms of the equi-affine curvature. This role

of the equi-affine curvature, in turn, suggests that equi-affine

variables and geometry may play an important role in the

representations employed by the primate motor system.

Our demonstration of the dimensionality reduction that was

achieved through practice also enabled us to represent spontane-

ous movements in terms of sequences of elementary primitives and

finally to introduce a compact symbolic notation to describe the

recorded (continuous) scribbling data based on a small (discrete)

set of basic primitives. Moreover, mathematically, piece-wise

parabolic movements can be viewed in this perspective as resulting

from applying sequences of different affine geometric transforma-

tions to a single movement template (parabolic), rather than

constituting different movement elements. Hence, the experimen-

tal paradigm and the movement analysis approach described here

may serve future studies that focus on human and primate

acquisition of motor sequences (see [54,55] for reviews of such

studies).

Equi-affine invariants, kinematic optimality and
geometric properties of drawing movements

Earlier works studied the predictions of the minimum-jerk

model for a number of geometric paths and compared

corresponding predicted and recorded trajectories [4,19,56]. Here,

the fit to the constrained minimum-jerk model and the two-thirds

power law was estimated for monkey trajectories recorded at

different stages of practice.

Geometrically identified patterns were acquired by the monkey

through practice but no (or only a slight) influence of practice on

the fit to the constrained minimum-jerk model and to the

geometric constraint formalized by the two-thirds power law

model was detected (Text S1). This may follow from an underlying

dissociation between the geometric and temporal aspects of

motion planning. The existence of such dissociation was also

proposed in earlier studies [57–59].

Human tracing movements [19] were found to fit the

constrained minimum-jerk model better than monkey scribbling

movements [30]. This difference may be due to task differences:

the monkeys performed spontaneous scribbling movements, while

the human subjects were instructed to repetitively follow

prescribed geometric templates.

For non-straight paths, zero jerk cost can be achieved only by

drawing a single parabolic stroke and the corresponding

minimum jerk trajectory also satisfies the two-thirds power law

[27,30]. However, the constrained minimum-jerk model and the

two-thirds power law are not simultaneously satisfied when

considering a sequence of parabolic segments. Even so, for

monkey scribbling movements, the trajectories predicted by the

constrained minimum-jerk model for the recorded monkey paths

obeyed the two-thirds power law better after a period of practice

(Text S1). The variability (deviation from being constant) of the

equi-affine speed was compared for the actual and predicted

trajectories to estimate how well a geometric constraint is satisfied

by the trajectories predicted by the minimum-jerk criterion versus

the recorded trajectories. Future studies of motor learning may

similarly apply the comparison of geometric invariants (e.g. equi-

affine speed) for actual and modeled trajectories to detect

acquisition of specific motor strategies (in our case, modifications

of the geometric properties of the movements being performed

(Text S1)).

It has been suggested that the motor control signals used in

movement generation are chosen such that the end-point variance

should be minimized [6]. It was shown in [6] that the trajectories

predicted by the minimum end-point variance for the drawing of

ellipses fit the two-thirds power law well. Thus, the equi-affine

speed of these predicted motions is close to being constant. Note as

well that when drawing an ellipse according to the constrained

minimum-jerk model, the predicted trajectories also fit the two-

thirds power law quite well [56], and that parabolas can be

approximated arbitrarily well by ellipses with close to zero equi-

affine curvatures [27]. Therefore, the predictions of the minimum-

variance model for a parabolic path would yield trajectory which

Behavioral Evidence for Parabolic Primitives
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fits well the two-thirds power law, similarly to the case of the

minimum-jerk model.

Compositionality of movements, movement variability
and decision-making

Our observations, based on the comparison between the

kinematic characteristics of the rewarded versus the non-rewarded

trajectories have shown that receiving or not receiving a reward

affected the motion sequences generated by a well-practiced

monkey. Significantly smaller variability was observed for the

parabolic strokes fitted to the trajectories rewarded at a specific

spatial location (corresponding to the start of the last element in

the sequence) versus parabolic strokes fitted to the non-rewarded

trajectories. The last elements of the rewarded trajectories may be

less variable due to the fact that when the movement is nearly

halted, it is not followed by a consecutive movement element

which is composed with the preceding one. Therefore, the

observed differences in movement variability between the

rewarded versus the non-rewarded trajectories lend support to

our definition of a movement primitive. Our observations also

indicated that parabolic segments constitute elementary motion

primitives which are used in the construction of higher-level

sequences, i.e., ‘‘words’’ or ‘‘sentences’’ in well practiced scribbling

movements. Consequently, we propose that the observed behavior

of the well-trained monkey could imply that the monkey has

applied a strategy of combining a few parabolic parameters into

higher-level sequences.

However, it is not entirely clear why the monkey tended to

concatenate the parabolic elements belonging to clusters 1 and 2

into an indivisible sequence. That is, why didn’t the monkey

immediately halt its movement when it received a reward at target

#18, but tended, instead, to continue generating another

parabolic element and then arresting the motion after its

subsequent completion? All trajectories which were rewarded at

either targets #16 or 18 were stopped only after competing

element 2 in the sequence. This finding, in turn, may imply that

the monkey employed a movement generation strategy which

involved automatic exploration of the distal part of the workspace

(parabolic cluster 2) in case no reward was obtained within its

proximal part (parabolic cluster 1).

The findings reported here indicate that complex movements

may be generated by tuning the parameters of a small number of

primitives and then concatenating them together to achieve the

goals of complex movements. For example, a likely parameter to

be tuned is the focal parameter of the parabolic-like segments

which defines their ‘‘width’’. Tuning of primitives in goal-directed

movements may also be guided by decision-making and/or action

selection based on ongoing feedback/reinforcement signals (e.g.

receiving or not receiving a reward). Therefore, paradigms

involving decision-making could be advantageous in studies

investigating movement construction based on the composition-

ality of a basic repertoire of motion primitives. In fact, a recent

study involving the analysis of rapid pronation/supination wrist

movements produced by monkeys during a 1D step-tracking task

indicated that a decision-making process guided the initiation of

corrective sub-movements [60].

Our preliminary observations also indicated that some of the

motor cortical units may be responsive to receiving a reward and

thus their activity may be related to decision-making processes

[25]. Our monkey data were recorded in a paradigm in which the

monkey did not have a clear motivation to stop its movements

after reward delivery. However [61], studied the performance of

human subjects when generating free scribbling movements in

which the subjects were looking for the location of an invisible

target and were requested to unexpectedly impede their

movements. Geometrical analysis of the recorded trajectories

showed that the figural properties of the paths generated after the

‘‘stop’’ cue was given were part of a repetitive geometrical pattern

and that the probability of completing a pattern after the ‘‘stop’’

cue was given was correlated with the relative advance in the

geometrical plan rather than with the amount of time that had

elapsed since the initiation. Thus the findings of [61] provide

evidence in support of the existence of movement primitives which

subserve the construction of sentence-like sequences in human

trajectory formation. Their observations therefore support our

claim that a primitive can indeed be defined as an entity that

cannot be stopped before its completion.

Is the convergence of monkey drawings to trajectory sequences

composed of several parabolic-like segments an optimal strategy in

terms of a sequential search for rewards? Does it reflect the

development of a geometric skill based on core knowledge [62], or

is it the outcome of the development of a dynamic internal model,

or are both inherently related? Further studies involving, for

example, non-uniform or even non-stationary distributions of

target locations and studies using dynamic perturbations of arm

movements (in both humans and monkeys) should provide further

answers to these questions. Such studies could also examine the

possible existence of parabolic primitives and the degree of

involvement of decision-making mechanisms in movement

compositionality and variability. We also propose that the relative

simplicity of movement data (versus acoustic or semantic data, for

example) makes their analysis a useful tool in studies dealing with

problems of binding and cognitive processing.

In summary, different kinematical analysis and mathematical

modeling approaches were combined in our study and indicated

that with practice, monkey scribbling movements tend to be

composed of parabolic elements drawn from a small number of

directionally identified clusters. The observed piece-wise para-

bolicity of the movement segments is also compatible with our

general definition of movement primitives and the notion that

repeated practice of a given motor task leads to a more

parsimonious motor representation.

Supporting Information

Text S1 Application of the equi-affine geometry and minimum-

jerk modeling to analysis of movement kinematics.

Found at: doi:10.1371/journal.pcbi.1000427.s001 (0.10 MB PDF)

Text S2 Procedure for fitting parabolas.

Found at: doi:10.1371/journal.pcbi.1000427.s002 (0.03 MB PDF)

Text S3 Approximation of parabolic-like trajectories with triplets

of point-to-point minimum-jerk movements.

Found at: doi:10.1371/journal.pcbi.1000427.s003 (0.01 MB PDF)

Figure S1 Discrepancy measure. Examples of movement

segments and fitting parabolas corresponding to different discrep-

ancy measures, from low (0.08) to high (1.5). Higher discrepancy

usually corresponds to close to straight movement parts which

contain inflection points.

Found at: doi:10.1371/journal.pcbi.1000427.s004 (0.02 MB PDF)

Figure S2 Illustration of the regularization procedure. Left:

Given a sequence of values of |Ds|, some of its elements are not

close enough (as defined in the text) to their neighbors; e.g. the first

element is not close to the second. We assume that a regular piece

of data consists of at least 5 consecutive elements that are close

enough to each other. Right: The regularized sequence of the

parameter.

Found at: doi:10.1371/journal.pcbi.1000427.s005 (0.02 MB PDF)
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Figure S3 An example of kinematic and equi-affine analysis for

a movement segment. A. Segment path. B. A dashed-dotted graph

shows the time evolution along the segment had the monkey

drawn the path in A according to the constrained minimum-jerk

model. C. Drawing speeds. The x axis corresponds to time for the

profiles (a) and (b), and to the sample point number divided by the

recording frequency, which is identical to time for actual

trajectories, for profiles (a), (c). Minima and maxima of the actual

and predicted trajectories occur at similar positions on the path

(comparison of (a) and (c)), but their time-course is different

(comparison of (b) and (c)). D. Scaled magnitudes of the

regularized (with outliers omitted, see Text S1) increments of the

equi-affine arc-length, scaled increments of the predicted time

intervals between adjacent samples and equi-affine curvature.

Several segments with an equi-affine curvature close to zero can be

seen. E. Equi-affine speeds, actual and predicted (superscripts a

and p respectively), were scaled to fit the same axes as in D. The

predicted equi-affine speed deviates from being constant less than

the actual equi-affine speed as measure c from the formula (S8) in

Text S1 indicates.

Found at: doi:10.1371/journal.pcbi.1000427.s006 (0.06 MB PDF)

Figure S4 Fit to the constrained minimum-jerk model and to the

two-thirds power law. A. Averages of the estimated fit of the

trajectories to the constrained minimum-jerk model. For both

monkeys the estimates lay within the same range. No convergence

can be seen. B, C, D. Averaged estimates of the non-constancy of

the actual and predicted equi-affine velocities. B. Fit of the actual

trajectories to movement segments according to the two-thirds

power law. On average, the fit of the trajectories of monkey O did

not change through practice. Monkey U showed some improve-

ment of the fit. C. Both monkeys showed a clear improvement

with practice in the fit of the predicted trajectories to the two-

thirds power law compared to the beginning of practice. D. For

both monkeys, the fit of the predicted trajectories to the two-thirds

power law was better than the fit of the actual trajectories. The

superiority in fit of the predicted trajectories increased through

practice, especially for monkey O.

Found at: doi:10.1371/journal.pcbi.1000427.s007 (0.05 MB PDF)

Figure S5 Approximation of a parabolic-like trajectory with

three point-to-point movements. A (upper part). A parabolic-like

path and three point-to-point movements. The approximation is

marked by dashed lines. Although this result is demonstrated for a

single parabolic-like trajectory, its affine transformations can be

applied in case of other parabolic segments (to reconstruct

parabolic-like path). A (lower part). Speed profiles of the

parabolic-like trajectory (blue), approximating trajectory (dashed)

and point-to-point movements. All speed profiles correspond to

the respective paths from the plot above. B. Point-to-point

minimum-jerk trajectory can be composed of 3 identical

minimum-jerk trajectories rescaled in time and space. The ratio

of peak speeds is approximately 0.55.

Found at: doi:10.1371/journal.pcbi.1000427.s008 (0.03 MB PDF)
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