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Abstract

The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental
measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of
these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a
computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug
connectivity information based on protein interaction networks and literature mining, without requiring gene expression
profile information derived from drug perturbation experiments on disease samples. We described the development and
application of this computational framework using Alzheimer’s Disease (AD) as a primary example in three steps. First,
molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second,
PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular
mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and
related proteins in literature. We showed that this molecular connectivity map development approach outperformed both
curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD
connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD
treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between
different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of
statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining
results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a
new model for drug development, in which therapeutic/toxicological profiles of candidate drugs can be checked
computationally before costly clinical trials begin.
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Introduction

The concept of molecular connectivity maps is gaining popularity in

systems biology [1]. Massive amounts of genomics and functional

genomics information, including genome-wide genetic variations,

epigenetic modifications, mRNA expression profiles, protein

expression profiles, protein post-translational modifications, and

metabolic profile changes in cells, have been generated [2]. While

there is steady progress in managing and interpreting data for each

type of measurement individually, it remains uncertain yet

rewarding how to develop unified models—even descriptive ones

to begin with—to integrate signals from genomic-scale measure-

ments of different molecular entities under similar biological

conditions. In modern drug discovery, for example, the expression

level of genes or proteins that change in response to different drug

compound perturbations, or ‘‘drug- gene/protein association

profiles’’, are believed to provide valuable prescience on the drug’s

molecular potential therapeutic and toxicological profiles prior to

clinical trials. Here, the concept of studying ‘‘inter-class’’ molecular

associations is quite different from that of ‘‘intra-class’’ molecular

associations such as gene-gene interactions, drug-drug interactions,

or protein-protein interactions [3]. For example, differential gene

expression profiles based on DNA microarrays were used in an inter-

class molecular study to link several genes, efpA, fadE23, fadE24, ahpC,

to the toxic response of anti-tuberculous drug isoniazid [4]. In this

study, an inter-class drug-gene molecular association profile was

established between the drug isoniazid and several tuberculosis-

related genes. Generalizing from the concept of gene-drug molecular

connectivity profiles built from a few drugs or genes, we refer to the

comprehensive inter-class molecular associations in a given
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biological context as a molecular connectivity map. Molecular connec-

tivity maps may be developed between drugs and a wide range of

bio-molecular entities such as genes, microRNAs, proteins, and

metabolites for a variety of disease areas. A high-quality molecular

connectivity map can enable researchers to compare the molecular

therapeutic/toxicological profiles of many candidate drugs or drug

target genes/proteins, therefore improving the chance of developing

high-quality drugs and reducing drug development time.

Several large-scale molecular connectivity mapping projects are

currently under way. Lamb et al. recently established a systematic

approach to build connectivity maps using gene-expression profile

information as the common vocabulary that connects small

molecules, genes, and diseases [5]. These connectivity maps

consist of a reference collection of gene-expression profiles from

cultured human cells treated with bioactive small molecules. The

map data also come with pattern-matching software to help

researchers query these maps [1]. Butte et al. proposed a different

strategy, using the UMLS (Unified Medical Language System)

ontology and publically available gene expression data to associate

a broad spectrum of ‘‘vantage points’’—biologically significant

terms used in phenotypic, disease, environmental and experimen-

tal contexts—with genes [6]. While both approaches open up new

opportunities that make it possible to observe molecular

connectivity profiles in parallel, the coverage and quality of these

connectivity maps raise doubts. Lamb et al.’s approach relies on

systematic screening of each known chemical compound against

cell lines simulating each biological condition to derive gene

expression profile changes—a costly and time-consuming exper-

imental process that will take many years and a huge budget

before sufficient data coverage can be achieved for practical use.

The approach by Butte et al. relies heavily on integrating available

gene expression data from different laboratories running different

experimental platforms on different biological samples—some-

times producing incompatible results that require thorough in-

depth experimental validations or knowledge curation.

Is it possible to build high-quality low-cost molecular connec-

tivity maps? To answer this question, one must resort to the vast

amount of biomedical literature and emerging biomedical

literature mining techniques. Recent advances in biomedical

information retrieval [7], gene/protein entity identification [8],

information extraction [9], text clustering and classification [10],

and the integration of structured and textual data [11], have made

it practical to perform knowledge discovery in primary biomedical

literature [12]. There are quite a few successful examples. FACTA

is a biomedical literature search engine for identifying biomedical

concepts (e.g., disease, gene/protein, chemical compounds) from

PubMed abstracts [13]. G2D is a tool for inferring logical chains of

connections from disease names and ranked genes on the basis of a

score that represents their likelihood of being associated with the

query disease [14]. Tiffin et al. identified co-occurring disease

names and tissue names in PubMed abstracts, and linked the

tissues to candidate disease genes [15]. Srinivasan et al. developed a

method to explore implicit relationships between pharmacology

substances and diseases [16]. Given disease names and user-

specified terms, these biomedical literature-mining techniques

were capable of prioritizing terms (e.g., genes, tissues, and

substances etc.) with potential roles in the diseases. It is quite

tempting to conclude that molecular connectivity maps could be

built theoretically by searching, collecting, and ‘‘triangulating’’

disease-gene, disease-drug, and gene-drug term co-occurrences,

using existing literature mining methods. The real challenge,

however, is how to achieve satisfactory sensitivity and specificity

from diseases to drugs, while enabling the discovery of novel

therapeutic applications for known drugs. An approach that reports

only significant associations among protein, drug, and disease

terms co-cited in the same article would be undesirable, because

there would be no new knowledge connections between molecules

and diseases. An approach that either misses many drug entities

(low sensitivity performance) or assigns unrelated drug entities (low

positive predictive value performance) would also be depreciated,

because human experts, not computers, would have to bear a

heavy burden of performing manual knowledge validations.

In this study, we propose a novel computational framework to

develop high-coverage disease-specific drug-protein connectivity

maps, by applying integrated molecular interaction network

mining and text mining techniques (Figure 1). We aim to uncover

interesting and non-obvious patterns by relating research publi-

cations on genes/proteins, drugs, and disease contexts. The

computational paradigm has the following characteristics:

1. It can incorporate the user input of disease-specific seed genes/

proteins derived from prior knowledge. Each seed list may be

curated by in-house knowledge experts, extracted computa-

tionally from large Omics experimental results (e.g., differen-

tially expressed genes from microarray experiments comparing

genes between disease samples and normal samples), or

retrieved automatically from online curated gene/protein

databases for the given disease. While the quality of seeds

apparently affects the quality of downstream analysis, these

seeds can serve as a starting point and does not need to be

complete or optimized.

2. It can automatically improve the quality of initial seed genes/

proteins list by expanding and re-ranking them in the

functional context by reprioritizing them in disease-related

molecular interaction networks. Therefore, the final list of

genes/proteins used to build connectivity maps will have

heightened relevance to the specific disease context.

3. It can discover drugs implicitly studied across multiple research

papers spanning multiple disciplines. This identification of both

Author Summary

Molecular connectivity maps between drugs and a wide
range of bio-molecular entities can help researchers to
study and compare the molecular therapeutic/toxicolog-
ical profiles of many candidate drugs. Recent studies in this
area have focused on linking drug molecules and genes in
specific disease contexts using drug-perturbed gene
expression experiments, which can be costly and time-
consuming to derive. In this paper, we developed a
computational framework to build disease-specific drug-
protein connectivity maps, by mining molecular interac-
tion networks and PubMed abstracts. Using Alzheimer’s
Disease (AD) as a case study, we described how drug-
protein molecular connectivity maps can be constructed
to overcome data coverage and noise issues inherent in
automatically extracted results. We showed that this new
approach outperformed both curated drug target data-
bases and conventional text mining systems in retrieving
disease-related drugs, with an overall balanced perfor-
mance of sensitivity, specificity, and positive predictive
values. The AD molecular connectivity map contained
novel information on AD-related genes/proteins, AD
candidate drugs, and protein therapeutic/toxicological
profiles of all the AD candidate drugs. Bi-clustering of
the molecular connectivity map revealed interesting
patterns of functionally similar proteins and drugs,
therefore creating new opportunities for future drug
development applications.

Disease-Specific Drug-Protein Connectivity Maps
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explicit and implicit drug-protein associations to a disease

context is accomplished by the development of sensitive drug

term statistics that does not require the disease terms to co-

occur in the same abstract.

4. It can summarize the comprehensive knowledge of molecular

connectivity data for a given disease context into a 2-D matrix.

The 2-D matrix serves as a knowledge map for all proteins and

candidate drugs documented in the literature, with each cell in

the matrix containing a statistical confidence score indicative of

the extent of literature studies involving a specific gene/protein

and a drug.

A disease-specific molecular connectivity map built this way is

substantially different from one that could be built using

conventional literature mining approaches [15–18]. In this new

approach, not only can the retrieval of disease-related drug from

biomedical literature be performed with high sensitivity and

specificity, but the opportunity to discover novel therapeutic uses

of old drugs also becomes real. A drug may be re-discovered in a new

disease context, if statistical inference engine that we employs

establishes significant links between the drug and the majority of

disease-related genes or proteins in thousands of PubMed

abstracts. The molecular association profiles for each drug in a

particular disease application area can be compared and classified,

therefore providing evidence for validating new hypothesis. The

potential application of our approach to the identification of new

disease therapeutic areas for known drugs—commonly referred to

as drug repurposing—makes developing molecular connectivity maps

particularly interesting.

Results

In Figure 2, we show an overview of the computational

framework for developing disease-specific molecular connectivity

maps. The framework consists of three major components: network

construction, text retrieval and information extraction, and molecular

connectivity mapping. To help understand how our approach works

in action and evaluate its effectiveness, we use Alzheimer’s Disease

(AD) as a case study. AD is a neurodegenerative disease affecting

4.5 million Americans of mostly over 60 years old and has become

an increasingly prevalent disease among senior citizens. The

reasons that we choose AD for this study are two-fold: first, the

lack of FDA-approved drugs to treat AD today, in spite of decades

of research on the disease’s molecular mechanisms [19], can make

identification of new AD candidate drugs particularly rewarding;

second, the wealth of biomedical research articles published for

AD studies can make validations of our approach less challenging.

We will explain later in Discussion section our approach can be

generalized to other disease applications, even those that have not

yet been well studied.

Identification and Refinement of AD-Related Proteins
A key prerequisite to build the molecular connectivity map is to

generate both a list of disease-related proteins and a list of disease-

related drugs as two attribute dimensions of the protein-drug

matrix. The quality of the final map apparently hinges on the

overall relevance of proteins and drugs to a particularly disease. In

this study, we begin with deriving and optimizing disease-related

proteins, because many high-throughput genomics and functional

genomics experimental data have made it easy to acquire a

preliminary list of disease-associated genes from public sources

than disease-modifying drug candidates.

In an ideal situation, the gene or protein list should be taken

directly from expert-curated data sources. However, for complex

diseases, many disease genes, especially those associated with

elevated disease risks, have not yet all been identified; moreover,

the expression levels of many genes and proteins are still being

investigated experimentally for potential values as ‘‘disease

biomarkers’’ [20]. At best, researchers are often able to obtain

an incomplete ‘‘initial seed list’’ of disease-related seed genes or

proteins from heterogeneous sources. In other situations, research-

ers may rely entirely on known databases such as OMIM (Online

Mendelian Inheritance in Man) [21] for generating an initial

disease gene list. In building the AD connectivity map, we assumed

users’ prior incomplete knowledge on AD is derived entirely from

OMIM (this assumption can be relaxed if users add supplemental

genes/proteins to the seed list) and retrieved 49 AD seed proteins

Figure 1. A conceptual paradigm for the development of disease-specific molecular connectivity maps. In this paradigm, molecular
interaction data and PubMed abstracts are the primary data sources. Network mining is used to generate disease-related proteins from molecular
interactions. Text mining is used to extract disease-related drug terms from PubMed abstracts and to further build drug-protein connectivity map in
the disease context.
doi:10.1371/journal.pcbi.1000450.g001

Disease-Specific Drug-Protein Connectivity Maps
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(corresponding to 49 genes) from OMIM. We expanded the AD

seed proteins using quality-ranked protein interaction data in the

OPHID (Online Predicted Human Interaction Database) [22] and

a nearest-neighbor protein interaction expansion method, as

described in Methods section. In the expanded AD protein

interaction network, there were 560 proteins and 771 protein

interactions, with confidence scores ranging from 0.30 to 1. All the

560 proteins (see Dataset S1) were ranked based on a scoring

model initially described in [23] (also seen in Methods section).

The scoring model assigned each of the 560 proteins an AD

protein relevance score based on the protein ranking score rp. The

robustness of the top protein ranks based on these scores against

high levels (up to 30%) of random noise was confirmed separately

for work performed subsequent to [20] (unpublished results).

In Table 1, we showed the top 30 ranked AD proteins, sorted by

a descending order of the protein ranking scores derived from an

AD-related protein interaction network. Among the top 30 ranked

proteins, 26 were found in the initial OMIM AD seed protein list

with the exception of four proteins: APBB1_HUMAN, TAU_HU-

MAN, CTNB1_HUMAN and DAB1_HUMAN. Two of these four

proteins, APBB1_HUMAN and TAU_HUMAN, were actually

present in the initial seed gene list but absent from the seed

protein list after automatic gene-to-protein name conversions. This

fact confirmed our findings that molecular network based gene

ranking methods such as our method, CHI, ProteinRank, or CGI

[23–26] could help recover certain biases in the initial seed list.

CTNB1_HUMAN is a known AD protein that specifically regulates

PSEN1, in which gene mutations can cause elevated accumulation

of beta-Amyloid (A4_HUMAN) and lead to early-onset familial

Alzheimer’s Disease [27]. DAB1_HUMAN can be associated with

the A4_HUMAN protein’s cytoplasmic domain and causing it to

over-express in hippocampal neurons—a strong indication of its

key roles in AD [28].

In Table 1, we can also determine that the disease interaction

sub-network-based protein ranking result was not strongly corre-

lated with the usage of these gene terms in the literature. The

overlap between two top 500 protein lists selected from the

constructed AD network and the conventional disease-specific text

mining results respectively was merely 80. While A4_HUMAN,

PSN1_HUMAN and PSN2_HUMAN were all well cited in literature

and highly ranked in AD-related protein interaction network,

PIN1_HUMAN, on the other hand, ranked fourth in the AD protein

interaction sub-network yet 1,638th in the AD literature. This

inconsistency suggests that there may be special opportunities in

catapulting current studies of certain proteins into future prominent

status that the proteins deserve. Further literature study confirms

that the WW domain of PIN1_HUMAN binds to phosphorylated

protein TAU_HUMAN, which is hyper-phosphorylated in AD [29].

Much more detailed semantic analysis of the PubMed abstracts

would have been required to derive a comparable high-quality AD

Figure 2. A computational framework for developing molecular connectivity maps in any given disease context. The framework
consists of three components: network construction, text retrieval and information extraction, and molecular connectivity mapping. The network
construction component takes the inputs of disease-specific seed proteins and outputs a disease-related protein interaction network with a ranked
list of disease-related proteins. The text retrieval and information extraction component takes synonym-expanded disease-related proteins and
outputs a list of drug terms enriched in the retrieved collection of PubMed abstracts. The molecular connectivity mapping component takes two
inputs—disease-related proteins from constructed protein interaction network in the first component, and enriched drug terms in the second
component—and outputs a drug-protein connectivity map, in which further knowledge filters and clustering analysis can be applied.
doi:10.1371/journal.pcbi.1000450.g002

Disease-Specific Drug-Protein Connectivity Maps
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protein list without mining disease-relevant proteins in molecular

interaction networks context. The high degree of disease relevance

of final ranked proteins laid down a solid foundation for building a

high-quality connectivity map later.

Statistically Enriched AD-Related Drug Terms
To build the second dimension for an AD molecular

connectivity map, we first retrieved PubMed abstracts of AD

relevance, using the list of AD-related genes/proteins derived

earlier as queries, and to parse out drug terms in the retrieved

articles later. Here, we particularly withhold the urge of

expediently retrieving PubMed abstracts using a conventional

query term such as ‘‘Alzheimer’’. Instead, we built a PubMed

query with 560 AD-relevant proteins and their synonyms, and

retrieved 222,609 related abstracts, without the explicit context of

‘‘Alzheimer’’. The primary reason for this strategy is to improve

recall of AD relevant articles. One can imagine that not all of the

research studies involving 560 proteins in PubMed may be

Table 1. Top 30 ranked proteins from AD-related protein interaction network.

UNIPROT_ID Description (Protein/Gene Name) Network Degree RankNET Score Occurrence RankLIT

Seed/
Expanded

A4_HUMAN Amyloid beta A4 protein precursor (APP) 48 37.031 13735 1 S

LRP1_HUMAN Prolow-density lipoprotein receptor-related protein 1
precursor (LRP1)

43 34.992 716 29 S

PSN1_HUMAN Presenilin-1 (PSEN1) 34 27.684 6240 3 S

PIN1_HUMAN Peptidyl-prolyl cis-trans isomerase NIMA-interacting
1 (PIN1)

49 16.949 7 1638 S

FHL2_HUMAN Four and a half LIM domains protein 2 (FHL2) 23 15.745 12 1244 S

PSN2_HUMAN Presenilin-2 (PSEN2 ) 16 14.156 1695 10 S

S100B_HUMAN Protein S100-B (S100B) 14 12.165 166 184 S

CLUS_HUMAN Clusterin precursor (CLU) 13 10.857 99 304 S

NP1L1_HUMAN Nucleosome assembly protein 1-like 1 (NAP1L1) 84 10.185 3 2230 S

NOG1_HUMAN Nucleolar GTP-binding protein 1 (GTPBP4) 101 9.601 0 – S

NCOA6_HUMAN Nuclear receptor coactivator 6 (NCOA6) 13 9.478 4 2056 S

CDK5_HUMAN Cell division protein kinase 5 (CDK5) 33 8.573 633 43 S

FLNB_HUMAN Filamin-B (FLNB) 10 8.464 47 551 S

CATB_HUMAN Cathepsin B precursor (CTSB) 18 8.310 455 66 S

APBA1_HUMAN Amyloid beta A4 precursor protein-binding family
A member 1 (APBA1)

9 8.123 84 356 S

CTND2_HUMAN Catenin delta-2 (CTNND2) 9 7.971 61 464 S

ARLY_HUMAN Argininosuccinate lyase (ASL) 79 7.364 4 2058 S

NCKP1_HUMAN Nck-associated protein 1 (NCKAP1) 6 4.860 21 913 S

C1TC_HUMAN C-1-tetrahydrofolate synthase, cytoplasmic (MTHFD1) 47 4.743 0 – S

ODO2_HUMAN Dihydrolipoyllysine-residue succinyltransferase
component of 2-oxoglutarate dehydrogenase
complex, mitochondrial precursor (DLST)

42 4.436 508 51 S

PRIO_HUMAN Major prion protein precursor (PRNP) 7 4.400 669 40 S

RAGE_HUMAN Advanced glycosylation end product-specific
receptor precursor (AGER)

5 4.214 258 111 S

CTNB1_HUMAN Catenin beta-1 (CTNNB1) 5 4.214 328 84 E

MK10_HUMAN Mitogen-activated protein kinase 10 (MAPK10) 12 4.142 24 848 S

SNCAP_HUMAN Synphilin-1 (SNCAIP) 4 3.404 34 690 S

NEU2_HUMAN Vasopressin-neurophysin 2-copeptin precursor (AVP) 4 3.240 160 191 S

DAB1_HUMAN Disabled homolog 1 (DAB1) 4 3.240 24 845 E

APBB1_HUMAN Amyloid beta A4 precursor protein-binding family B
member 1 (APBB1)

4 2.641 250 115 E*

TAU_HUMAN Microtubule-associated protein tau (MAPT) 3 2.595 1707 9 E*

APLP2_HUMAN Amyloid-like protein 2 precursor (APLP2) 3 2.595 1473 14 S

These proteins are shown with ‘‘UniProt Entry Name’’ as identifiers in the UNIPROT_ID column. The Node Degree column refers to the number of proteins directly
interacting with the protein of interest found in the OPHID database. The protein ranking score RankNET Score is based on both network topology and quality score of
each protein interaction involved, and is therefore not necessarily proportional to the protein’s node degree. The proteins in this table are sorted by descending order of
this score. The Occurrence column shows the document frequency for the protein observed from the 50,662 retrieved AD PubMed abstracts which contain the term
‘‘Alzheimer’’. In the RankLIT column, the rank of 3,130 identified proteins from the retrieved AD PubMed abstracts is determined by descending order of document
frequency for each protein. The Seed/Expanded column indicates that a protein is in the initial seed protein set (S) or the network-expanded protein set (E), where
the AD relevance of the expended ones are judged on ‘‘disease-gene’’ association in OMIM (‘‘*’’ refers to an AD-related protein).
doi:10.1371/journal.pcbi.1000450.t001

Disease-Specific Drug-Protein Connectivity Maps

PLoS Computational Biology | www.ploscompbiol.org 5 July 2009 | Volume 5 | Issue 7 | e1000450



performed in the AD disease context—or in any disease context at

all. For example, a biochemical study of a drug compound’s effect

on gene expressions would not involve any mention of AD,

particularly not so in PubMed abstracts. Retrieving abstracts in

any contexts based on these AD-related proteins to build an initial

corpus was demonstrated to be a preferred method in improving

recall of information retrieval. The recall performance was at

approximately 81% (refer to Text S1 for details).

While we could build a database of all current experimental

drugs and approved drugs for AD, this database would be of

marginal interest to researchers focusing on novel drug discovery.

Therefore, we concentrated on first identifying drug terms that are

significantly ‘‘enriched’’ in the AD-related literature collection, as

compared with the overall PubMed. In the 16,120,074 PubMed

abstracts, there are 6,543 ‘‘drug chemicals’’ organized in a

hierarchical structure, according to provided MeSH term

annotations. In the 222,609 AD related PubMed abstracts

retrieved from 560 AD-related proteins, 2,019 drugs remained

(see Dataset S2 for a list), 1,279 of which were determined to be

‘‘enriched’’—the outcome of passing a statistical term enrichment

test below the pre-set filter of false discovery rate (FDR) (refer to

Methods for details). Again, the associations of these significant

drug terms to the ‘‘Alzheimer’’ disease context were made without

the explicit term co-occurrence requirement for ‘‘Alzheimer’’ as a

query term, or for particular AD genes or proteins in the same

abstract. These 1,279 drugs, therefore, may constitute new

knowledge worth investigation and incorporation into the AD

connectivity map later.

Assessment of Novel AD Drug Identified
To estimate how the first stage (the network construction

component) affected the second stage (the text retrieval and information

extraction component), we evaluated the performance of AD-related

drug identification by changing the input of AD seed proteins.

Given different sets of the initial seed proteins, we calculated

sensitivity and specificity at top N drugs determined by FDR (refer

to Methods section). In summary, we sub-sampled 49 AD seed

proteins into 8 data sets of varying sizes i.e., S5, S10, S15, S20,

S25, S30, S35, S40 (the number indicating size) and also generated

a random seed set with 50 proteins. As shown in Figure 3, the

overall specificity and sensitivity are robustly maintained while the

seed set changed from S5 to S40 (overall specificity vari-

ance,0.000021 and sensitivity variance,0.00098). The random

seed performance was distinctly lower than any seeding strategies

experimented. This shows that potential bias in selecting seed

proteins did not significantly affect drug identifications. We

attribute this success to the molecular interaction network

approach used.

We evaluated the overall performance of our drug enrichment

method using a Receiver Operating Characteristic (ROC) curve

(Figure 4). We used the 49 AD seed proteins as the initial input,

and calculated sensitivity and specificity tradeoffs by varying

different FDR thresholds over the entire 2,019 identified drugs

against a ‘‘gold standard’’ of AD drugs (see Methods for details).

The best sensitivity was seen at 87.2% based on the result. When

we set FDR threshold at 0.05, the system achieved an overall

sensitivity of 76.0% and a specificity of 88.8%. This confirmed our

literature mining approach to be satisfactory for practical use.

Then, we investigated the 1,279 AD-related drugs in detail. At

FDR,0.05, 50.1% of 1,279 drugs can be found also in the 843

‘‘positive’’ AD drugs of the ‘‘gold standard’’; therefore, the positive

predictive value (PPV) of the drug enrichment test was 50.1%.

Compared to the general prevalence (843/6,543 = 12.8%) of AD

drugs, the AD drug enrichment method was able to enrich AD-

related drugs almost fourfold (50.1%/12.8% = 3.91). We believe

the 46 enrichment and 50.1% PPV were conservative estimates,

because the construction of ‘‘gold standard’’ AD drugs did not take

into account potentially novel AD drugs. In Table 2, we listed 25

representative drugs from the total collection of 2,019 drugs found

in 222,609 AD-related PubMed abstracts. Among the tabulated 22

drugs with FDR,0.05, 17 were confirmed to be AD-related

determined by us reading literature. Among the 17 drugs,

Rivastigmine, Tacrine, Donepezil, Vitamin E, Memantine, and Galantamine

are approved drugs for AD treatment in DrugBank [30]. Some

enriched drugs are predominantly known for other disease

treatments, such as Fenoldopam is a vasodilator that may reduce

blood pressure in hypertension and decrease both regional and

global cerebral blood flow; Droxidopa is a precursor of noradren-

aline, which is used in the treatment of Parkinson and Familial

Amyloidotic Polyneuropathy—both related to AD. About the

repurposed drug investigation, it was separately discussed in the

subsequent subsection. The last two examples showed that novel

AD drug candidates may be derived by our method by automated

implicit knowledge transfer from disorders with symptoms closely

related to AD. We also observed that drugs occurring more

frequently in the retrieved PubMed abstracts yet with high FDR

values are indeed not specific to AD, for example, Glycerol

(Cryoprotective Agents; DF_AD = 185) and Tetracycline (Protein

Synthesis Inhibitors; Anti-Bacterial Agents; DF_AD = 151). Al-

though both are highly mentioned in the AD-related articles as

common chemicals used to process biological samples, they are

filtered out of our enriched drug list for further AD connectivity

maps construction.

Lastly, we compared the performance of several related systems,

which also aims to provide information mapping diseases, drugs,

and genes/proteins, and showed this result in Figure 5. The four

systems that we compared includes: DrugBank [30], CTD (the

Comparative Toxicogenomics Database) [31], a baseline system

using the common Chi-square (x2) method [32], and BITOLA

(Biomedical Discovery Support System) [17]. DrugBank is a

manually annotated resource that combines detailed drug data

with drug target information such as protein sequence, structure

and pathway. It includes FDA approved small molecule, biotech

(peptide or protein), nutraceutical, withdrawn, illicit, and exper-

imental drugs. Only eight AD drugs were reported in the

DrugBank database. Since it only contains known drugs currently

approved or experimented for a disease, its specificity (,100%)

and PPV (75%) were understandably better than ours. However,

since Drugbank does not contain candidate drug information, its

sensitivity (0.7%) and F-Score (1.4%) were extremely low. Similar

to Drugbank, CTD is a manually curated data resource that

includes cross-species chemical-gene/protein interactions, chemi-

cal-to-disease relationships, and gene-to-disease relationships.

Since it also only contains known therapeutic drug information,

its high specificity (99%) and PPV (72%) were also accompanied

by low sensitivity (10.4%) and F-Score (18.2%). Commonly

designed baseline text mining systems using standard Chi-square

statistic can also offer a measure of significant drug-disease

association explicitly stated in PubMed abstracts. Applying a

threshold (p-value,0.05) in Chi-square test, we could derive 332

AD candidate drugs. Since these drugs are already co-cited with

AD, its specificity (,100%) and PPV (,100%) were understand-

ably high (and included as part of the gold standard), however,

many potentially novel drugs would also be missed as a result of

meeting the disease-drug co-currence requirement, causing such

systems to suffer badly in sensitivity as compared to our method

(38% Chi-square vs. 76% ours). BITOLA is an advanced system

that can automatically extract semantic relations between

Disease-Specific Drug-Protein Connectivity Maps
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biomedical concepts, built on interactive nature language

processing techniques. To compare BITOLA against our

approach, we queried BITOLA server with AD as a disease to

retrieve a list of AD genes/proteins first and iteratively retrieved

AD drugs later. BITOLA retrieved 1,472 AD candidate drugs. Its

specificity (82.7%), PPV (33.0%) and accuracy (79.5%) were lower

than all three systems described earlier but its sensitivity (57.7%)

and F-Score (42.0%) were better. In comparison, our approach

performed better than BITOLA in all of these performance

measures, with a balanced F-Score (60.4%) outperforming all four.

Figure 3. The effect of different disease-related protein seeding situation on the specificity and sensitivity of AD drug
identification. In the text retrieval and information extraction component, the AD-related drugs are identified from the retrieved PubMed abstracts
relevant to a list of AD proteins. We have an initial set of 49 AD seed proteins. To evaluate the effect of different seeding situations on AD drug
identification, we sub-sampled the initial AD seed set into 8 data sets of varying sizes i.e., S5, S10, S15, S20, S25, S30, S35, S40 (the number indicating
size) and also generated a random seed set with 50 proteins.. Given different seed sets, Panel (A) shows the specificity performances of AD-related
drug identification at top N drugs determined by FDR (false discovery rate), and Panel (B) shows the sensitivity performances.
doi:10.1371/journal.pcbi.1000450.g003
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Creation and Assessment of AD Connectivity Map
With sufficient number of proteins and drugs enriched on

disease relevance from molecular interaction networks and

biomedical literature, we were ready to build a connectivity map

with balanced quality and coverage. The AD connectivity map

matrix was built with proteins as rows, drugs as columns, and a

protein-drug connectivity score based on co-citation adjusted log-

odds values (see Methods for details). Two dimensional hierarchi-

cal clustering was applied to identify groups of proteins/drugs

sharing similar profiles. In the AD connectivity map, proteins were

clustered between similar drug profiles and drugs were also

clustered between similar protein profiles.

To assess the biological significance of drug-protein connectivity

scores, we compared high-scoring protein-drug pairs in the AD

connectivity map with all the known AD drug-target relations in

DrugBank. Since only 6 out of 8 AD drugs reported in DrugBank

were involved in our study (see Figure 5), we collected all the 6

drugs’ target proteins from the DrugBank database for the

comparison. Table 3 showed all high-scoring protein-drug connec-

tivity pairs with connectivity score .1.We used the concept of

‘‘target distance’’ to measure between a drug-protein connectivity

profile created and the actual drug-target knowledge. More

precisely, we defined target distance as the shortest distance in the

disease-specific protein interaction sub-network between a drug’s

target protein in DrugBank and the drug’s connected protein in the

molecular connectivity map. A target distance of 0 refers to a

protein in the molecular connectivity map also to be the drug’s

target protein. Tacrine and Galantamine targeted their connected

protein (ACES_HUMAN) directly, which covered four proteins listed

(ACES_HUMAN, CATB_HUMAN, A4_HUMAN, EP300_HUMAN).

Vitamin E seemed to contain several long-range connections to AD

proteins, with a target distance of 2. Memantine seemed to be the only

example with the farthest known path of protein interactions to its

target (target distance = 3). All the four highly associated known AD

drugs are within a target distance of 3.

Exploration of AD Connectivity Map
In the AD connectivity map (see Figure 6 and its source data in

Dataset S3), the connections between 166 drugs and 66 proteins

could be reviewed globally or queried for each pair of drug and

protein/gene. The AD connectivity map contained a wealth of

information worth investigating by biomedical researchers. For

example, in Figure 6A, many high-lighted cells were supported by

existing knowledge, including 1) ‘‘GFAP_HUMAN vs. Calcimycin’’,

where it was reported that in the central nervous system related

diseases, the treatment with the calcium ionophore (calcimycin)

resulted in a rapid increase in immunoreactivity to glial fibrillary

acidic protein (GFAP_HUMAN) [33]; 2) ‘‘GFAP_HUMAN vs.

Vitamin E’’, where the increased expression of GFAP during

astrocyte differentiation could be mediated by vitamin E adminis-

tration [34]; 3) ‘‘APOE_HUMAN vs. 1-Methyl-3-isobutylxanthine

(IBMX)’’, where IBMX treatment increased cAMP levels and

diminished cGMP levels in the absence of apoE complex [35].

In the connectivity map, proteins that interact with each other

seemed to cluster well with each other based on added protein-

drug profile similarities. For example, in Figure 6B, PSN1_HU-

MAN, FLNA_HUMAN and CSEN_HUMAN shared highly similar

protein-drug connectivity profiles among themselves. According to

HPRD [36], PSN1_HUMAN directly interacts with both CSEN_

HUMAN and FLNA_HUMAN. This may be a factor in explaining

why drugs intervening PSN1_HUMAN may affect CSEN_HUMAN

and FLNA_HUMAN as well. Also, drugs Diazepam, Clonazepam,

Flunitrazepam, Apomorphine, Diltiazem, Prazosin, and Quinidine were

clustered closely. When their chemical structures were examined,

we found them to share common two-ring structures. Diazepam,

Clonazepam and Flunitrazepam were further found to contain

Figure 4. Specificity and sensitivity tradeoffs for AD-related drug identification. The ROC (receiver operating characteristic) curve shows
the sensitivity vs. false positive rate (1-specificity) for AD-related drug identification, when FDR (false discovery rate) varies at different threshold
levels. Evaluation results are built by querying against PubMed abstracts and Enrez gene function description in search of evidence that may contain
any of the drug terms and the term ‘‘Alzheimer’s Disease’’ with all their term variants. The sensitivity and specificity are defined in Methods section.
doi:10.1371/journal.pcbi.1000450.g004
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benzodiazepine as a common structure (see Figure 6C). Another

interesting observation on this group of drugs was their shared

similar pharmacological actions: Diazepam, Clonazepam and Fluni-

trazepam are for the symptomatic treatment of anxiety disorders,

while Diltiazem and Prazosin are for the treatment of vascular

hypertension. These findings suggest that a decent degree of

accuracy may have been achieved to enable one to drill down to

underlying mechanisms, biologically or chemically, between

connected molecules.

Investigation of Repurposed Candidate Drugs from the
AD Connectivity Map

Disease-specific molecular connectivity maps can provide novel

insights for re-purposing experimental drugs, successful or failed,

from the original intended therapeutic area to a new disease

application context. In the above example as shown in Figure 6B,

Diltiazem, Prazosin and Quinidine were clustered together due to their

similar drug-protein connectivity profiles. The three drugs are

previously known to treat vascular diseases. Among them, Diltiazem

is an antihypertensive agent with vasodilating actions due to its

antagonism of the actions of the calcium ion in membrane

function; Prazosin is an alpha-adrenergic blocking agent used in the

treatment of heart failure and hypertension; Quinidine is an anti-

arrhythmia agent with actions on sodium channels on the

neuronal cell membrane. Recent population-based epidemiolog-

ical studies suggested that vascular risk factors, such as vascular

disease gene ApoE [37,38], hypertension [39], atherosclerosis [40],

and heart failure [41], may impair cognitive functions and are

related to the development of AD. Both randomized and non-

randomized clinical trials indicated that lowing blood pressure

could play an important role in preventing AD. Further trials also

demonstrated that antihypertensive agents decrease the incidence

Table 2. A representative sample of enriched AD drugs.

Drug FDR DF_AD Pharmacological Action
Found In
AD-GS

Found In
DrugBank

Rivastigmine ,1.00E-16 571 Cholinesterase Inhibitors; Neuroprotective Agents Yes Yes

Bromocriptine ,1.00E-16 139 Antiparkinson Agents; Dopamine Agonists; Hormone Antagonists Yes

Fenoldopam ,1.00E-16 11 Antihypertensive Agents; Vasodilator Agents; Dopamine Agonists

Diazepam ,1.00E-16 149 Adjuvants, Anesthesia; Anti-Anxiety Agents; GABA Modulators;
Anesthetics, Intravenous; Muscle Relaxants, Central; Anticonvulsants;
Antiemetics; Hypnotics and Sedatives

Yes

Tacrine 2.40E-15 31 Cholinesterase Inhibitors; Parasympathomimetics; Nootropic Agents Yes Yes

Donepezil 5.24E-15 16 Cholinesterase Inhibitors; Nootropic Agents Yes Yes

Dopamine 3.87E-12 966 Dopamine Agents; Cardiotonic Agents Yes

Calcimycin 3.87E-12 325 Anti-Bacterial Agents; Ionophores Yes

Vitamin E 3.87E-12 198 Antioxidants; Vitamins Yes Yes

1-Methyl-3-Isobutylxanthine 3.87E-12 192 Phosphodiesterase Inhibitors Yes

Theophylline 3.87E-12 144 Bronchodilator Agents; Phosphodiesterase Inhibitors; Vasodilator
Agents

Yes

Ethidium 3.87E-12 58 Enzyme Inhibitors; Fluorescent Dyes; Trypanocidal Agents;
Indicators and Reagents; Nicotinic Antagonists

Yes

Flunitrazepam 3.87E-12 37 GABA Modulators;Anti-Anxiety Agents Yes

Apomorphine 3.87E-12 117 Antiparkinson Agents; Dopamine Agonists Yes

Diltiazem 3.87E-12 63 Antihypertensive Agents; Vasodilator Agents; Cardiovascular
Agents; Calcium Channel Blockers

Prazosin 3.87E-12 129 Adrenergic alpha-Antagonists; Antihypertensive Agents Yes

Quinidine 1.68E-08 27 Anti-Arrhythmia Agents; Adrenergic alpha-Antagonists; Enzyme
Inhibitors; Muscarinic Antagonists; Antimalarials

Clonazepam 9.04E-07 21 Anticonvulsants; GABA Modulators Yes

Memantine 2.24E-06 8 Dopamine Agents; Excitatory Amino Acid Antagonists;
Antiparkinson Agents

Yes Yes

Droxidopa 6.04E-05 5 Antiparkinson Agents

Dextrorphan 7.01E-05 6 Excitatory Amino Acid Antagonists; Neuroprotective Agents

Galantamine 0.039622 6 Cholinesterase Inhibitors; Nootropic Agents; Parasympathomimetics Yes Yes

Glycerol 0.085 186 Cryoprotective Agents Yes

Tetracycline 0.14 151 Protein Synthesis Inhibitors; Anti-Bacterial Agents Yes

Amikacin 0.86 28 Anti-Bacterial Agents

This table includes all the drugs mentioned in this manuscript (see Dataset S2 for the completed version). The FDR (false discover rate) value for each drug is shown in
this table. The DF_AD column provides each drug’s document frequency in the retrieved PubMed abstract corpus. The Pharmacological Action column lists MeSH
annotated Pharmacological information for each drug. The Found In AD-GS column indicates whether a drug retrieved is also found in the Gold Standard (GS) data
set for AD. The Found in DrugBank column indicates whether a drug retrieved is also found in the DrugBank database. Note that drugs listed here are not yet applied
with any minimal FDR threshold filter.
doi:10.1371/journal.pcbi.1000450.t002
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of dementia in stroke patients ([42,43]) and in elderly patients with

isolated systolic hypertension [44]. Additionally, a latest research

study showed that Valsartan, an anti-hypertensive chemical, can

reduce AD-like symptoms in mice [45]. Not too surprisingly, when

we look into clinical trial databases, we found that Prazosin is

currently under a double-blind and placebo-controlled clinical

study on the treatment of agitation and aggression in persons with

AD (ClinicalTrials.gov Identifier = NCT00161473) [46], while

Diltiazem and Quinidine have not been experimented for any AD

related treatment to our best knowledge. Could Diltiazem and

Quinidine become worthwhile candidates for future AD drug re-

purposing investigation? With newly-derived molecular connec-

tivity maps guiding drug developers to hypothesize on therapeutic

values of these two candidate drugs, we believe the answer is

‘‘yes’’. We believe there are many drug candidates in our results

beyond what presented here that are also worthwhile experiment-

ing.

Discussion

In this study, we developed a novel computational framework to

build drug-protein molecular connectivity maps. Our approach

integrated protein interaction network mining and text mining,

without the need for gene expression data sets derived from drug

perturbation experiments on disease samples. We showed that this

approach was effective in constructing a statistically significant AD

molecular connectivity map that links AD-related proteins to AD-

related drugs with enriched PubMed literature references. This

work pointed out a new direction for biomedical researchers to

integrate functional contexts of proteins from molecular interac-

tions networks with published literature studies on drugs. The

resulting AD connectivity map consisted of comprehensive

Figure 5. Performance assessment of comparable systems on the task of identifying AD-related drugs. Two curated data sources
(DrugBank and CTD) and two computational methods (Chi2 and BITOLA) were selected to compare against the performance of our approach on AD
drug identifications. DrugBank and CTD manually curated database content about disease-modifying gene/proteins and drugs. Chi2 is a baseline
system using commonly Chi-square statistical method to identify significant co-occurring drug-disease relationships cited in PubMed abstracts.
BITOLA (Biomedical Discovery Support System) is a computational system based on natural language processing that can extract drug-protein
relation in a disease context. The histogram shows sensitivity, specificity, PPV (positive predictive value), F-score, and ACC (accuracy) of each group.
These performance measurements are defined in the Methods section.
doi:10.1371/journal.pcbi.1000450.g005

Table 3. Cross-validation of protein-drug relationships
identified in the AD connectivity map with target-drug
relationships of AD drugs in Drugbank.

UNIPROT_ID Drug
Connectivity
Score Target Distance*

ACES_HUMAN Tacrine 4.77 0

ACES_HUMAN Galantamine 4.22 0

MK_HUMAN Memantine 4.12 3 (NMDE1-SRC-ETS1-MK)

CATB_HUMAN Tacrine 3.46 2 (ACES-A4- CATB)

A4_HUMAN Tacrine 3.40 1 (ACES-A4)

EP300_HUMAN Tacrine 3.17 2 (ACES-A4-EP300)

TTHY_HUMAN Vitamin E 1.31 2 (KPCA-NMDE1-TTHY)

MK08_HUMAN Vitamin E 1.09 2 (KPCA- NMDE1-MK08)

*A shortest protein interaction path in the AD protein interaction subnetwork
consisting of all AD-related proteins is indicated.

doi:10.1371/journal.pcbi.1000450.t003

Disease-Specific Drug-Protein Connectivity Maps

PLoS Computational Biology | www.ploscompbiol.org 10 July 2009 | Volume 5 | Issue 7 | e1000450



Figure 6. An AD connectivity map linking AD-related proteins to significant drugs. After ranking proteins involved in the AD related
protein interaction network and selecting enriched drugs in AD network related corpus, 66 AD highly-relevant proteins and 166 significant AD
candidate drugs are identified to construct an AD connectivity map. Hierarchical clustering of drugs and proteins are performed before results are
shown as the final heatmap format, in which the x-dimension represents drugs and the y-dimension represents proteins. The color intensity for each
cell is drawn in proportion to the connectivity score as shown in the heatmap legenda. Panels (A) and (B) show zoomed-in views of boxed regions A
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collections of AD drug-protein connectivity profiles, which may

help guide hypothesis generations of AD drug development.

While we focused on a case study of Alzheimer’s disease in this

paper, our approach has shown similarly robust performance for

many other disease applications. In Table 4, we showed a

comparison of performance measures of our approach for six

representative cancers. The result confirmed that molecular

connectivity maps can be developed for a broad range of disease

applications at a comparable performance to AD. The perfor-

mance varied among different diseases, primarily due to varying

degree of prior knowledge and varying amount of biomedical

studies focused on different diseases. For example, breast cancer is

a well-studied disease compared with pancreatic cancer. More

biomedical reports and more treatment progress in breast cancer

study are available than those in pancreatic cancer. This is a

primary reason that the F-Score performance was higher in breast

cancer (56.3%) than in pancreatic cancer (46.2%).

Several factors contributed to the effectiveness of our new

framework to develop computational molecular connectivity

maps. First, we considered all available biomedical abstracts in

PubMed as a primary source of data, therefore potentially

incorporating all published knowledge of genes, proteins, drugs,

and diseases. Second, we applied a molecular network mining

method to prioritize disease-specific genes/proteins, therefore

making use of molecular functional link information embedded in

high-throughput protein interactomes [47]. Third, we used

disease-specific genes/proteins to extract indirect relationships

between diseases and drugs, therefore providing opportunities for

discovering new therapeutic applications of existing drugs. Fourth,

we applied advanced statistical techniques to rank disease-related

protein in a disease specific protein interaction subnetwork, rank

enriched drug terms from retrieved PubMed abstract collection,

and score protein-drug associations based on significant term co-

occurrence–which collectively increased data processing efficiency

and reduced error rates (refer to Text S2 for details).

We have implemented a web server (http://bio.informatics.

iupui.edu/cmaps), which allows users to query and explore

molecular connectivity maps developed using methods described

here. Users of the web server can input a query disease name, for

example, Alzheimer, and the web server can suggest further

standard MeSH disease ontology terms such as ‘‘Alzheimer Disease’’

or ‘‘Acute Confusional Senile Dementia’’ before showing connectivity

map data for a specific disease chosen by the user. The

connectivity map data is shown in a html table, populated with

statistically significant protein-drug association pairs. Users can

navigate through the data’s hyperlink to web pages that contain

detailed annotation information on the protein (e.g., ‘‘A4_Hu-

man’’), the drug entity (e.g., ‘‘Tacrine’’), or literature abstract where

the protein and drug terms are highlighted in the same abstract

context. Further description of the web server has been planned in

a separate manuscript beyond the scope of this work.

Ongoing research to develop molecular connectivity maps of

higher coverage and confidence, particularly when applied to

other therapeutic disease areas, may present new opportunities for

biomedical researchers to perform integrative bioinformatics and

cheminformatics for future drug discoveries. Further improvement

of molecular connectivity map data accuracy may be achieved by

integrating genomics, functional genomics, and proteomics

experimental data to build better disease seed genes/proteins,

incorporating diversified types of molecular interaction network

data of growing coverage and quality, and collecting full articles

instead of abstracts related to disease’s molecular mechanism.

Future researchers may explore shifting trends of different such

maps that are to be built over different temporal dimensions,

among literature sub-collections of journal within different

readership and impacts, and under different biological experi-

mental conditions. Results from our approach may be integrated

with experimental gene expression or protein expression data, as

they become available, to improve thorough classification of the

type of associative relationships hidden from the drug-protein

connectivity maps. Molecular connectivity maps that connect

protein and metabolites could also be developed. Protein-

metabolite molecular connectivity maps in model organisms may

further facilitate comparative genomics analysis. Chemical biolo-

gists may further investigate the relationships between common

chemical sub-structures and common protein structure motifs for

drug compound optimizations. A software server that employs

molecular connectivity mapping concepts will enable users to gain

comprehensive knowledge of drug-protein connectivity profiles,

compare chemical compounds based on their functional connec-

tivity profile similarities, and drill down to specific PubMed articles

for details. Our study presents many further research opportunities

in post-genome drug development.

Methods

Construct Disease-Related Protein Interaction Network
In the network construction component, we adopted a method

originally developed by Chen et al. [23] to construct disease-related

protein interaction network and a ranked list of disease-relevant

proteins. The disease-related seed genes/proteins may be provided

by disease biology users or found in the OMIM database. We used

the Online Predicted Human Interaction Database (OPHID) [22]

to collect human protein interaction data and construct protein

interaction sub-networks. OPHID is a protein interaction database

containing 1) literature-derived interaction data from HPRD [36],

Table 4. Performance assessment of molecular connectivity
maps for several representative cancers.

Breast Pancreas Leukemia Lung Ovary Prostate

Sensitivity 71.3% 68.5% 63.5% 57.8% 70.0% 61.4%

Specificity 88.0% 89.4% 88.5% 91.4% 87.8% 91.6%

PPV 46.5% 34.8% 52.1% 52.1% 31.4% 40.1%

F-Score 56.3% 46.2% 57.2% 54.8% 43.3% 48.5%

ACC 85.8% 87.8% 84.4% 86.6% 86.5% 89.1%

The table shows a comparison of performance measures—sensitivity,
specificity, PPV (positive predictive value), F-score, and ACC (accuracy)—for six
major cancer drug identification tasks. The evaluation procedure and the
development of ‘‘gold standard’’ for each cancer study follows the same
method developed for AD. The complete set of all the drugs identified for the 6
cancers is shown in Dataset S4, which contains information on False Discover
Rate (FDR), Document Frequency (DF) in the retrieved PubMed abstract corpus,
Pharmacological Action, and validation flags (Found In GS and Found In
DrugBank) for each drug.
doi:10.1371/journal.pcbi.1000450.t004

and B on the original map. Panel (C) shows the chemical structures of three drugs (Diazepam, Clonazepam, and Flunitrazepam) from a cluster of drugs
found in Panel (B), with their common structure (Benzodiazepine) shown in a box. CID refers to entity identifier in PubChem (http://pubchem.ncbi.
nlm.nih.gov/).
doi:10.1371/journal.pcbi.1000450.g006
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BIND [48] and MINT [49]; 2) human interaction data from high-

throughput experiments; and 3) transferred interactions from

orthologous proteins in eukaryotic model organisms. While 23,889

of 39,923 interactions are predicted interactions, the quality of the

OPHID data set can be controlled for successful disease-specific

studies [23,50,51]. George, et al. examined the OPHID protein

interaction data set, and used it to predict candidate disease genes.

They assessed the usefulness of protein interactions from different

OPHID protein interaction data categories. They built a successful

case to show that the full OPHID dataset was applicable to

disease-related studies [51]. Chen, et al. also used OPHID full data

set, but by assigning them different confidence scores based on the

source of the data. Using the weighted protein interaction data,

they successfully constructed an AD related sub-network and

validated the disease relevance of the top-ranked proteins in the

sub-network [23]. Here, we adopted a similar weighted approach

when using OPHID data sets, and a similar ranking method when

calculating protein’s disease relevance score, rp, as the following:

rp~k�ln(
X

q[NET
conf (p,q)){ln(

X
q[NET

N(p,q)) ð1Þ

In the formula, p and q are indices for proteins in the disease-

related interaction network NET. k is an empirical constant (k = 2 in

this study). conf(p, q) is a confidence score assigned to each

interaction (p, q) between protein p and q. Consistent with [23],

conf(p, q) = 0.9 if (p, q)M{curated interactions}, conf(p, q) = 0.5 if (p,

q)M{predicted interactions from mammalian organisms}, and conf(p,

q) = 0.3 if (p, q)M{predicted interactions from non-mammalian

organisms}. N(p, q) holds the value of 1 if the protein p interacts with

q. The rp score is used to rank proteins and filter out protein-drug

associations that may arise due to noise in literature mining results.

Determine and Select Enriched Drugs
We used a term frequency statistical method to take advantage

of term statistical distributions from the entire PubMed abstracts,

and calculated the p-value of each term’s significance in being

observed in any collection of retrieved PubMed abstracts [52].

The main reason for doing so is to control false positives among

terms determined to be significantly enriched. For example,

observing abnormally high usage frequency of a term from tf-idf

could lead to the incorrect inclusion of the term as ‘‘enriched’’,

because the sampled document subset could be biased, and the

term usage frequency could be intrinsically variable.

In this work, we first retrieved the entire PubMed abstracts

using the expanded list {p1, p2,…, pm} containing all the proteins in

a network as the initial query [53]. From the retrieved abstract

collection TNET, the drugs {d1, d2,…, dn} were then identified

automatically by our system combining both dictionary and rule

directives. We calculated a p-value for each drug dj in TNET using

methods described in [53] and later derived its false discovery rate.

Let the null hypothesis H0 be that document frequency of drug dj

in TNET come from a random distribution. The t-test value Dj for

drug dj can then be calculated as:

Dj~(df (dj jT ’NET ){df (dj jTRandom))=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(dj jT ’NET )

NNET

z
Var(dj jTRandom)

NRandom

s ð2Þ

Here, T ’NET~fT ’NET1,T ’NET2,T ’NET3::::::g is generated by sam-

pling the entire collection of retrieved document abstracts TNET

(T ’NETi(TNET , jT ’NETij~C is a predefined number of documents)

and NNET~jT ’NET j is the size of each sample.

TRandom~fTRandom1,TRandom2,TRandom3::::::g refers to a random

sample generated by randomly sampling the entire PubMed

abstracts and the size of the random sample is

NRandom~jTRandomj~C (we set C to 1000 to keep it consistent

with non-random sample sizes). df (dj jT ’NET ) and df (dj jTRandom)
refer to average document frequencies of dj in T ’NET and TRandom.

Var(dj jT ’NET ) and Var(dj jTRandom) refer to document frequency

variances of dj in T ’NET and in TRandom. The p-value is computed as

from two-sided tails P(|Z|.|D|), where Z,N(0, 1)):

p~P(jZjwjDj)~2P(Zv{jDj) ð3Þ

We used a standard multiple testing correction method [54] in

microarray analysis to convert p-values from the t-test to calculate

a drug’s false discovery rate (FDR). In the end, enriched drugs {d1,

d2,…, dg} were the ones that met an empirically determined

threshold (term frequency .4 and FDR,0.05).

Connect Protein and Drug for Specific Disease
We assigned a connectivity score H for each possible pair of

ranked proteins {p1, p2,…, pk} from user inputs and enriched drugs

{d1, d2,…, dg} , using a regularized log-odds function as following.

The log-odds framework was able to qualify association strengths,

in particular, facilitated the handling of words for which only

sparse scientific literature existed [55].

Hpd~ln(dfpd
�Nzl){ln(dfp

�dfdzl) ð4Þ

Here, dfp and dfd are the total number of documents in which

protein p and drug d are mentioned, respectively, dfpd is the total

number of documents in which protein p and drug d are co-

mentioned in the same document. N is the size of the entire

PubMed abstract collection. l is a small constant (l= 1 here)

introduced to avoid out-of-bound errors if any of dfp, dfd, or dfpd

values are 0. The resulting Hpd is positive for when the protein-

drug pair is over-represented and negative when the protein-drug

is under-represented. The higher the Hpd is, the more significant

the over-representation of connection becomes. Totally, k x g

connectivity scores were calculated to build connectivity map.

Evaluation of AD-Related Drug
A ‘‘gold standard’’ of 843 AD-related drugs was constructed

using one of the following criteria: (1) Co-citation in the
PubMed abstracts: a drug term and all its term variants co-

occur with the phrase ‘‘Alzheimer’s Disease’’ in at least two

PubMed abstracts. In other words, we assume that a drug should

be related to a disease if it is co-cited with the disease term in more

than one article (one may tighten or loosen this criterion in other

disease applications). (2) Co-occurrence in GeneRIF sentenc-
es: a drug term and all its term variants co-occur with

‘‘Alzheimer’s Disease’’ in at least one gene function annotation

GeneRIF entry in the Entrez Gene database [56]). Here, we

assume GeneRIF to contain higher quality information than

general PubMed abstracts when it is used to describe the function

of a specific gene.

The ‘‘gold standard’’ should not be mistaken for ‘‘true

confirmed drugs with therapeutic or toxicological values’’. Instead,

it provides an executable, balanced, and unbiased disease-related

drug list for performance evaluation purpose only. In the above

Disease-Specific Drug-Protein Connectivity Maps
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automated method for AD ‘‘gold standard’’ construction, we used

coverage and disease-relevance as the most important criteria,

considering both peer-reviewed article abstracts and curated gene

function annotations from reputable databases.

The following measurements were involved in our evaluation

and comparison experiments. (1) Sensitivity is the percent of

correctly identified AD-related drugs; (2) Specificity is the

percent of correctly identified non AD-related drugs; (3) PPV
(Positive Predictive Value) is the probability of correct positive

prediction; (4) F-score is the harmonic mean of Sensitivity and

PPV; (5) Accuracy is the proportion of correctly predicted drugs.

Sensitivity~
TP

TPzFN
ð5:1Þ

Specificity~
TN

TNzFP
ð5:2Þ

PPV (Positive Predictive Value)~
TP

TPzFP
ð5:3Þ

F{Score~
2�(PPV �Sensitivity)

PPVzSensitivity
ð5:4Þ

ACC~
TPzTN

TPzTNzFPzFN
ð5:5Þ

Clustering of Proteins or Drugs in a Disease-Specific
Molecular Connectivity Map

In the integrated analysis component, two-dimensional hierar-

chical clustering of the drug-protein connectivity map was

performed using the weighted pair-group method and arithmetic

mean method, with Tanimoto as similarity measures. The

similarity between two drugs da and db was calculated as following:

sim(da,db)~ Pk
j~1 (Hpj da

�Hpjdb
)Pk

j~1 H
2
pjda

z
Pk

j~1 H
2
pjdb

{
Pk

j~1 (Hpjda

�Hpj db
)

ð6Þ

where, Hpjda
and Hpjdb

are cell values calculated by the function 4.

The similarity between proteins was also calculated by the function 6.

The final clustered attributes along the drug dimension

(horizontal axis) and protein dimension (vertical axis) were sorted

by averaged values, decreasing from left to right and from top to

bottom. The clustering was performed and visualized with the

Spotfire DecisionSite Browser 8.2 software. The tool has been

widely used in bioinformatics.

Supporting Information

Dataset S1 The table contains 560 proteins with their network

degrees and ranking scores in the AD-related protein interaction

network.

Found at: doi:10.1371/journal.pcbi.1000450.s001 (0.06 MB XLS)

Dataset S2 The table contains 2,019 drugs identified from

222,609 PubMed abstracts related to AD protein interaction

network. It also contains the False Discover Rate (FDR),

document frequency in the AD related corpus (DF_AD),

Pharmacological Action, and validation flag for each drug.

Found at: doi:10.1371/journal.pcbi.1000450.s002 (0.33 MB XLS)

Dataset S3 The file includes one source matrix data of Figure 6

(a connectivity map for Alzheimer’s Disease connecting 66

proteins with 166 drugs), and one table containing protein-drug

associations shown pairwise with their evidence PMIDs.

Found at: doi:10.1371/journal.pcbi.1000450.s003 (0.32 MB

DOC)

Dataset S4 The file includes the complete drug lists for breast

cancer, pancreatic cancer, leukemia, lung cancer, ovarian cancer

and prostate cancer. Like Dataset S2 for AD, it contains False

Discover Rate (FDR), Document Frequency (DF) in the retrieved

PubMed abstract corpus, Pharmacological Action, and validation

flags (Found In GS and Found In DrugBank) for each drug.

Found at: doi:10.1371/journal.pcbi.1000450.s004 (1.13 MB XLS)

Text S1 Information Retrieval Performance and Method

Found at: doi:10.1371/journal.pcbi.1000450.s005 (0.08 MB PDF)

Text S2 A Discussion of Statistical Components Used

Found at: doi:10.1371/journal.pcbi.1000450.s006 (0.09 MB PDF)
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