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Abstract

Social interactions in classic cognitive games like the ultimatum game or the prisoner’s dilemma typically lead to Nash
equilibria when multiple competitive decision makers with perfect knowledge select optimal strategies. However, in
evolutionary game theory it has been shown that Nash equilibria can also arise as attractors in dynamical systems that can
describe, for example, the population dynamics of microorganisms. Similar to such evolutionary dynamics, we find that
Nash equilibria arise naturally in motor interactions in which players vie for control and try to minimize effort. When
confronted with sensorimotor interaction tasks that correspond to the classical prisoner’s dilemma and the rope-pulling
game, two-player motor interactions led predominantly to Nash solutions. In contrast, when a single player took both roles,
playing the sensorimotor game bimanually, cooperative solutions were found. Our methodology opens up a new avenue
for the study of human motor interactions within a game theoretic framework, suggesting that the coupling of motor
systems can lead to game theoretic solutions.
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Introduction

Riding a tandem, tango dancing, arm wrestling and judo are

diverse but familiar examples of two-player motor interactions.

The characteristic feature of such interactions is that the two

players influence each others behavior through coupled sensori-

motor control with continuous action spaces over repeated trials or

continuously in time. In contrast, two-player interactions consid-

ered in classical game theory are typically thought to involve

cognition in games with discrete actions and discrete time steps for

decision-making such as tic-tac-toe, the ultimatum game or the

prisoner’s dilemma [1–8]. An important concept in such classical

games is the Nash equilibrium solution [9] in which each player

chooses a strategy such that no player has anything to gain by

changing only his or her strategy. Nash equilibria can also be

defined for continuous games, i.e. games with continuous actions

and payoffs [10–12], and thus might provide a theoretical tool to

understand multi-agent sensorimotor interactions. The theory of

continuous games can also be used for sequential (dynamic) games

where players are interacting continuously over a sequence of time

steps [13–15]. Nash equilibria in such continuous dynamic motor

games correspond to (equilibrium) control policies, i.e. feedback

rules that map past observations to actions.

Here, we develop continuous sensorimotor versions of the

prisoner’s dilemma and the rope-pulling game. In the classical

prisoner’s dilemma [16], two players (prisoners) have a choice

(Fig. 1A) between cooperation (claiming the other player is

innocent) and defection (claiming the other player is guilty). If both

cooperate, they each receive a short sentence (3 years) whereas if

both defect they each receive a moderate sentence (7 years). But if

one cooperates while the other defects, the defector is freed and

the cooperator receives a lengthy sentence (10 years). The globally

optimal solution in which the players benefit the most is for both

players to cooperate. However, if one of the players decides to

defect, the defector reduces their sentence at the expense of the

other player. In such a non-cooperative setting the stable Nash

solution is for both players to defect. This Nash solution

guarantees in this case that a player minimizes their maximum

expected punishment (in this case 7 years) and the player does not

have to rely on a particular action being chosen by the other

player. The dilemma arises because the Nash solution is not

identical to the globally optimal solution which is cooperative. The

same dilemma occurs also in the rope-pulling game (given as a

conceptual example in [15]) where each of two players is attached

by a rope to a mass that they have to pull together. One player is

rewarded according to how far he pulls the mass along one

direction and the other player is reward according to how far he

pulls the mass in an orthogonal direction. Thus, the globally

optimal solution is to cooperate and pull the mass along the

diagonal. However, if one of the players defects and pulls into his

own direction he gains even more payoff at the expense of the

other player. Therefore, the stable Nash solution in this case is for

each player to pull along his own direction. In the following we

address the question whether human motor interactions in such

motor games can be quantified using a game theoretic framework.

Results

In our continuous sensorimotor version of prisoner’s dilemma

(see Materials and Methods), two players sat next to each other and

grasped the handles of separate robotic interfaces that were free to

move in the horizontal plane (Fig. 1B, orange players). A virtual

reality system was used to overlay visual feedback onto the plane of

movement and players were prevented from seeing their own hand
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or that of the other player [17]. Each player controlled the position

of a cursor that represented the position of their hand. On each trial,

the players were required to move their cursors to touch target bars

which were directly ahead of them. However, participants were free

to move the handle laterally to touch the target bar anywhere along

its width. Therefore, participants could achieve the task with their

final hand position anywhere between the left and right target

bounds. One bound (e.g. left) represented cooperation while the

other bound (e.g. right) represented defection. An implicit pay-off

was placed on the movements by using each robot to generate a

resistive force opposing the forward motion of the handle. The

forces were generated by simulating springs that acted between each

handle and its starting bar. The stiffness of each spring could vary

continuously during the movement depending on the lateral

positions of both handles. Directly analogous to the prisoner’s

dilemma, the spring constants depended on whether the two players

cooperated or defected. That is we translate the sentence in years in

the traditional cognitive game (Fig. 1A) into spring constants in N/

m in our sensorimotor game. For positions of the handles between

the bounds, that is between full cooperation and full defection, we

linearly interpolated these spring constants (Fig. 1C shows spring

constants landscape for each player). Therefore, the actions of each

player directly affected both the forces they experienced, as well as

the forces experienced by the other player. The game was either

played by two players (Fig. 1B, orange) or by one player bimanually

(Fig. 1B, green). We hypothesized that the bimanual condition could

be conceived of as two cooperating players (instantiated by the two

brain hemispheres) which should result in cooperative solutions as

opposed to the competitive Nash solutions expected for the two-

player setup. Each session consisted of 20 sets with each set

consisting of 40 trials. At the start of each set the assignment of the

defect/cooperation boundaries to the left/right side of each target

was randomized.

Thus, our motor version of the prisoner’s dilemma differs from

the classic discrete version of the game in at least three different

aspects. First, actions are continuous such that there is a

continuous coupling between the two players. Second, reward in

terms of money or years is replaced by an implicit cost, that is

effort. Third, subjects have to learn their optimal strategy since

they are unaware of the structure of the coupling, i.e. they have

incomplete information about the payoffs. We found a clear

distinction between the strategies used at the end of a set for the

one-player and the two-player conditions. In Figure 2A and

Figure 3A we show the endpoint distributions of the action choices

for the two-player and the bimanual conditions. To analyze this

result we categorized the final positions of the cursors in Figure 2B

and Figure 3B into defect and cooperate responses, that is Nash

responses (defect-defect), cooperative responses (cooperate-coop-

erate) and exploitative responses (defect-cooperate or cooperate-

defect). In the one-player condition, the globally optimal

cooperative solution was chosen in the majority of instances

(Fig. 3B). In contrast, although in some of the two-player games

there was a small fraction of exploitative trials, the two-player

game led mostly to the Nash solution (Fig. 2B). The globally

optimal cooperative solution was seen significantly more often for

the one-player game compared to the two-player game (p,0.01,

Figure 1. The prisoner’s dilemma motor game. (A) Pay-off matrix for the classical prisoner’s dilemma for two players (players denoted by red
and blue). Depending on the choice of each player there are four different outcomes in terms of years that each player will serve in prison. (B) The
motor version of the prisoner’s dilemma. Each player controls a cursor and moves from a starting bar to a target bar and experiences a force that
resists forward motion. The force arises from a virtual spring that attaches the handle to the starting bar (the springs are only shown on the schematic
and are not visible to the players). The stiffness of the springs (K1 & K2) can vary online and each depends on the x-positions of both players’ cursors
(x1 & x2). (C) Continuous cost landscape for the motor prisoner’s dilemma game. Each pair of x-positions (x1, x2) corresponds to a spring constant for
each player. The corners of the plane correspond to the classical prisoner’s dilemma matrix (A) and intermediate spring constants are obtained by
linear interpolation. The current spring constants experienced by the players in B are shown by the points on the surface. The game was played by
eight pairs of players and by eight individual players bimanually.
doi:10.1371/journal.pcbi.1000468.g001

Author Summary

Human motor interactions range from adversarial activities
like judo and arm wrestling to more cooperative activities
like tandem riding and tango dancing. In this study, we
design a new methodology to study human sensorimotor
interactions quantitatively based on game theory. We
develop two motor tasks based on the prisoner’s dilemma
and the rope-pulling game in which we introduce an
intrinsic cost related to effort rather than the typical
monetary outcome used in cognitive game theory. We find
that continuous motor interactions converged to game
theoretic outcomes similar to the interaction dynamics
reported for other dynamical systems in biology ranging in
scale from microorganisms to population dynamics.

Nash Equilibria in Motor Control
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Wilcoxon ranksum test on number of cooperative solutions in the

two-player versus the bimanual condition) and conversely the

Nash solution was seen significantly more often (p,0.01) for the

two-player game than for the one-player game.

To investigate the temporal evolution of learning we analyzed

the trial-by-trial behavior of the players averaged across all sets.

Initially, in both the one-player and the two-player conditions,

players acted at chance level in their strategy (Fig. 4). Later trials of

the one-player game converged to the globally optimal cooperative

solution, while their probability of choosing a Nash solution

dropped to close to zero (Fig. 4A). In contrast, players in the two-

player condition showed an increasing tendency to act according

to the Nash solution over the course of a set, while their probability

of choosing a cooperative solution dropped significantly below

chance level (Fig. 4B). The frequency of the exploitative solutions

decreased in the bimanual condition along with the frequency of

the Nash solution (Fig. 4C). In the two-player game on the other

hand, the frequency of exploitative solutions stayed around chance

level (Fig. 4D). Therefore, players in both conditions showed

significant exploration and learning over trials.

In our sensorimotor version of the prisoner’s dilemma the

cooperative and Nash solutions are two extremes of the one-

dimensional control variable (lateral position at the target bar).

Therefore, we designed a motor task based on another game, the

‘rope-pulling-game’, which has three additional features. First, the

control variable is two-dimensional and the Nash and cooperative

solutions are no longer at the boundaries of the control space.

Second, unlike the prisoner’s dilemma, where each player can

achieve their task (reaching the bar) without paying attention to

the strategy of the other player, in the new task, coordination is

required between the players to jointly achieve the task. Third, the

rope-pulling game can be translated into a linear dynamical

system allowing for analytical solutions in terms of feedback

policies (see Text S1 for details). In the rope-pulling-game, two

players each pull on a rope attached to a mass (Fig. 5A). Player 1

and player 2 are rewarded according to how far each manages to

pull the mass along the y- and x-axis respectively. If the players

cooperate they should both pull along the diagonal (Fig. 5A, right),

because in this way no forces are wasted compensating for the

other player’s force. However, if one of the players decides to

Figure 2. Results of the two-player version of the prisoner’s dilemma. (A) Endpoint distribution of handle positions in the four quadrants
corresponding to the cooperate defect (lateral movement) plane with the cooperative solution (top left quadrant), the Nash solution (bottom right
quadrant) and the two exploitative solutions (top right or bottom left quadrant). Each plot shows one of the eight games in the two-player version of
the prisoner’s dilemma. The data is shown for the last 20 trials in each set. (B) Histogram over the four quadrants. C corresponds to cooperation and D
to defection. All eight participant-pairs show a strong tendency towards the Nash solution.
doi:10.1371/journal.pcbi.1000468.g002
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defect and pull only in his own direction while the other pulls

along the diagonal, the defector increases his reward at the

expense of the other player. In such a non-cooperative setting the

stable Nash solution is for each player to pull only in his own

direction (Fig. 5A, left).

In our version of the rope-pulling game, player 1 and 2’s task

was to move a virtual mass to a fixed target that was equidistant to

both players’ origin. Again, each participant grasped the handle of

the robotic interface and the location of the virtual mass was the

sum of the (possibly rotated—see Materials and Methods)

positional displacements of the two handles from their origin

(Fig. 5B, red and blue arrow vectors) – just like the positional

vectors of two real agents would add up when pulling a real mass.

Accordingly, there are infinitely many solutions to reach the target

as there are infinitely many ways of how to add two vectors to

become a certain target vector. However, each player only saw a

one-dimensional projection of the two-dimensional position of the

virtual mass, i.e. one player saw a projection along the virtual x-

axis and the other player saw a projection along the virtual y-axis

corresponding to the direction that they had to control (Fig. 5B).

An implicit pay-off was placed on the movements by using the

robots to simulate stiff springs between each handle and its origin.

Therefore, the further a player had to move the robotic handle

from the origin to achieve the task, the greater the resistive force

and hence effort required. Limiting each participant’s visual

feedback to one-dimension, while preventing them from seeing the

other participant’s feedback, ensures that they could not form an

explicit representation that could be used for cognitive solutions.

In contrast to the prisoner’s dilemma task the actions of each

player did not directly affect the forces experienced by the other

player but directly affected the position of the other player’s

cursor. Therefore, each cursor was affected by both players

requiring coordination between the players to achieve the task,

because subjects could not disregard the other player’s action

choice as both actions had to add up to a fixed target value. The

game was either played by two players (Fig. 5B, orange) or by one

player bimanually (Fig. 5B, green) as in the previous game.

We analyzed the distribution of pulling directions after learning

(Fig. 5C, positions & 5D angles). We found that when a single

participant played the game bimanually the movements tended to

Figure 3. Results of the one-player bimanual version of the prisoner’s dilemma. (A) Endpoint distribution of handle positions in the four
quadrants corresponding to the cooperate defect (lateral movement) plane with the cooperative solution (top left quadrant), the Nash solution
(bottom right quadrant) and the two exploitative solutions (top right or bottom left quadrant). Each plot shows one of the eight participants. The
data is shown for the last 20 trials in each set. (B) Histogram over the four quadrants. C corresponds to cooperation and D to defection. All eight
participants had a strong preference for the cooperative solution.
doi:10.1371/journal.pcbi.1000468.g003

Nash Equilibria in Motor Control
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converge to the cooperative solution with pulling directions

clustered around 45u for both arms. In contrast, in the two-player

game the directions tended to converge to the Nash solution with

pulling directions around 0u and 90u for the two participants. In

individual games, both single players and pairs of players could

deviate substantially from their respective solutions. Importantly,

however, the densities of the solutions in the one-player and two-

player conditions were different. Examining the average solution

for each participant in the two player game and for each arm in

the one-player game showed that the two-player game deviated

significantly from 45u (p,0.01, Wilcoxon signrank test), while the

one-player game did not (p.0.1). Thus, individual players tended

towards a cooperative solution between the two arms, whereas two

players tended towards a Nash equilibrium on average.

Discussion

In our study we have assessed human sensorimotor interactions

based on game theoretic predictions with an implicit cost, that is

effort. Effort, as a proxy for energy consumption, has been shown

to be a fundamental determinant underlying how humans control

their own movements [18,19]. In line with the game theoretic

predictions, we found in both motor games that the Nash

equilibrium was the predominant solution in two-player motor

interactions and the cooperative solution dominated in the one-

player interactions. Previous studies have shown that natural

patterns of coordination can arise between participants when

provided with feedback of the other participant, such as the

synchronization of gait patterns (for a review see [20]). In

distinction, in our study we limited knowledge of the other

participants’ behavior to a pay-off in terms of energy and showed

that different patterns of interaction develop in the one-player and

two-player conditions that can be explained within the game

theoretic framework. While this is a different explanatory

framework, one should bear in mind that optimality theories

and dynamic systems theory are in principle compatible with each

other [21]. In previous studies in psychology, human group

behavior in physical tasks such as tug-of-war has been examined

and compared to individual performance. It was found that

individuals tend to reduce their effort in group tasks and instead

rely on others, for example in force production in tug-of-war

[22,23]. This has been dubbed ‘‘social loafing’’, but has not been

examined in a game theoretic context. Yet, game theoretic analysis

has been applied to a wide range of biological systems from

interacting microorganisms [24,25], through animal behavior

[26,27] to understanding population dynamics [28].

Our results contrast with those obtained in cognitive discrete

games in interesting ways. For example, in the classical prisoner’s

dilemma, contrary to game-theoretic predictions, cooperation

plays a significant role: players have been reported to cooperate

almost half the time [29,2]. Consequently, a large number of

studies have investigated experimental and theoretical conditions

that allow for such cooperation [30–34]. Especially, in iterated

versions of the prisoner’s dilemma it was found that cooperative

strategies such as tit-for-tat or ‘‘win-stay lose-shift’’ can be very

successful [35–37]. While cooperation can be optimal in case of

indefinite repetitions [38], for a fixed number of iterations it is still

optimal to defect.

In our motor version of the prisoner’s dilemma the participants

showed very little inclination towards cooperative solutions. This

could have several reasons. Our participants knew, for example,

that the experiment was going to last for 800 trials, i.e. assuming

the participants had full knowledge of the game structure their

defection is optimal – however, knowing the number of trials does

not stop players in discrete cognitive games from cooperating. In

our study the action space is continuous. A recent theoretical study

has found, for example, that cooperative solutions are less stable in

continuous environments where agents can make gradual

distinctions of cooperativeness ranging from full cooperation to

total defection [13]. The intuition behind this finding is that the

deadlock of a non-cooperative equilibrium is more difficult to

break by agents that cooperate only slightly more than their non-

cooperative counterparts, because two marginally cooperating

agents have much less to gain from each others cooperation than

two tit-for-tat agents, for example, that try full cooperation. To

investigate the impact of action continuity on human coopera-

tiveness in games one could compare the outcomes of continuous

prisoner’s dilemma experiments with monetary feedback to the

outcomes of discrete versions of the game. Another important

difference of both our motor games compared to classic game

theoretic settings is that players had incomplete information about

the payoff function and the structure of the game. Thus, players

first had to gather information and learn the structural

determinants of the game. Again one could compare our results

to the outcome of classical prisoner’s dilemma games where

participants are not informed about payoff functions. Further-

more, due to the motor nature of the interactions, psychological

effects such as ‘mentalizing’ might have been reduced [39].

Participants in our motor games were not aware of the effects of

their actions on the other player, since each player could not feel

the force feedback given to the other player. To test whether such

psychological effects would have an influence in our games that

could lead towards more cooperation, one could give explicit

feedback about the other player’s payoff (e.g. force display in

Newtons) and explain that their choice of action affects the other

player’s toil. Finally, it would also be interesting to investigate

 

 

Figure 4. Temporal evolution of game solutions. (A,B) The
evolution of the probability of cooperative (blue) and Nash (red)
solutions across a 40 trial set for the one-player and two-player
conditions. In the one-player condition the cooperative solution gains
most probability, where as in the two-player condition the Nash
solution is predominant. (C,D) The evolution of the probability of the
exploitative solutions across the same set of trials for the one-player
and two-player conditions. The shading is one standard error of the
mean across the participants. As there are four possible behaviors
chance level is shown at a probability of 0.25.
doi:10.1371/journal.pcbi.1000468.g004
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more complex games, since we have only examined a special class

of games where the Nash solution corresponds to a minimax-

solution – this is in general true for zero-sum games [40], and also

for the prisoner’s dilemma. For this solution type, a player

minimizes the maximum expected loss, thereby ignoring the

actions of the other player (both in the classical and the motor

prisoner’s dilemma game). Thus, more complex games with more

complex cost functions provide an interesting avenue for future

research.

In our second motor game, the rope-pulling game, over all

players we still observed that the Nash solution was the

predominant solution for two-player interactions, but this time

the inter-subject differences were quite considerable both in the

two-player condition and in the bimanual case. One reason for this

could be that the task was substantially more complex than the

prisoner’s dilemma task, especially in the bimanual case where two

two-dimensional movements had to be performed simultaneously.

Thus, incomplete learning might have played a crucial role. To

model such states of incomplete information a special theory of

Bayesian games has been devised dealing with so-called Bayes-

Nash solutions [41] that need not to correspond to Nash equilibria

in the same game under complete information. Furthermore, the

dynamics of learning in two-player interactions are also studied in

the reinforcement learning literature from a single-agent perspec-

tive [42–46]. Here we restricted ourselves to simpler classic game-

theoretic models to analyze two-player motor interactions

assuming complete information, i.e. complete learning of the true

payoff structure – the same assumption is typically made in other

optimal control models where learning itself is not modeled

[19,18]. Indeed, cooperation in our game can be modeled using

optimal feedback control theory [18] – in Text S1 we indicate how

normative and methodical principles from optimal feedback

control can be carried over to game theoretic settings. Although

dynamic game theory is the most general formulation of motor

games, it is not the only tool available to model sensorimotor

interactions. For some games, such as those considered in our

experiments, simple geometric considerations can be sufficient. In

our games players also had imperfect information about the

actions of the other player, i.e. they only felt the consequences of

the other player’s actions without feeling the force feedback given

to the other player. This does not invalidate our model, however,

since in our games players did not have to know the other players

Figure 5. The rope-pulling game. (A) The rope-pulling game in which a mass (circle) is pulled by two players. The arrows show the direction of
force for two players for the Nash and cooperative solutions. Red and blue colors represent right and left handles throughout. (B) The motor version
of the rope-pulling game. The position of a virtual mass is the sum of the displacements of the two handle positions from their origin (blue and red
displacement vectors). However, the visual feedback is only a one-dimensional cursor location that is the y and x values of the mass position for
players 1 and 2 respectively. Each player is required to reach a visual target with their cursor. Each robot was used to simulate the forces that would
arise from a spring (with constant stiffness) attached between the handle and its origin. The arrow vectors and springs are only shown on the
schematic and are not visible to the participants (grayed area not visible). For the one player game, a single participant controls both handles. The
game was played by 4 pairs of participants and by 4 different participants individually. (C) Mean end points for each pair of left and right players for
the last 40 trials in each set. The ellipses are centered at the average end points across all participants and indicate one standard error. (D) Smoothed
frequency histograms (Gaussian kernel sd 20u) of pulling angles for the two-player condition (left: Nash equilibrium shown by vertical lines) and for
the one player condition (right: cooperative solution shown by vertical line).
doi:10.1371/journal.pcbi.1000468.g005
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actions to play the Nash equilibrium policy, because, as already

mentioned, Nash equilibria in our games corresponded to

minimax-solutions. This is ultimately a consequence of the

structure of the cost functions we employed, since each players

payoff function did not take the actions of the other player into

account explicitly. In the future it will be interesting, therefore, to

investigate human motor interactions in games with more complex

cost functions and to apply more advanced modelling tools.

In both our motor games we compared performance of two-

players with the performance of a single player. The underlying

hypothesis was that the single player condition could be regarded

as an instance of a cooperative game where the two motor

hemispheres interact to achieve the task. If the two hemispheres

were unable to cooperate, for example as might be expected in

patients who have undergone commisurectomy [47], then Nash

equilibria might also arise in a single player. In summary, our

results suggest that sensorimotor interactions can be understood

by a game theoretic framework and that cooperative and Nash

solutions in motor interactions can arise naturally by the

dynamical coupling of two interacting sensorimotor processes.

Moreover, the general design of our experiments provides a tool

to translate classical games into continuous motor games and

might provide a new avenue for studying human motor

interactions.

Materials and Methods

Forty-eight naı̈ve participants provided written informed

consent and took part in one of two motor games. The

experiments were conducted using two planar robotic interfaces

(vBOTs). Participants held the handle of the vBOT that

constrained hand movements to the horizontal plane. The vBOT

allowed us to record the position of the handle and to generate

forces on the hand with a 1 kHz update rate. Using a projection

system we overlaid virtual visual feedback into the plane of the

movement [17].

Ethics statement. All experimental procedures were

approved by the Psychology Research Ethics Committee of the

University of Cambridge.

Prisoner’s dilemma motor game. Each of the robot

handles controlled the position of a cursor in one half of the

horizontal workspace (Fig. 1B). The cursor could be continuously

controlled within a single trial. Each participant’s task was to place

their cursor within their respective target bar. A trial started after

both participants had placed their cursor stationery within their

respective starting bar. Both target bars then appeared at a

distance randomly drawn each trial between 5 and 20 cm (the

same distance for both players on each trial). Participants were

required to make a forward movement (y-direction) to touch the

target bar. They were free to touch it anywhere along its 15 cm

width (the robot simulated walls which prevented participants

moving further laterally than the width of the bar). For successful

trial completion, the target bar had to be reached by both players

within 1500 ms. The final x-position was taken as their choice in

the game. During the movement, both players experienced a one-

dimensional spring attached to the starting bar. The spring

constants depended on the lateral positions x1 and x2 of both

players, where x corresponds to a normalized lateral deviation

ranging between 0 and 1. For each target bar, one edge was

defined as defect (e.g. x~0) and the other as cooperate (e.g. x~1).

The assignment of the defect/cooperation boundaries to the left/

right side of each target could be randomized. This gave four

possible assignments (i.e. defect to left or right of target bar 1 and

defect to left or right of target bar 2). Intermediate lateral

deviations took on values between 0 and 1. The final x-position

was categorized as cooperate or defect depending on whether

xw0:5 or xv0:5. The spring constants were continuously

updated as K1~a:½3(1{x1)z7x2� and K2~a:½7x1z3(1{x2)�,
for players 1 and 2 respectively. The scaling parameter a was

constant throughout the experiment at 0.19 N/cm. These spring

constants are linear interpolations of the classical prisoner’s

dilemma matrix (Fig. 1A), with intermediate lateral deviations

leading to intermediate spring constants (Fig. 1C). The

participants experienced forces F
y
1 ~{K1y1 and F

y
2 ~{K2y2

resisting their forward motion in which y1 and y2 are the y-

distances of player 1 and 2’s hands from the starting bar

respectively. Participants performed 20 sets of 40 trials. At the

start of each set the allocation of the target edges to defect/

cooperate was randomized. Thus, within a set of 40 trials the same

force landscape was applied.

Rope-pulling game. The position of each robot handle was

expressed as a two-dimensional vector position where pr andpl are

the position of right and left robot handle, respectively. The two

robot handle positions together determined the position of a

virtual mass at pm~c:½DhprzDwpl � where Dh and Dw are 262

rotation matrices. The scaling parameter was set to c~2
throughout the experiments in order to confine arm movements

to a smaller workspace so as to avoid collision of the robot

handles. The rotation matrices were introduced to factor out any

preference of movement direction and to allow repetitions of the

game with different solutions. The rotations for each robot, h and

w, were drawn randomly from [2135u, 290u, 245u, 0u, +45u].
For successful trial completion, the virtual mass had to be placed

on the virtual target at (13,13) cm for 200 ms within a time limit of

1500 ms. Therefore, participants had to move in two dimensions

so as to place the one-dimensional cursor in the target.

Accordingly, there are infinitely many solutions to reach the

target as there are infinitely many ways of how to add the two

position vectors to equal the target vector. However, neither the

virtual mass point position nor the virtual target was displayed in

2-dimensional space. Participants could only see a one-

dimensional projection of the virtual mass point such that

player 1 saw the y-component of the position and player 2 saw

the x-component of the virtual mass point position. This

corresponded to the dimension that they had to control.

Additionally, an isotropic spring (5 N/cm) was simulated

attached from the handle of each robot to its origin. This

increased the effort required for larger movements. Each game

consisted of 10 sets of 80 trials with the same visuomotor rotations.

Visual feedback was provided continuously throughout the

movement. The final cursor position was taken as the players’

choice in the game and used to compute the pulling angles. The

feedback ensured that participants were never aware of playing a

version of the rope-pulling game.

Each game was played by eight pairs of participants and by

eight different participants individually. All participants were

instructed to achieve the task as easily as possible. Participants

were also told the number of trials in each set, and the sets were

separated during the experiment by short breaks. For the two-

player game a divider was used to prevent the participants seeing

the cursor or arm of the other player. In the single-player

condition subjects saw the same screen that would be displayed to

two players in the game condition.

Supporting Information
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