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Abstract

Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are
known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic
shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating
these dynamics have assumed rather simple models of genetic interactions between hosts and parasites. Here, we assess
the robustness of earlier theoretical predictions about the Red Queen with respect to the underlying host-parasite
interactions. To this end, we created large numbers of random interaction matrices, analysed the resulting dynamics
through simulation, and ascertained whether recombination was favoured or disfavoured. We observed Red Queen
dynamics in many of our simulations provided the interaction matrices exhibited sufficient ‘antagonicity’. In agreement with
previous studies, strong selection on either hosts or parasites favours selection for increased recombination. However, fast
changes in the sign of linkage disequilibrium or epistasis were only infrequently observed and do not appear to be a
necessary condition for the Red Queen hypothesis to work. Indeed, recombination was often favoured even though the
linkage disequilibrium remained of constant sign throughout the simulations. We conclude that Red Queen-type dynamics
involving persistent fluctuations in host and parasite genotype frequencies appear to not be an artefact of specific
assumptions about host-parasite fitness interactions, but emerge readily with the general interactions studied here. Our
results also indicate that although recombination is often favoured, some of the factors previously thought to be important
in this process such as linkage disequilibrium fluctuations need to be reassessed when fitness interactions between hosts
and parasites are complex.
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Introduction

Host-parasite interactions have the potential to produce rapid

co-evolutionary dynamics. If host genotypes are favoured that

resist infection by the most common parasites and parasite

genotypes are favoured that thrive on frequent hosts, this will

produce selection against common genotypes and hence may

result in cyclically fluctuating genotype frequencies in both

interacting species. Such ‘Red Queen’ dynamics have been the

focus of several theoretical studies [e.g., 1–3] and are also

documented empirically. For example, analysing ‘archived’

Daphnia hosts and their Pasteuria parasites in a pond sediment,

Decaestecker et al. [4] observed rapid co-evolutionary change over

time and temporal adaptation of parasites to hosts.

Based on Red Queen dynamics is the Red Queen Hypothesis

(RQH) for the maintenance of sexual reproduction and recombi-

nation [5, reviewed in 6]. Despite being costly in many important

respects, sexual reproduction is very widespread and common

among eukaryotes, and many hypotheses have been put forward to

explain this pattern through a selective advantage of recombination

[7–9]. The RQH states that an advantage to sexual reproduction

arises because Red Queen dynamics lead to deleterious statistical

associations (linkage disequilibria, or LD) between alleles in the

hosts that are involved in defence against parasites. According to the

RQH, recombination is then favoured because it breaks up these

associations (i.e., reduces LD), and a modifier allele that increases

recombination rate can spread in the population through

hitchhiking with disproportionately fit genotypes.

Previous theoretical work has established several key results

regarding the conditions under which the RQH works as well as

the underlying mechanisms. It has been demonstrated that

selection on loci modifying recombination rates can be partitioned

into a long-term and a short-term effect [10,11]. The long-term

effect arises from increasing the additive genetic variance for

fitness so that selection operates more efficiently. The short-term

effect is determined by the relative fitness of the combinations of

alleles generated through recombination. A characteristic of the

RQH is that the short-term effect can be positive and it has

recently been shown that it can be responsible for a substantial

part of the selection for recombination in the RQ [12]. Rapid

fluctuations in epistasis are a necessary condition for selection for

increased recombination through the short-term effect. In

particular, Barton [10] showed that epistasis needs to change its

sign every 2–5 generations if high recombination rates are to

evolve. To produce such rapid fluctuations in epistasis, selection

on either the host or the parasite must be strong [13], a

requirement that is in accord with the predictions of a number

of different Red Queen models [14–17].
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One of the most important factors influencing both the

coevolutionary dynamics and selection for recombination is the

type of interaction model that defines fitness values for hosts and

parasites [16]. One of the most widely used interaction models is

the matching allele (MA) model and derivations thereof [e.g.,

3,5,11,14,17,18]. In the MA model, it is assumed that parasites

can infect the host if all alleles at a number of parasite interaction

loci match the alleles at corresponding loci in the host. In this case,

the parasite fitness is maximal and the host fitness is reduced by a

certain amount that corresponds to the virulence of the parasite.

Conversely, if none of the parasite alleles matches the host alleles,

the parasite cannot invade and has its fitness reduced, and the host

fitness is maximal. If only a subset of alleles match, fitness is

affected in a variety of ways in different version of the MA model,

and the fitness values for these semi-matching interactions are

crucial for whether recombination is favoured or disfavoured

[3,14,16]. Interaction models other than MA models include the

gene-for-gene (GFG) model [19,20] and the Nee model [21].

A common feature of all interaction models that have been used

to date is that they are defined by only few parameters. For

example, interactions in the simplest case of a two-locus/two-

alleles system are in general described by two 464 matrices that

give the fitness for each host genotype when interacting with each

parasite and vice versa. Nevertheless, even the most general

matching allele models utilise at most three parameters to fill

these 32 matrix entries [e.g., 14]. As a consequence, the

interactions models that have been used previously are simplistic

in several ways, usually assuming, for instance, equal fitness effects

at the two loci involved. Although these standard interaction

models have been invaluable in assessing the plausibility of the

RQH and identifying the population genetic forces that are at

work, they explore but a very limited and probably unrealistic set

of possible host-parasite interactions in general.

Agrawal & Lively [22] addressed this problem by investigating

models that lie on a continuum between MA and GFG models.

Here, we go a step further and study interactions in two-locus/two

allele models in their most general form. We construct large

numbers of randomly generated interaction models and analyse

the resulting dynamics. Specifically, we investigate how properties

of the fitness matrices affect the co-evolutionary dynamics, and

how the dynamics in turn influence selection for or against

recombination. One important property of interaction matrices

that we identify is the ‘antagonicity’ of the interaction, which we

define as {corr(WH,WP). Our results indicate that whilst some of

the previous results on the RQH appear to be fairly robust with

respect to interaction models (including the requirement for strong

selection on hosts or parasites), other predictions – in particular

those concerning LD fluctuations – need to be qualified based on

the results with our generalised interaction models.

Results

In what follows, we present results based on random interaction

matrices with varying properties. In addition to these ‘fully’

random matrices, we also constructed sets of interaction matrices

that represent random deviations from the matching alleles model;

the results obtained from these matrices are presented in Text S1

and in Figure S1.

In order to observe Red-Queen-like dynamics, and for the

RQH to work, it is necessary that a polymorphism of alleles at

both loci is maintained in the host population. If there is no

polymorphism at one of the loci, recombination has no effect and

is therefore selectively neutral. We therefore first investigate factors

that determine whether polymorphisms are maintained and under

what conditions genotypes become extinct. Following this, we

investigate different properties of LD dynamics, and finally, we

present results regarding invasion of a recombination modifier M.

Genotype extinction patterns
In a strict sense, extinction of genotypes cannot occur in our

model, because the population is of infinite size and recurrent

mutation will lead to continuous replenishment of genotypes even

if these are under strong negative selection. For the following

results, we call a genotype ‘extinct’ if the frequency of this

genotype does not exceed 1024 during the 10,000 generations that

follow the burn-in phase. For comparison, this threshold is

approximately reached under mutation-selection balance with a

mutation rate of m~10{5 (as in most of our simulations) and a

selection coefficient of s = 20.1.

An inverse relation between host and parasite fitness –

corresponding to high antagonicity, A, in our terminology – is

one of the key assumptions of Red Queen models (see Methods for

the definition of A). Therefore, we have tested how antagonicity

affects extinction patterns by creating sets of matrices with a

different range of A values and comparing simulation results

(Figure 1). As expected, we observe fewer extinction events as A

increases. This makes intuitive sense, because when co-evolution

between hosts and parasites becomes less antagonistic (low values

of A), increases in host fitness will often also lead to increased

parasite fitness and vice versa. Therefore, such interaction matrices

often lead to a state where fitness is optimal for both hosts and

parasites, in which case all but one genotype become extinct.

Aside from antagonicity, genotype extinction is likely to be

influenced by the strength of selection acting on hosts and

parasites. We therefore compared host allele extinction patterns

for sets of interaction matrices that differ by the range values from

which the random fitness entries were drawn. The resulting

proportions of fitness matrices for which extinction of at least one

allele occurred are given in Table 1. These numbers indicate that

extinction becomes more likely when selection pressure on the

hosts is high, whereas for small fitness differences (all fitness values

between 0.9 and 1), no allele extinctions were observed. The

impact of the strength of selection acting on the parasites is weaker

Author Summary

The Red Queen has become an eponym for rapid and
perpetual evolutionary arms races between hosts and
parasites. The Red Queen also lends her name to the idea
that such arms races are at the core of the question of why
sexual reproduction is so widespread among higher-level
organisms. According to this view, recombination provides
the hosts with an advantage that allows faster adaptation
to the parasite population. To date, mathematical models
trying to quantify Red Queen dynamics and the Red Queen
hypothesis for the evolution of sex have generally made
several simplifying assumptions about how host and
parasite genotypes interact with each other (i.e., how they
influence each other’s fitness). In this article we present a
model that allows for arbitrary patterns of fitness
interactions between both parties. We demonstrate that
the degree of ‘antagonicity’ in these interactions is decisive
for whether Red Queen dynamics are observed, and assess
the robustness of various previous results concerning the
Red Queen hypothesis with respect to fitness interactions.
Our results also make clear how difficult predictions of
coevolutionary dynamics and selection for recombination
are likely to be in real host-parasite systems.

Red Queen with Non-Standard Fitness Interactions
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and does not show a clear-cut pattern. Thus, even though parasite

allele extinction becomes more frequent with increasing strength

of selection on parasites (in line with the symmetry of the model

with respect to the two interacting species), these extinction

patterns in parasites do not seem to translate in a simple way into

extinction patterns of host alleles.

Although the primary objective of this study is the impact of

interaction matrices on host-parasite coevolutionary dynamics, it is

also important to assess how the other parameters of the model

influence these dynamics. Figure 2 shows some results regarding

the impact of the number of parasite generations per host

generation (nPG), the recombination and the mutation rate.

Increasing nPG increases the proportion of simulations where one

or two host genotypes become extinct, but this effect is rather

weak. With a recombination rate of rH = 0.1 compared to no

recombination, the proportion of simulations where one or two

host genotypes become extinct is substantially decreased. This

makes sense as genotypes that become extinct in the absence of

recombination may be continuously produced by recombination if

the constituting alleles are present in the population. Interestingly,

a high recombination rate of rH = 0.5 leads to a greater rate of

extinction of three host genotypes, suggesting that recombination

may also decrease genetic variation in the population. Finally, low

mutation rates or absence of mutation appears to boost extinction

of host genotypes. Comparison of genotype dynamics in individual

simulations (not shown) suggests the following explanation for this

phenomenon. Mutation maintains a certain minimum of genotype

frequencies even if these genotypes are selectively disfavoured. As

a result, when the composition of the parasite population changes,

selection for these low frequency host genotypes results in a

relatively quick response, which keeps the cyclic dynamics of the

system going. By contrast, if mutation is absent or occurs at a very

low rate only, genotype frequencies may become so low due to

selection that the cyclic dynamics break down and host genotypes

become extinct.

Linkage disequilibria
Since the only effect of recombination is to break down linkage

disequilibria (LD), the LD dynamics that result from host-parasite

co-evolution are at the core of the RQH. Figure 3 shows the

distribution of mean LD and variance in LD, as well as the

distribution of minimum and maximum LD for a particular set of

interaction matrices. As we have not built in any systematic

asymmetry in constructing the random interaction matrices, the

distribution is symmetric around a mean LD of zero (Fig. 3A). The

stem of the ‘mushroom’ shaped distribution, where mean LD is

approximately zero and variance in LD is very low, usually

corresponds to extinction or near extinction of one or two alleles.

Interestingly, as variance in LD increases, simulations with mean

LD close to zero become more rare. Rather, most simulations with

high variance in LD show moderate to high absolute values of

mean LD. Finally, there are also some simulations with strongly

positive or negative means (close to the maximum value of 60.25)

and low variance.

Surprisingly, we observed that the sign of LD did not change

during the 10,000 generations of recorded coevolution in the

majority of our simulations, i.e., LD was either always positive or

always negative (compare also the width of the bars in Fig. 4B). In

Fig. 3B, such instances of LD with constant sign are represented by

data points with either positive minimum LD or negative

maximum LD. Similarly high incidence of LD dynamics with

constant sign were also found in simulations with all other sets of

interaction matrices that we tested (Table 2). The relevance of

these observations stems from the intuition that rapid changes in

Figure 1. Proportion of simulations with extinction of no, one,
two or three host genotypes, depending on the range of
antagonicity values of the interaction matrices used. Each
column is based on 500 simulations with pairs of interaction matrices
that have antagonicities in the respective range of values, and with
sH = sP = 1.
doi:10.1371/journal.pcbi.1000469.g001

Table 1. Proportions of simulations where at least one host
allele became extinct, in nine sets of 10,000 pairs of
interaction matrices that differ by the range of fitness values
in hosts and parasites (1{sHƒW H

ij ƒ1 and 1{sPƒW P
ij ƒ1).

Extinction of one or two host alleles:

sP~1 sP~0:5 sP~0:1

sH~1 27.4% 29.1% 34.9%

sH~0:5 21.1% 20.1% 24.2%

sH~0:1 0.0% 0.0% 0.0%

For all simulations, the standard set of parameters was used.
doi:10.1371/journal.pcbi.1000469.t001

Figure 2. Impact of parameters other than the interaction
matrices on host allele extinction patterns. The leftmost bar
shows the proportion of simulations with the standard set of
parameters (nPG~1, m~10{5, rH~rP~0). For the other bars, one of
the parameters was changed. Each bar is based on simulations with
10,000 pairs of interaction matrices. In each of these interaction
matrices, fitness values range from 0 to 1 for both hosts and parasites
(sH = sP = 1), and A§0:8.
doi:10.1371/journal.pcbi.1000469.g002

Red Queen with Non-Standard Fitness Interactions
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the sign of LD are a prerequisite for selection for increased

recombination. As will be demonstrated in the following section,

this intuition is misguided.

Selection for recombination
An increase in frequency of the recombination modifier allele M

(i.e., selection for increased recombination) was observed with

many of our interaction matrices (Table 3). Figure 4 shows, for a

particular set of interaction matrices, how various properties of the

dynamics before introduction of M relate to selection for or against

M. Extinction of host genotypes has a strong impact on selection

acting on M (Fig. 4A). The highest proportion of simulations

where M was under positive selection was observed when no

genotype became extinct, but M was also selected for in about

20% of simulations when one genotype went extinct. On the other

hand, if two genotypes became extinct, M always either decreased

in frequency or was selectively neutral. As expected, M was always

neutral when one of the alleles became extinct.

The proportion of simulations where M increased in frequency

was substantially higher when the dynamics exhibited changes in

the sign of LD than when LD was of constant sign (Figure 4B).

However, even among the simulations where LD was of constant

sign we observed selection for recombination in about 20% of the

simulations. Figure 5 provides a more detailed picture of how LD

statistics relate to the fate of the recombination modifier M. A high

variance in LD generally favours selection for M, but LD does not

need to fluctuate around a mean of zero for this to happen

(Fig. 5A). In the majority simulations where LD did change its sign

and both the minimum and the maximum of LD were

substantially different from zero, M was under positive selection

(Fig. 5B). Conversely, when LD was always strongly negative or

always strongly positive, M was usually disfavoured. However, in

many simulations either the minimum or the maximum of LD was

close to zero, in which case no trend with respect to selection on M

was apparent. Examples of the dynamics with selection for or

against M in the presence or absence of changes in LD sign are

shown in Figure 6.

The strength of selection acting on the two interaction loci is

another decisive factor for selection on M (Fig. 4C). With very

weak selection on the interaction loci – corresponding largely to

extinction of alleles – M is selectively neutral. With increasing

strength of selection on the interaction loci, the proportion of

simulations where M was under positive selection increases

continuously, reaching a maximum of more than 70% of

simulations. On the other hand, disregarding the simulations with

very weak (,1024) selection on the interaction loci, the proportion

of simulations where selection against M was observed remained

more or less constant with increasing strength of selection. These

results on the impact of measured selection intensity on the

interaction loci are mirrored in the results comparing selection for

M with different sets of interaction matrices (Table 3).

We also examined the product of epistasis and LD (E|D) in

hosts as an indicator for selection for increased recombination

(Fig. 4D). This quantity is of interest because if epistasis and LD

are of opposite sign (i.e., E|Dv0), an immediate benefit to

recombination is expected (because disproportionately fit individ-

uals are underrepresented in the population). Among the

simulations where E|D was negative over most of the 10,000

generations prior to introduction of M, M increased in frequency

in more than 80% of simulations. When the median of E|D was

close to zero, M was largely neutral, and increasingly positive

values of median E|D are associated with an increasing

proportion of simulations where selection against M was observed.

Interestingly, however, even when E|D was mainly positive, M

was under positive selection in many simulations. Similar results

are obtained when the mean of E|D rather than the median is

considered (results not shown).

In many of our simulations where M was selectively favoured,

we observed that M did not become fixed in the population.

Rather, M often remained polymorphic even following the 10,000

generations of simulation, with periods of increase and decrease in

its frequency. This observation led us to ask whether there exists

an evolutionarily stable (ES) recombination rate for a particular

pair of interactions, i.e. an allele m coding for a recombination rate

Figure 3. Distribution of LD statistics (mean, variance, minimum and maximum) in a set of simulations. Simulations are based on 10,000
host-parasite interaction matrices with 0:5ƒW H

ij ƒ1 and 0ƒW P
ij ƒ1. LD was measured during 10,000 generations following the burn-in period, in the

absence of recombination. Darker colour of data points reflects higher density of adjacent data points. Parameters take standard values.
doi:10.1371/journal.pcbi.1000469.g003

Red Queen with Non-Standard Fitness Interactions
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Figure 4. Fate of the recombination modifier M in relation to properties of the co-evolutionary dynamics in the previous
generations. Simulations are based on the same set of interaction matrices as in Figure 3, and the standard set of parameters. The bars give the
proportion of simulations with the respective property where the modifier was observed to have decreased (red) or increased (green) in frequency, or
where the modifier was neutral (yellow). The width of the bars corresponds to the total proportion of simulations where the respective property was
observed. In panel (A), the fate of the modifier is shown against the number of host genotypes that went extinct. The case where two genotypes
went extinct is further divided according to whether no allele (0) or one allele (1) went extinct (i.e., according to whether polymorphism is maintained
at both loci or not). In panel (B), the fate of the modifier is given in relation to the proportion of simulations in which the sign of LD stayed constant or
changed during the simulation. (C) gives the fate of M in relation to the geometric mean of the strength of selection. Plot (D) shows how selection on
the modifier is related to the median of epistasis times LD (E|D).
doi:10.1371/journal.pcbi.1000469.g004

Red Queen with Non-Standard Fitness Interactions
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r that cannot be invaded by alleles coding for other recombination

rates. Previous studies have demonstrated the existence of an ES

recombination rate [11,13], but it is not clear if this result can be

generalized to arbitrary fitness interaction models.

To study this question, we screened the entire range of resident

recombination alleles m and modifier recombination alleles M for

particular pairs of interaction matrices (Figure 7). In plots 7A and

7B, it appears that there is indeed an allele m associated with a

certain recombination rate r.0 which is stable against invasion of

all alleles M (intersections of the white ‘lines’). Plot (C) shows a case

where recombination is disfavoured. Plot (D) gives an example for

more irregular patterns of selection on the mutant modifier M,

exhibiting bands of neutrality even when the resident recombination

rate is much higher than the optimum. An interesting feature of the

plots in Figure 7 is that selection for the optimal recombination rate

is much stronger when the resident recombination allele codes for a

suboptimal recombination rate than when it codes for a super-

optimal recombination rate. These results suggest that an in-depth

future investigation of ES recombination rates in Red Queen

models with arbitrary fitness interactions might be worthwhile.

Discussion

For this study, we have created large sets of interaction matrices

determining host and parasite fitness in specific genotype-genotype

interactions. We would like to stress that these randomly generated

interaction matrices are by no means intended to represent the

distribution of naturally occurring interactions between hosts and

parasites, and results like the proportion of matrices for which we

find selection for increased recombination are therefore, in

themselves, biologically meaningless. Rather, our aim was to

investigate to what extent previous results regarding Red Queen

dynamics and the RQH depend on the niceties of particular

interaction models, to identify informative properties of interaction

matrices, and to discover interesting dynamical behaviours that

differ qualitatively from the dynamics that arise in standard

interaction models. The ‘true’ spectrum of host-parasite interac-

tions found in natural populations is far from being understood.

To date, fitness components for interactions between various host

and parasite genotypes have been studied for only a few systems

[e.g., 23–27], and even then the underlying genetics are usually

poorly understood. The data that are available, however, suggest

that fitness interactions are much more complicated in general

than in the standard interaction models that have been assumed in

previous Red Queen models [e.g., 23].

One of the most basic questions concerning host-parasite co-

evolution is whether and how much polymorphism is maintained at

the interaction loci. Different standard interaction models produce

both extremes in that respect: extinction of all but one parasite

genotype in the simplest (cost-free) version of the gene-for-gene

model [1], and generally complete maintenance of all host and

parasite genotypes in the various matching allele models and in the

Nee model [21]. In the present study, different randomly generated

interaction matrices also led to both complete annihilation and

preservation of polymorphism, as well as intermediate outcomes

(e.g., extinction of only one allele). We demonstrated that this is

determined to a large extent by the level of antagonicity between

host and parasite interactions, with decreasing antagonicity leading

on average to decreasing polymorphism in the populations.

However, even with highly antagonistic interactions, extinction of

one or more alleles occurred frequently. This latter result is perhaps

not surprising given that the gene-for-gene model is also completely

antagonistic (i.e., A = 1) according to our definition of this term. We

also found that moderate selection coefficients favour the mainte-

nance of polymorphism. Based on these results, we predict that

polymorphic loci involved in host-parasite interactions observed in

natural systems will tend to be characterized by strong antagonicity,

but moderate selection coefficients.

We would like to caution at this point that ‘antagonicity’ as

defined here is only loosely related to the virulence of the parasite or

the nature of the species-species relationship in general. Rather, it is

a measure for the specific genetic interactions under study. As an

example to illustrate this difference, consider a parasite that is highly

virulent, i.e., that leads to strong fitness reduction in infected hosts.

This relationship would therefore be described as ‘highly antago-

nistic’ in the common sense. Let us assume that there are two

genotypes of this parasite, P1 that induces optimal levels of virulence

(from the parasite’s point of view) in the host, and P2 that is slightly

more virulent than the optimum. (A classic result in evolutionary

epidemiology is that if there are trade-offs between virulence and

transmission, intermediate levels of virulence are expected to be

evolutionarily stable [reviewed in 28].) Everything else being equal,

P1 then has a higher fitness than P2, and hosts infected with P1 will

have a higher fitness than hosts infected with P2. Thus, antagonicity

for this simple 162 interaction matrix would be A~{1, i.e., the

genotypic interaction would be characterized as ‘synergistic’: a

mutation from P2 to P1 benefits both parasite and host. Similarly,

different host genotypes are conceivable for which fitness differences

go into the same direction in hosts and parasites. This shows that

there may be genotype-genotype interactions that are not or only

slightly antagonistic, even though the host-parasite relationship as a

whole is very antagonistic. Whereas our definition of antagonicity

refers to interactions between different host and parasite genotypes,

antagonicity in terms of the interacting species per se refers to

infection versus no infection.

Table 2. Proportions of simulations where LD dynamics with
constant sign were observed, with the same sets of
interaction matrices as in Table 1.

LD of constant sign:

sP~1 sP~0:5 sP~0:1

sH~1 51.6% 53.6% 72.2%

sH~0:5 61.6% 56.0% 64.7%

sH~0:1 78.4% 73.7% 69.1%

doi:10.1371/journal.pcbi.1000469.t002

Table 3. Proportion of simulations where the recombination
modifier M was under positive (upper numbers) and negative
selection (lower numbers), with the same sets of interaction
matrices as in Table 1.

Selection for and against M:

sP~1 sP~0:5 sP~0:1

sH~1 41.8% 36.4% 22.8%

21.3% 24.1% 31.0%

sH~0:5 33.3% 32.0% 19.0%

25.9% 21.3% 34.6%

sH~0:1 10.5% 11.7% 6.4%

39.4% 39.5% 45.5%

doi:10.1371/journal.pcbi.1000469.t003

Red Queen with Non-Standard Fitness Interactions
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In many of our simulations, we observed selection for or against

modifier alleles that increase the recombination rate between the

interaction loci. As has been reported previously for different

interaction models [e.g., 14,16], strong selection on either hosts or

parasites is conducive for selection for higher recombination in the

hosts, although strong selection on the hosts appears to be more

important. This result holds both for comparisons between

different sets of interaction matrices (where average selection

coefficients differ, see Table 3) and within single sets of interaction

matrices (where the strength of selection was measured directly,

see Fig. 4C). Strong selection on the host implies highly virulent

parasites, but this is not the only aspect that is important: the

parasites must also be very abundant (if only few hosts in a

population are infected, selection to resist parasite infection will be

low), there must be high levels of genetic variation in hosts to resist

the parasites, and resistance must not be too costly. It is important

therefore to keep in mind that the fitness values in population

genetic models like the one presented here combine all fitness

components. To our knowledge there is currently no study that has

measured all relevant components of lifetime reproductive success

in different host and parasite genotypes, making it impossible to

parameterize our models based on real data.

Another quantity that appears to be important in determining

whether recombination is favoured or disfavoured is the product of

epistasis and LD. Negative median values of this quantity usually

lead to selection for recombination, whereas sufficiently high,

positive values led to selection against increased recombination in

the majority of simulations. These results indicate that immediate

effects of the recombination modifier (i.e., the production of

disproportionally fit offspring through recombination) may have

been responsible for selection for the modifier in many of our

simulations. However, there are also simulations in which there is

selection for recombination despite E|D being mainly positive.

We even found instances where the sign of both LD and epistasis

was constantly the same (i.e., E|D was always positive) and where

recombination was nevertheless favoured. Hence, recombination is

sometimes favoured despite an immediate disadvantage of produc-

ing disproportionately unfit offspring, indicating that delayed short-

term effects and/or long-term effects are also important (for a

classification and analysis of these effects, see Ref. 12).

A rather unexpected outcome of our simulations was the

distribution of LD statistics and their impact on selection for or

against recombination (see Figures 3 and 5). With most of our

random interaction matrices, no change in the sign of LD occurred

following the burn-in phase. We suspect that LD fluctuations

around a mean of zero that are usually observed with standard

interaction models are a result of the intrinsic symmetry of these

models. Importantly, constant sign of LD does not imply absence of

selection for recombination. LD dynamics appear to be informative

about selection for recombination in three extreme cases. First, if

LD is constantly zero (as happened in many simulations because of

quasi-extinction of alleles), any recombination modifier is selectively

neutral. Second, when LD is more or less constant but different

from zero, the recombination modifier decreased in frequency. This

situation is similar to that of so-called high complementarity

equilibria, which have been observed in the multiplicative matching

allele model [29] and which are expected from the reduction

principle [30] to disfavour recombination. (According to the

reduction principle, in populations at equilibrium in which

genotypes of suboptimal fitness are constantly produced through

imperfect transmission – e.g., mutation or recombination – modifier

alleles that decrease this imperfect transmission can always spread in

the population.) Finally, when LD fluctuates very strongly around

zero, recombination is usually favoured.

We would like to stress that in many simulations the LD dynamics

could not be assigned to any of these three classes of outcomes, so

that the fate of a recombination modifier could not be predicted

from LD. We also note that extremely fast fluctuations of either LD

or epistasis with sign changes every two to five generations (the so-

called Barton zone) were never observed in our simulations.

Although such dynamics have been predicted to be necessary for

fluctuating epistasis to favour high recombination rates (near 0.5;

Figure 5. Distribution of LD statistics in relation to the fate of the recombination modifier M. Results are based on the same set of
interaction matrices as used for Figure 3. LD was measured during 10,000 generations following the burn-in period, in the absence of recombination.
Colours denote whether subsequently the recombination modifier was selectively favoured (green), disfavoured (red), or neutral (yellow). Parameters
take standard values.
doi:10.1371/journal.pcbi.1000469.g005
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see Ref. [10]), our results indicate that at least for the moderately

high recombination rates (0.1) that we assumed, this may not be an

important requirement for the RQH to work [13,17].

A general conclusion from our results is that it is very difficult to

predict from empirical data whether recombination is favoured. Even

when the dynamics of allele frequencies, LD, epistasis etc. are

completely recorded over a long time span and without sampling

error, these data do not allow us in general to make accurate

predictions with respect to selection acting on a recombination

modifier. Given that natural systems will be much more complex in

terms of genotypic architecture and population dynamics than our

simple, deterministic two-locus model, these conclusion are somewhat

dispiriting. Further theoretical investigations into the population

genetic mechanism of the RQH and novel, more general theoretical

predictions as to when recombination should be favoured or

disfavoured in Red Queen models would therefore seem desirable.

Methods

The model
We constructed a deterministic discrete time model that is

similar to previous models of Red-Queen dynamics [e.g., 14,16].

Both hosts and parasites are haploid and have two interaction loci

A and B with two alleles a/A and b/B, respectively, at each locus.

In addition, hosts have a third locus M (recombination modifier)

with two alleles m and M. At each time step, three processes occur

in the following order for both hosts and parasites: (1)

reproduction, (2) selection, and (3) mutation. A number nPG of

parasite life cycles are completed during a single host life cycle, and

updating of host and parasite frequencies occurred simultaneously.

The three steps of the life-cycle are defined as follows. First,

during reproduction, hosts mate and recombine. The order of loci

is ABM. Recombination between the two interaction loci A and B

Figure 6. Dynamics of host LD and epistasis for four particular pairs of interaction matrices, taken from the same set of matrices that
was used for Figures 3 to 5. Shown are the dynamics for 500 generations that followed the burn-in phase of 10,000 generations. The dynamics in (A),
(C) and (D) are cyclic, with periods of 109, 57 and 131 generations, respectively; blue dots in these plots mark steps of 10 generations during the first
cycle. Plots (A) and (B) are examples for changing LD sign, whereas in (C) and (D) the sign of LD remains constant. The recombination modifier M was
found to be selectively favoured with the matrices used in (A) and (C), and disfavoured in (B) and (D). All parameters take standard values.
doi:10.1371/journal.pcbi.1000469.g006

Red Queen with Non-Standard Fitness Interactions

PLoS Computational Biology | www.ploscompbiol.org 8 August 2009 | Volume 5 | Issue 8 | e1000469



is determined by the alleles at the M locus, with recombination

rates denoted by rmm, rMm and rMM. Recombination between the

B and the M locus takes place at a rate R. Parasites are assumed to

reproduce asexually. Second, selection acting on hosts and

parasites is determined by a pair of 464 interaction matrices,

WH and WP. Here, W H
ij is the fitness of a host with genotype i

(i = ab, Ab, aB or AB) that interacts with a parasite of genotype j

(j = ab, Ab, aB or AB). Likewise, W P
ij is the fitness of a parasite with

genotype j that interacts with a host of genotype i. Interactions

between host and parasite genotypes occur proportional to their

relative frequencies (mass-action assumption). Note that WH and

WP may represent or combine various fitness components of the

hosts (e.g., parasite virulence, overall parasite prevalence or costs

of resistance alleles) and parasites (e.g., infectivity or within-host

growth).

Denoting by pi the frequency of hosts with genotype i and by qj

the respective parasite frequencies, the host frequencies following

selection are given by

p
0

i~pi

P
j W H

ij qjP
k,j pkW H

kj qj

: ð1Þ

The numerator in equation (1) can be interpreted as the relative

fitness of host i with the present composition vector q of genotypes

in the parasite population, and the denominator is the average

fitness in the host population. The parasite frequencies following

selection are determined analogously, based on host frequencies

and WP. Finally, mutation takes place at host and parasite

interaction loci. The mutation rate m is the same for hosts and

parasites, for the two interaction loci, and for both directions of

mutation. We assume that no mutations occur at the M locus.

Figure 7. Strength of selection for or against a mutant modifier allele M in a population with resident modifier allele m for four
different pairs of interaction matrices. The recombination rate of the resident modifier allele (rmm) is shown on the x-axis, that of the mutant
allele (rMM ) on the y-axis, and rMm~(rmmzrMM )=2. Following 20,000 generations of simulation with the resident modifier allele m, the mutant
modifier allele M was introduced at a frequency 0.001. The colour in the plots shows the frequency of M 1000 generations after its introduction,
where blue signifies selection for M, red and black selection against M and white neutrality. Final frequencies of M below 1029 are shown in black.
Other parameters take the standard values.
doi:10.1371/journal.pcbi.1000469.g007
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Construction of interaction matrices
Host genes involved in defence against parasites as well as

parasite genes involved in host invasion are expected to show

antagonistic fitness effects. In order to construct random

interaction matrices that emulate host-parasite relationships, we

therefore defined an ‘antagonicity’ A of a pair of interaction

matrices as A(WH,WP) :~{corr(WH,WP), the Pearson product-

moment correlation coefficient between the corresponding entries

of WH and WP. A is a measure of how changes in host fitness relate

to changes in parasite fitness. High values of A (close to 1) indicate

that in interactions between host and parasite genotypes, a high

host fitness implies a low parasite fitness and vice versa. We then

constructed the interaction matrices by first filling each entry of

the two matrices with a random number drawn from a uniform

distribution ranging from (1-sH) or (1-sP) to 1. Thus, sH and sP

determine the average strength of selection on hosts and parasites.

If the antagonicity of this pair of interaction matrices fell within a

certain range it was added to the set of interaction matrices tested,

otherwise it was discarded. Unless stated otherwise, we used

different sets of 10,000 interaction matrices with a range

ofA(WH,WP)[½0:8, 1� in our simulations.

Simulation methods
The standard protocol for our simulations was as follows. First,

we initialized the host population with all individuals carrying the

m allele at the M locus and equal frequencies of the four

interaction genotypes. Likewise, the parasite population was

initialized with equal genotype frequencies. We then allowed the

populations to co-evolve for a burn-in period of 10,000 host

generations. This was followed by another 10,000 host genera-

tions, during which we recorded the genotype frequency

dynamics. From these data, we then calculated several statistics

(e.g., minimum, maximum, mean, variance) of a number of

properties of the dynamics, including the genotype frequencies

themselves, linkage disequilibria, strength of selection and

epistasis. Table 4 gives the formulae used to calculate these

quantities. We used the additive version of epistasis, but the results

are very similar with multiplicative epistasis.

Finally, in the simulations where we tested for selection on

recombination rate and following the 20,000 generations of burn-

in and analysis, we introduced a recombination modifier allele M

into the host population. The initial frequency of M was 0.001,

and M was introduced such that it was in linkage equilibrium with

the other two loci. We then simulated for another 10,000

generations and recorded the frequency of M. We considered M

under positive selection if the final frequency of M was above

0.0011. Conversely, negative selection was assumed if the

frequency of M dropped below 0.0009. This 10% increase and

decrease in frequency towards the two thresholds within 10,000

generations roughly correspond to selection coefficients of

s~10{5 and s~{10{5 in standard population genetics models

with haploid populations under constant selection. If the frequency

of M was within the threshold range, M was considered neutral.

Unless stated otherwise, we used the following standard set of

parameters in our simulations: m~10{5, nPG = 1, rmm = 0,

rMm = 0.05, rMM = 0.1, R = 0.05.

Supporting Information

Figure S1 Impact of increasing random deviation from the

standard MA model on (A) extinction patterns, (B) mean variation

in host LD (61 STD), and (C) fate of the recombination modifier

M. Each bar or data point represents an average of 2000

simulations with the standard set of parameters and different

interaction matrices that contain a matching allele and a random

component. The basis of the interaction matrices is a pair of MA

matrices with parameters sH = sP = 0.5. To this pair of matrices,

multiples of random matrices (with entries between 0 and 1 and

antagonicity.0.8) were added, where the factor determining the

magnitude of the random component is given on the x-axes. This

factor ranges from 0.01 at the left of the plots to 1000 at the right.

Found at: doi:10.1371/journal.pcbi.1000469.s001 (0.22 MB

DOC)

Text S1 Random deviations from the matching allele model

Found at: doi:10.1371/journal.pcbi.1000469.s002 (0.03 MB

DOC)
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