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Abstract

The mouse has become the most popular organism for investigating molecular mechanisms of body weight regulation. But
understanding the physiological context by which a molecule exerts its effect on body weight requires knowledge of
energy intake, energy expenditure, and fuel selection. Furthermore, measurements of these variables made at an isolated
time point cannot explain why body weight has its present value since body weight is determined by the past history of
energy and macronutrient imbalance. While food intake and body weight changes can be frequently measured over several
weeks (the relevant time scale for mice), correspondingly frequent measurements of energy expenditure and fuel selection
are not currently feasible. To address this issue, we developed a mathematical method based on the law of energy
conservation that uses the measured time course of body weight and food intake to estimate the underlying continuous-
time dynamics of energy output and net fat oxidation. We applied our methodology to male C57BL/6 mice consuming
various ad libitum diets during weight gain and loss over several weeks and present the first continuous-time estimates of
energy output and net fat oxidation rates underlying the observed body composition changes. We show that transient
energy and fat imbalances in the first several days following a diet switch can account for a significant fraction of the total
body weight change. We also discovered a time-invariant curve relating body fat and fat-free masses in male C57BL/6 mice,
and the shape of this curve determines how diet, fuel selection, and body composition are interrelated.
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Introduction

Mouse models of obesity have become critically important

research tools for discovering molecular mechanisms of body

weight regulation. But understanding these mechanisms in the

context of whole-body physiology requires knowledge of food

intake, energy output, and fuel selection [1]. Furthermore,

measurements made at an isolated time point cannot explain

why body weight has its present value since body weight is

determined by the past history of energy and macronutrient

imbalance [2]. While food intake and body weight changes can be

measured frequently over several weeks (the relevant time scale for

mice), correspondingly frequent measurements of energy output

and fuel selection are not currently feasible.

Expensive indirect calorimetry systems can be used to measure

energy expenditure and respiratory exchange over periods of a few

days and most systems require removing mice from their normal

environment which can alter their behavior [3]. Alternatively, the

doubly labeled water method can give an estimate of average

energy expenditure, but this method requires specialized equip-

ment for sample analysis as well as prior knowledge of fuel

selection as measured by the respiratory quotient (RQ) [4].

Furthermore, significant quantities of blood need to be collected

which could impact the behavior of the mouse and makes repeat

measurements untenable [4].

Here, we present a mathematical method that quantitatively

relates food intake, body weight and body fat to calculate the

dynamic changes of energy output and net fat oxidation rates

during the development of obesity and weight loss in male

C57BL/6 mice. The mathematical model is based on the law of

energy conservation, makes very few assumptions, and provides

the first continuous-time estimates of energy output and fuel

selection over periods lasting many weeks. Our methodology also

revealed the relationship between diet, fuel selection, and body

composition change in male C57BL/6 mice by identifying a time-

invariant curve relating body fat and fat-free masses.

Results

Body Composition and the Relationship between Body
Fat and Fat-Free Mass

As previously described [5], male C57BL/6 mice were given ad

libitum access to standard chow (C), high fat diet (HF), or high fat

diet plus liquid Ensure (EN) for 19 weeks, while some mice were

fed the high fat or the high fat plus Ensure for 7 weeks before being

switched back to chow for the remaining 12 weeks (HF-C and EN-

C, respectively). Figure 1A shows the body weight changes of the

various groups during the development of obesity on the HF and

EN diets as well as the weight loss and persistent obesity of the HF-

C and EN-C groups following a switch back to the chow diet at 7

weeks (error bars have been omitted for clarity). A single curve was

able to describe the adjusted fat-free mass as a function of body fat

mass for all groups at all time points (Figure 1B) and is analogous

to the curve discovered by Forbes describing human body
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composition change [6]. Our mathematical model used this fitted

curve along with the body weight data to compute the body fat

mass changes (Figure 1C). Without adjusting any parameters, the

model also accurately predicted the fat mass changes measured in

a separate experiment with high-fat feeding of C57BL/6 mice

followed by a switch to chow after 20 weeks (Figure 1D).

Continuous-Time Estimates of Energy Output
Our model calculated the first continuous-time estimates of the

energy output dynamics underlying the observed body weight

changes (Figure 2A). The 95% confidence interval surrounding the

calculated energy output rates resulted primarily from variability

of the measured energy intake rate (individual data points are

depicted along with the average black curve used for each group)

but also included the effect of body composition variability

(Figure 1B). The HF and HF-C groups had a transient decrease of

energy output at the onset of high fat feeding at 0 days. In contrast,

the EN and EN-C groups did not show a significant transient

reduction of energy output at the onset of the high energy diet.

Energy output gradually increased with weight gain in all of the

groups. Following the return to the chow diet, the HF-C group

had a transient increase of energy output which was not seen in the

EN-C group. Note that these transient changes account for

significant fractions of the overall energy imbalances and would be

difficult to detect using indirect calorimetry or doubly labeled

water methods.

Author Summary

The unrelenting obesity epidemic has resulted in
intensive basic scientific investigation into the molecular
mechanisms of body weight regulation—with the mouse
being the organism of choice for such studies. We know
that any mechanism of body weight regulation must
exert its effect by influencing food intake, energy output,
fuel selection, or some combination of these factors over
extended time scales (,weeks for mice). While food
intake and body weight can be frequently measured in
mice, current methods prohibit corresponding measure-
ments of energy output or fuel selection on such long
time scales. We address this deficiency by developing a
mathematical method that quantitatively relates mea-
surements of food intake, body weight and body fat to
calculate the dynamic changes of energy output and net
fat oxidation rates during the development of obesity
and weight loss in male C57BL/6 mice. The mathematical
model is based on the law of energy conservation, makes
very few assumptions, and provides the first continuous-
time estimates of energy output and fuel selection over
periods lasting many weeks. Application of our method-
ology to various mouse models of obesity will improve
our understanding of body weight regulation by placing
molecular mechanisms in their whole-body physiological
context.

Figure 1. C57BL/6 mouse data and model predictions for fat mass. Panel A: measured body weight in male C57BL/6 mice from 5 diet
groups: the C group on chow diet (closed black circles), the HF group on high fat diet (closed blue triangles), the EN group on high fat diet plus
Ensure (closed pink squares), the HF-C group on high fat diet for 7 wk followed by a switch to chow (open red triangles), and the EN-C group on high
fat diet plus Ensure for 7 wk followed by a switch to chow (open green squares). The solid lines labeled are fitted curves to body weight data. Panel
B: Measured body fat mass (F) and adjusted fat free mass (FFM) from the 5 groups designated using the same markers as in Panel A. These data were
fit to a single exponential function for all groups: FFM~25:3z0:10|Fz0:00042| exp 0:45|Ff g (thick line with thin lines representing 95%
confidence intervals). Panel C: measured fat mass from the 5 groups where the data point markers was the same as in Panel A. The solid lines are
model predictions for fat mass. Panel D: measured fat mass from a separate experiment with two groups of male C57BL/6 mice: group one on chow
diet for 33 wk (closed black circles); group two on high fat diet for 20 wk followed by a switch to chow (closed blue triangles). The error bars
represent 95% confidence interval for the measurements. The curves represent the model predictions for fat mass in groups one (black) and
two (blue).
doi:10.1371/journal.pcbi.1000511.g001

Energy and Fat Metabolism in Mice
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Continuous-Time Estimates of Fuel Selection
Net fat oxidation rates increased sharply at the onset of high fat

feeding in the HF and HF-C groups, but did not rise sufficiently to

match the increase of fat intake (Figure 2B). Interestingly, despite

similar increases of fat intake in the EN and EN-C groups

compared with the HF and HF-C groups, the initial increase of net

fat oxidation was significantly attenuated. Net fat oxidation

gradually increased in all the groups as body weight increased.

Figure 2. Total energy intake (IT), fat intake (IF), and model predictions for energy output (E) and net fat oxidation rates (FatOx) in
male C57BL/6 mice. Each row represents one of the five diet groups (C, HF, EN, HF-C, EN-C). Panel A: energy intake measurements (black data
points) were fit according to the thin black curves and used as inputs to our model. The model predictions for energy output are shown as thick red
curves along with 95% confidence intervals (thin red curves). Panel B: measured fat intake (black data points), average fat intake over each diet period
(thin black curves), and model predictions for net fat oxidation rate (red curves) along with 95% confidence intervals.
doi:10.1371/journal.pcbi.1000511.g002
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Following the switch to chow, there was a transient increase of net

fat oxidation in both HF-C and EN-C groups before falling to

match the low level of fat intake after a few weeks.

A useful measure of fuel selection is the respiratory quotient,

RQ, where a value of 0.7 reflects a state of pure fat oxidation

whereas a value of 1.0 reflects a state of pure carbohydrate

oxidation and intermediate values represent a fuel selection

mixture (see Methods). The estimated 24 hour RQ (Figure 3)

demonstrates the impact of both diet and body composition on

fuel selection. The HF group had an immediate decrease of RQ

due to the diet followed by a slow progressive decrease as body fat

gradually increased. The EN group showed little initial change of

RQ which then progressively decreased to an intermediate value.

After switching to the chow diet, the HF-C group had a rapid

increase of RQ towards that of the C group whereas the EN-C

group had a transient decrease of RQ before increasing towards

the C group.

Discussion

The mouse has become the most popular organism for

investigating molecular mechanisms of body weight regulation.

But understanding the physiological context by which a molecule

exerts its effect on body weight requires knowledge of energy

intake, energy expenditure, and fuel selection. Our simple

mathematical method calculates the dynamics of energy output

and fuel selection over extended time periods using longitudinal

measurements of body weight, food intake, and body composition.

We showed that our method can detect both transient changes of

energy expenditure and net fat oxidation rates as well as longer

timescale changes found with weight gain and loss. Similar

methodology has been previously developed by our group to relate

human body-composition changes with dynamic adaptations of

fuel selection in both adults [7] and infants [8]. The method is

especially well-suited for mouse studies because food intake can be

accurately measured over the extended time periods required to

measure significant changes of body weight and body fat. While

we have applied the model to data averaged within groups of mice,

it would be also interesting to examine individual mouse

trajectories as a way of investigating inter-individual variability.

Our equations extract information about energy output that is

already present in the body weight and food intake data. Other

than the law of energy conservation, the only assumption was that

the relationship between changes of body fat and fat-free mass

were described by a well-defined function in accordance with the

Forbes theory of body composition change [6]. This assumption

was confirmed in the present study for mature male C57BL/6

mice (Figure 1B) and we hypothesize that genetic manipulations

can alter the shape of this function. However, once the function

has been determined we showed that it provided accurate

estimates of body fat changes in an independent feeding

experiment using body weight measurements alone (Figure 1D).

Therefore, knowledge of the Forbes curve for a given mouse

model eliminates the need for frequent body composition

measurements.

To estimate the net fat oxidation rate and RQ, an additional

assumption regarding carbohydrate balance was required (see

Methods). We found that the Forbes function (Figure 1B)

determined the relationship between food intake, body composi-

tion change, and net fat oxidation rate [7]. While both humans

and mice have Forbes functions that increase with body fat mass,

the concavity of the curves is opposite [6]. Therefore, great caution

should be exercised when extrapolating fuel selection results in

mice to predict human responses. The physiological reason for this

difference is presently unclear. Our research group is actively

engaged in developing detailed models of the complex interactions

between carbohydrate, fat, and protein metabolism in humans [9]

to better understand the relationship between the physiological

drivers of fuel selection and the Forbes body composition curve.

We plan to develop similar models in mice to help understand

these relationships and the differences between the species.

In contrast to our method, currently available techniques for

estimating energy expenditure are expensive, involve a plethora of

assumptions, and can impact the behavior of the mice [3,4]. These

factors make it common to find reports of energy expenditure rates

that are quantitatively inconsistent with the measured energy

intake and body weight changes found in mice that were not

subjected to these procedures. As an illustrative example, consider

the recent publication by Funato et al. where the energy intake

rate of the wild type mice was at least 17 kcal/d and the energy

expenditure measured by indirect calorimetry was less than

5 kcal/hr/(kg BW)0.75. This translates to an absolute expenditure

rate of less than 10.7 kcal/d for a mouse that was at most 40 grams

at the time of measurement [10]. Such a large positive energy

balance would translate to a rate of weight change of at least

4.7 g/week (if all excess energy was deposited as fat) versus the

measured weight gain which was less than 1 g/week. The purpose

of this example is not to criticize the work of Funato et al., but

rather to highlight how even careful indirect calorimetry and food

intake measurements can lead to estimates of energy imbalance

that are inconsistent with the weight gain measurements.

Our own attempt to use indirect calorimetry to validate the

model predictions of energy expenditure and fuel selection

highlighted two important issues. First, the mice that were

consuming the high energy diets lost significant amounts of weight

when moved to the indirect calorimetry cages indicating that their

behavior was not representative of the mice not subjected to the

procedure. Second, the measured energy expenditure rates were

unrealistically high compared to the model predictions for all

groups of mice. In fact, the measured energy expenditure rate was

higher than the measured energy intake in the chow-fed mice that

did not lose weight (an impossibility) and greatly exceeded the

expenditure required to explain the weight loss in the mice fed the

high energy diets. These discrepancies led us to diagnose a

Figure 3. Model predictions for the daily respiratory quotient
(RQ). The C group was fed a chow diet (black), the HF group was fed a
high fat diet (blue), the EN group was fed a high fat diet plus Ensure
(pink), the HF-C group was fed a high fat diet for 7 wk followed by a
switch to chow (red), and the EN-C group was fed a high fat diet plus
Ensure for 7 wk followed by a switch to chow (green).
doi:10.1371/journal.pcbi.1000511.g003

Energy and Fat Metabolism in Mice
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technical problem with the indirect calorimetry equipment. Thus,

we were unable to validate the model estimates of energy

expenditure and fuel selection.

The field of farm animal nutrition has a long and rich history of

using mathematical modeling to analyze animal growth and

identify nutritional factors that potentially limit growth rate [11–

14]. The simplest models describe the efficiencies of various diets

in their ability to deposit body energy, often specified in terms of

body fat and protein [11,13,14]. Inputs to such models include

energy intake, body weight, and the rates of body fat and protein

deposition. The model outputs include the efficiencies of protein

and fat deposition as well as the so-called maintenance energy

requirement which is roughly defined as the energy intake

required when the animal is not growing. An alternative

representation uses energy intake, body weight, total energy

expenditure (by calorimetry methods), and protein deposition rate

(via nitrogen balance) as model inputs and predicts the

maintenance energy requirement, fat deposition rate, and body

protein and fat deposition efficiencies.

At the next level of complexity, animal growth models prescribe

an energy partitioning rule that specifies how body protein will

accumulate for a given food intake rate as a function of body

weight, age, or body protein. Energy partitioning rules are often

complex [12,13], but can be thought of as similar to the Forbes

function that specifies how energy imbalances are partitioned

between body fat and fat-free mass. A significant difference is that

our approach is applied to mature mice whose overall growth rate

was minimal despite their ability to gain and lose fat-free mass in

response to the various diets.

Once the partitioning rule is specified, the outputs of animal

growth models include body fat mass, maintenance energy

requirement, as well as body fat and protein deposition efficiencies

given the food intake and body weight as model inputs. In

contrast, our model outputs are body fat mass, fuel selection, and

total energy expenditure which are more relevant for mouse

obesity studies and avoids the known problem of arbitrarily

distributing total energy expenditure between tissue deposition

costs versus maintenance energy requirements [11,14–16]. Animal

growth models have often used power-law functions of body

weight to model the maintenance energy requirements that were

previously calculated using the above methods. Once specified, the

model of maintenance energy requirements can be used along

with the calculated efficiencies of protein and fat deposition and

the energy partitioning rule to predict body weight and body fat

change as a function of the food intake [11,14]. We are presently

developing a model of total energy expenditure in mice that will

allow prediction of body weight and composition changes as well

as fuel selection when food intake is the only input to the model.

A weakness of our methodology is that it does not distinguish the

various components of energy output including resting metabolic

rate, thermic effect of feeding, adaptive thermogenesis, physical

activity, or any changes of energy excreted in urine and feces that

are unaccounted for by the estimates of diet metabolizability.

Furthermore, the method does not operate on a within-day time

scale and therefore cannot address changes between day versus

night or transitions between fed and fasted states. Indirect

calorimetry is required to address these issues and would provide

important information for the interpretation of our calculated

longer-term estimates of energy output and fuel selection. We

believe that the combination of our continuous-time methodology

with indirect calorimetry measurements at judiciously chosen time

points can be applied to various mouse models of obesity as a

powerful tool for characterizing the metabolic dynamics underlying

experimentally observed body weight changes.

Methods

Ethics Statement
We certify that all applicable institutional and governmental

regulations concerning the ethical use of animals were followed

during this research. All procedures were approved by the

National Institute of Diabetes and Digestive and Kidney Diseases

Animal Care and Use Committee.

Mouse Experiment
Full details of the experiment were previously described [5].

Briefly, forty seven 3 month old male C57BL/6 mice weighing

25.961.2 g (The Jackson Laboratory, Maine) were housed

individually and randomly assigned to five weight-matched

groups: 1) C group (N = 12) continued on the chow diet; 2) HF

group (N = 12) on a high fat diet (F3282; Bio-Serv Inc., NJ;

5.45 kcal/g with 14% energy derived from protein, 59% from fat,

and 27% from carbohydrate); 3) EN group (N = 11) on the high fat

diet plus liquid Ensure (Abbott Laboratories, Kent, UK), which

had an energy density of 1.06 kcal/ml with 14% of energy derived

from protein, 22% from fat, and 64% from carbohydrate; 4) HF-C

group (N = 6) switched from high fat to chow after 7 weeks; 5) EN-

C group (N = 6) switched from high fat plus Ensure to chow after 7

weeks. All animals received free access to water and food

throughout the study. The high fat diet was provided using

Rodent CAFÉTM feeders (OYC International, Inc., MA), and

liquid Ensure was provided in a 30-ml bottle with a rodent sip tube

(Unifab Co., MI) and liquid intake was measured every day. Solid

food intake was corrected for any visible spillage and was

measured every day for the high fat diet and every other day for

the chow diet using a balance with a precision of 0.01 g (Ohaus

model SP402). Body composition was measured once per week

using 1H NMR spectroscopy (EchoMRI 3-in-1, Echo Medical

Systems LTD, Houston, TX) after body weight was determined.

Mathematical Model
We begin with the law of energy conservation, also known as the

energy balance equation:

rF
_FFzrFFMF _FFM~IT{E ð1Þ

where F is the body fat mass, FFM is the fat-free mass defined as

the measured body weight, W, minus the fat mass, and

rF ~9:4 kcal=g and rFFM~1:8 kcal=g are the energy densities

for changes in fat and fat-free masses, respectively [17]. IT is the

total metabolizable energy intake rate corrected for spillage, and E

is the energy output rate. We distinguish the energy output rate

from the energy expenditure rate since we did not measure any

changes of energy excreted in urine or feces. In other words, if

the metabolizable energy content of each diet is constant then

our calculation of the energy output is equivalent to energy

expenditure.

Analogous to the Forbes theory of human body composition

change [6], we hypothesized that there is a well-defined, time-

invariant function, a, that describes the relationship between

changes of FFM and F in male C57BL/6 mice:

a:
dFFM

dF
ð2Þ

Once the function a is specified, equation (1) can be solved for the

energy output rate as a function of the measured energy intake

rate and the rate of body weight change as follows:

Energy and Fat Metabolism in Mice
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E~IT{
rF zrFFMa

1za

� �
_WW ð3Þ

The fat mass is given by solving the following differential equation:

_FF~
_WW

1zað Þ ð4Þ

Alternatively, if the Forbes assumption does not apply for a given

mouse model (for example, during periods of significant growth), a

curve could be directly fit to the measured fat mass time series data

and used in place of equation 4. While this procedure would give

equivalent results, it necessitates frequent body composition

measurements for every experiment.

Note that very few assumptions were made in the development

of our equations to estimate energy output. All of the above

equations were derived from the law of energy conservation (1)

and the only assumption was that there exits a well-defined Forbes

relationship, a, relating changes of body fat and fat-free masses –

an assumption that was directly confirmed by comparison to

measured body composition data.

Since we are also interested in fuel selection, we must consider

the fates of dietary macronutrients including their oxidation rates,

storage in the body, as well as major inter-conversion fluxes where

carbohydrate can be converted to fat (i.e., de novo lipogenesis) and

amino acids can be converted to the carbohydrate glucose (i.e.,

gluconeogenesis). The following macronutrient balance equations

represent these changes:

rF
_FF~IF zDNL{FatOx

rP
_PP~IP{GNG{ProtOx

rG
_GG~ICzGNG{DNL{CarbOx

ð5Þ

where P is body protein, G is glycogen, GNG is the gluconeogenic

rate, DNL is the de novo lipogenic rate, and IF, IP and IC are the

intake rates of dietary fat, protein and carbohydrate, respectively.

The oxidation rates of fat, protein, and carbohydrate (FatOx,

ProtOx, and CarbOx, respectively) sum to the total energy

output, E.

To simplify the macronutrient balance equations, we note that

glycogen stores are small, especially when compared with daily

carbohydrate intake rates. For example, humans have a glycogen

pool size of about 500 g which is equivalent to the typical amount

of carbohydrate consumed over ,2 days and equilibrates on a

time scale of ,1 day [9,18]. The equilibration time is likely even

more rapid in mice since they typically consume carbohydrate at a

rate of ,2 g/d and their glycogen stores are probably less than

0.6 g (assuming maximal glycogen pool sizes of 8% of liver weight

and 0.6% of muscle weight as observed in rats [19] and assuming

that mouse liver is less than 5 g and muscle is less than 30 g [5]).

Thus, over the time-scale of interest the system is in a state of

average carbohydrate balance:

ICzGNG&DNLzCarbOx ð6Þ

Therefore,

rF
_FF~IF zDNL{FatOx

rP
_PP~IPzIC{DNL{CarbOx{ProtOx

ð7Þ

If we define the net fat oxidation rate as follows:

FatOxnet:FatOx{DNL ð8Þ

then the equation for body protein change becomes:

rP
_PP~IPzIC{DNL{CarbOx{ProtOx

~ IT{IFð Þ{ E{FatOxnetð Þ
ð9Þ

Finally, we assume that FFM is proportional to body protein such

that

rFFMF _FFM~ IT{IFð Þ{ E{FatOxnetð Þ ð10Þ

Therefore, we have a simple a two-compartment macronutrient

partitioning model which we have previously shown has an

invariant manifold as its attractor [20]:

rF
_FF~IF {FatOxnet

rFFMF _FFM~IT{IF { E{FatOxnetð Þ
ð11Þ

From equations 4 and 11, the net fat oxidation rate can be written

as a function of the measured fat intake rate and the rate of body

weight change:

FatOxnet~IF {
rF

_WW

1zað Þ ð12Þ

Note that the carbohydrate balance assumption was only required

to calculate the estimate of net fat oxidation, but was not required

to calculate the energy output rate.

The shape of the Forbes curve has direct implications for how

fat oxidation rate is related to changes of body fat. This can be

seen by calculating the partial derivative of the net fat oxidation

rate with respect to body fat:

L
LF

FatOxnet~
rF

_WW

1zað Þ2
La

LF
ð13Þ

Interestingly, this quantity has opposite sign in humans versus

mice. Thus, great care must be taken when fuel selection

measurements in mice are extrapolated to humans.

The respiratory quotient, RQ, is the carbon dioxide production

rate divided by the oxygen consumption rate and was approxi-

mated by:

RQ~ 0:7|FatOxnetz0:83|ProtOxzCarbOxð Þ=E ð14Þ

This approximation assumes a negligible contribution of de novo

lipogenesis and gluconeogenesis which is reasonable since these

fluxes act to offset each other with respect to CO2 production.

Since the carbohydrate oxidation rate is approximately equal to

the carbohydrate intake rate on long time scales, the calculated RQ

may have slight inaccuracies during rapid transitions immediately

after diet switches, but will be reasonably accurate thereafter.

To apply our mathematical model to data from our mouse

experiment, food intake measurements were averaged over each

diet period and we assumed stepwise transitions immediately after

each diet switch followed by a smooth approach to the average

intake of the final diet period. These curves are depicted as solid

Energy and Fat Metabolism in Mice
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black lines in Figure 2 and represent the average of the individual

intakes shown by the data points. Body weight measurements for

the C, HF, and EN groups of mice were fit using third order

polynomial functions of time, as depicted by the solid curves in

Figure 1A. Following the diet switch in the HF-C and EN-C

groups, the body weight curves were fit to exponential functions.

The rates of change of body weight were then calculated by

computing derivatives of the fitted curves. Other than their ability

to adequately describe the model input data, the precise

mathematical form of these curves is not important.

The Forbes body composition function, a, was fit to an

exponential function of the body fat mass as shown in Figure 1B.

Specifically, we assumed that the individual data points for fat-free

mass versus body fat for each group of mice were described by the

following equation:

FFM~bzcFz
d

k
exp kFð Þ ð15Þ

The Forbes function, a, is then given by:

a:
dFFM

dF
~czd exp kFð Þ ð16Þ

Since the intercept parameter, b, does not influence the Forbes

function, we adjusted the FFM data for each group by subtracting

the difference between the calculated intercept parameter for each

group and its average value across groups. We then simultaneously

fit the adjusted FFM data from all groups to arrive at our final

Forbes function used for all of the groups.

The parameter values for the Forbes body composition function

a were determined via a Markov Chain Monte Carlo (MCMC)

method [21] implemented in MATLAB (version R2008a; Math-

Works Inc, Natick, MA). To approximate the posterior distribu-

tion of the parameters in the Forbes a function (equation 16), we

drew 100,000 MCMC samples of parameter values, of which the

first 30000 were discarded as burn-in period; afterwards one fifth

of the rounds were retained. Parameter sets were drawn from a

proposal density that were normally distributed and centered on

the previous value. The variance of the proposal density was tuned

for an average acceptance rate of ,0.25 during the burn-in

period. The convergence of the chain was assessed both by visual

inspection of the trace plots for all the parameters and through the

Geweke test [22]. At each sampling, the probability of accepting

the new parameter set given current parameter set was min 1,rð Þ
where r is the Metropolis ratio [21]. The posterior distribution of

energy output (equation 3) was calculated from the joint

distribution of the parameters in the a function and the energy

intake in each group of the animals assuming no correlation

existed between the two distributions. The energy intake in each

group of animals was normally distributed with a standard error of

0.39, 0.39, 0.41, 0.55, and 0.55 Kcal/d for the C, HF, EN, F-C,

and EN-C groups, respectively. The 95% confidence intervals of

the predicted energy output were obtained by calculating the 2.5th

and 97.5th percentiles of the posterior distribution of energy

output.
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