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Abstract

Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for
directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a
function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen
replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection
emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact
network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges
of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness,
quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal
for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are
identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic
hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different
classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates.

doi:10.1371/journal.pcbi.1000536

Editor: Rustom Antia, Emory University, United States of America

* E-mail: alange.publ@gmail.com

Citation: Lange A, Ferguson NM (2009) Antigenic Diversity, Transmission Mechanisms, and the Evolution of Pathogens. PLoS Comput Biol 5(10): e1000536.

Received January 20, 2009; Accepted September 17, 2009; Published October 16, 2009

Copyright: © 2009 Lange, Ferguson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AL and NMF thank the Howard Hughes Medical Institute for research funding, and NMF thanks the MRC for Centre and project funding. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

There are two major principles by which pathogens avoid their
elimination: escaping the host immune response via antigenic
variation or immune evasion, or transmission to a new immuno-
logically naive host. Directly transmitted pathogens which cause
chronic diseases, such as many sexually transmitted infections
(STTIs), tend to rely more on the former, while many acute infections,
for instance measles, rely more on high transmissibility. Indeed
pathogens such as measles show very little antigenic diversity, with
immune responses being strongly cross-reactive between strains.
There are then those pathogens which have intermediate levels of
both immune escape and transmissibility — such as influenza,
rhinovirus and RSV (here referred to as FLIs — flu-like infections).

The evolutionary success of directly transmitted pathogens can
also be seen to depend on the nature, frequency and structure of
contacts between hosts. Infections transmitted to a small number
of hosts (per time unit and infected individual) via intense contact
(e.g., via fluids) are usually caused by pathogens of high antigenic
diversity and long duration of infection, while those transmitted
via casual contact (e.g., via aerosol) with a large number of hosts
may typically have lower diversity and much shorter durations of
infection. While many of the evolutionary constraints are different
[1,2], vector-borne infections typically fall in the former of these
two classes [3,4]. The relationship between so-called infection and
transmission modes with respect to substitution rates of RNA
viruses has been investigated in [5].
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It is straightforward to explain the long duration of infection
and consequent antigenic diversity of sexually transmitted or
blood-borne infections: the frequency of relevant contacts between
hosts is low, meaning infection needs to be extended to ensure the
reproduction number (the number of secondary cases per primary
case [6]) exceeds one. However, many childhood diseases (ChDs)

at least those caused by RNA viruses — would also seem to
have the genetic potential to prolong their survival within one host
via by generating antigenic variants. The fact this is not observed is
much harder to explain. At its root are the tradeoffs between
maximizing between-host transmissibility and within-host duration
of infection, and these are what we focus on exploring in this
paper.

The molecular genetic basis of transmissibility is still poorly
understood for most pathogens. However, all other things being
equal, the level of pathogen shedding by a host (whatever route is
relevant) must be positively correlated with infectiousness. A first-
pass analysis might therefore postulate that overall transmissibility
(as quantified by the basic reproduction number, Rj) might be
proportional to the total number of pathogen copies produced
during an infection — the cumulative pathogen load. Past work
using a simple model of the interaction between a replicating
pathogens and adaptive host immune responses examine what rate
of antigenic diversification within the host would maximize
cumulative pathogen load [7]. This showed that the combination
of resource-induced (whether nutrients or target cells) limits on
peak pathogen replication rates and an ever more competent
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Author Summary

Infectious diseases vary widely in how they affect those
who get infected and how they are transmitted. As an
example, the duration of a single infection can range from
days to years, while transmission can occur via the
respiratory route, water or sexual contact. Measles and
HIV are contrasting examples—both are caused by RNA
viruses, but one is a genetically diverse, lethal sexually
transmitted infection (STI) while the other is a relatively
mild respiratory childhood disease with low antigenic
diversity. We investigate why the most transmissible
respiratory diseases such as measles and rubella are
antigenically static, meaning immunity is lifelong, while
other diseases—such as influenza, or the sexually trans-
mitted diseases—seem to trade transmissibility for the
ability to generate multiple diverse strains so as to evade
host immunity. We use mathematical models of disease
progression and evolution within the infected host
coupled with models of transmission between hosts to
explore how transmission modes, host contact rates and
network structure determine antigenic diversity, infec-
tiousness and duration of infection. In doing so, we classify
infections into three types—measles-like (high transmissi-
bility, but antigenically static), flu-like (lower transmissibil-
ity, but more antigenically diverse), and STl-like (very
antigenically diverse, long lived infection, but low overall
transmissibility).

immune response mean that the optimal strategy is not to diversify
as rapidly as possible, but instead to adopt an intermediate rate of
diversification. In addition, there are further tradeoffs associated
with high mutation rates — the ultimate being the error
catastrophe associated with error rates in genome replication
which exceed those seen in RNA viruses [8-11].

However, the assumption that transmission fitness (as quantified
by Ry) is linearly proportion to total pathogen load is clearly naive.
The instantaneous hazard of infection for a susceptible host in
contact with an infected host at a point in time may indeed be
linearly related to pathogen load at that time, but going from this
assumption to a calculation of the overall reproduction number is
far more complex than simply calculating the area under the
pathogen load curve. Integrating a hazard over the finite time of
contact gives an exponential dependence between the probability of
infection ¢ and pathogen load v, i.e., goc 1 — exp (— v/vr). Such an
expression fits experimental data [12] on the relationship between
HIV viral load and transmission rates well (cf. Fig. 1). This means
the parameter v represents a pathogen load threshold below which
the probability of infection declines rapidly, and above which it
rapidly saturates to some maximal value. Hence vz can be thought
of as the characteristic pathogen load required for transmission —
though it is not a true minimum infectious dose — there is a finite
probability of infection for v« vy , but that probability decays
exponentially fast with reducing v.

A key insight (and assumption) of the work presented here is that
while we might expect pathogens to be able to evolve to reduce (or
increase) v, there are fundamental physical constraints imposed
by transmission routes on the minimum value of vz attainable. An
STI might have a minimum value of vy approaching a single
pathogen particle (e.g. virion) but, for respiratory infections, the
much lower proportion of all pathogen particles emitted from a
host, which have any chance of contacting epithelial tissues of a
susceptible host (even conditioning on a susceptible host being in
the near vicinity of the infected individual), necessarily means that
vy must be orders of magnitude larger for such pathogens.
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Figure 1. Risk of HIV-1 transmission as a function of viral load,
using data from [12]. The maximal risk, which corresponds to 11.8
per 100 person-years, is normalized to 1, and the viral load in 10 liters of
plasma plotted. Data points (blue polygon) are compared with the
least-squares best fit of the infectiousness model given in the text
(green); cf. (7). The viral load vy, fitted by the data, indicates the order of
magnitude needed for a substantial probability of transmission — this
is the load of pathogen referred to as infectiousness threshold (gray).
doi:10.1371/journal.pcbi.1000536.g001

‘We will show that there is a critical value of vy above and below
which two different sets of pathogen types are evolutionarily
favored (in terms of having maximal Rg). Within each set, the
particular type which has maximal Ry will be seen to depend on
the local structure of the contact network between hosts.

Our approach is to construct a model of within-host pathogen
dynamics which incorporates adaptive host immunity and antigenic
diversification. The key output from this model is how pathogen
load varies through time during an infection. We then calculate the
basic reproduction number, Ry, for that infection assuming a
particular local contact network structure and frequency of contacts.

The within-host model developed here is an extension of a model
studied earlier by one of us [7]. Our work builds on a range of past
work examining the tradeoffs between within-host replication and
persistence, antigenic variation and between-host transmission
success, initiated by [13], and followed by [14,15], which first
include immune response and explore cross-immunity. More recent
studies, to mention a few, investigate pathogen evolution under
limited resources [16], include virulence [17], consider the
immunological response in more detail [18], examine the impact
of between-host contact structure on pathogen evolution [19,20],
and explore host-pathogen co-evolution [21,22].

We use Ry as our fitness measure for determining evolutionarily
optimal phenotypic strategies. We do not explicitly model
competition between pathogen strains with different phenotypes
co-circulating in a host population, since for infinite populations, Ry
has been shown to be the fitness measure which determines the
outcome of such competition [23]. This holds even when comparing
strains with different rates of antigenic diversification — if the strain
with lower Ry induces no long-lived immunity in the host (giving
SIS dynamics) and the higher Ry strain induces life-long immunity,
(giving SIR dynamics) the higher Ry strain will stll always
(eventually) outcompete the lower Ry strain. There are limitations
to the use of Ry as a fitness measure (further considered in the
Discussion) — for instance, in situations where strains interact
asymmetrically via cross-immunity, or when populations are small
and stochastic extinction is significant. In addition, while we take
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account of local (egocentric) network structure in defining Ry in our
analysis, large-scale network structure might also affect the
determinants of evolutionary fitness. However, we feel these
limitations are outweighed for an initial analysis by the analytical
and computational tractability afforded by use of a relatively simple
transmission measure, and the consequent ability not to rely on
unintuitive large-scale simulations.

We do not explicitly consider how a pathogen could evolve its
biological characteristics to maximize transmission fitness (i.e. the
evolutionary trajectory a pathogen would take through parameter
space). There are undoubtedly many constraints on the possible
paths which pathogens can take [24], however, and exploring how
these affect, for instance, pathogen adaptation to a new host
species, will be an important topic for future work.

Results

Within-host dynamics

The multi-strain model used extends past work [7] by adding
cross-immunity between strains (see Methods for details). The
infection within one host starts with a single strain, with further
strains arising through random mutation. All strains compete for
resources (e.g. target cells) to replicate. Immune responses to
strains are assumed to be predominantly strain-specific, albeit with
a degree of cross-immunity, the strength of which decays with the
genetic distance between strains. Pathogen replication depletes
resource, and independently from immunity, limits to pathogen
growth are set by the replenishment rate of resource. This quantity
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only determines the short-term dynamics of the model whereas
immunity is also responsible for the long-term behavior.

The dynamics of the model is characterized by an initial period
of exponential growth of the pathogen load, which eventually
slows due to immune responses and resource limitations. One
observes a latency period and an initial peak. Pathogen load then
declines exponentially. If the trough load of a pathogen strain
drops below a threshold level we assume the pathogen is
eliminated from the host (to avoid persistence at unrealistically
low, fractional, loads). However if a novel strain emerges before
the seed strain goes extinct, pathogen load can recover, so long as
there is sufficient resource available and cross-immunity is not too
strong — leading to a second, albeit lower peak in pathogen load.
Further peaks in pathogen load can occur via the same
mechanism. The rate at which new strains arise is the most
important determinant of the number of pathogen load peaks seen
and thus the overall duration of infection. Less intuitively, this rate
also determines the size of the initial peak (discussed below).

Since mutation is modeled stochastically, we average over
multiple realizations (e.g. Fig. 2A,B) of the model to calculate an
average pathogen load distribution over time (Fig. 2C). The
average distribution consists of a first latency period, a large initial
peak, a second latency period and possibly an irregular oscillating
part of low pathogen load. The point at which the viral load
vanishes determines the duration of infection.

We systematically calculate average pathogen load curves from
the within-host model for wide ranges of two biological parameters:
the antigenic mutation rate d (i.e., the rate of mutations which lead
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Figure 2. Within-host model dynamics. Graphs show pathogen load [red], specific immunity [blue], resource [green], number of strains [black]
and corresponding mean values plotted over time — for individual hosts in (A,B,D) and average hosts in (C,EF), respectively. (A) and (B) show two
different model realizations for the same parameters of antigenic mutation proportion d=10"° and replication rate p=8/day, defining type A
infections, cf. the Methods section and Fig. 3. One observes extremely different durations of infection — reaching from a few days up to one year. (C)
shows the corresponding average behavior over 100 realizations, characterized by low pathogen loads at large times. Determined by mean load
values, this infection type corresponds to intermediate and low mean durations of infection — much shorter than the approached maximum of one
year. This is also reflected by the mean strain number, which reaches a maximum of 10 at the initial load peak, drops down to almost zero and rises
again slowly to values of about 1 for a few months. (D) and (E) show the pathogen dynamics specific to type B infections with =1073 and p=3/day,
for individual and average hosts, respectively. The mean values of load and strain number coincide with the individual values, which confirms long
durations and high strain numbers as characteristic trait of this infection type. (F) illustrates type C infections through average curves (over 100 runs)
at 6=10"° and p=3/day; mean and individual values coincide almost identically as the average strain number is close to 1.
doi:10.1371/journal.pcbi.1000536.9002
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to antigenically novel strains) and the pathogen replication rate p.
These two parameters span what we call pathogen parameter space, in
which evolutionarily favored pathogens are represented by points
that are associated with maximal fitness values.

From the discussion in the introduction, we can immediately
identify the cumulative pathogen load and duration of infection as
epidemiologically relevant quantities. Fig. 3A,B show these as a
function of the parameters ¢ and p. In addition, Fig. 3C shows a
quantity — interpolating between the two former — evaluated only
for the initial period of the infection (utilizing the expression relevant
for transmission, i.e., 7(1 — exp (¥/vr)), quantified at the initial peak 7
of the pathogen load ). We will see below that all the surfaces shown
in Fig. 3A—C crudely represent fitness surfaces associated with three
distinct pathogen types. The plots in Fig. 2 show the corresponding
within-host dynamics for the different pathogen types.

The within-host dynamics generate a tradeoft between initial
peak pathogen load and antigenic diversity: high initial peak load
corresponds to low diversity and vice-versa (see Methods for more
details). This tradeoff has implications for transmission, giving an
enhanced spread of pathogens of low antigenic diversity during the
initial peak of pathogen load. This effect explains the emergence of
(ChD-like) infections with short durations of infection within our
model framework (Fig. 3C vs. 3F). Long durations of infections
(Fig. 3B) are also obtained, as expected, for pathogens with greater
antigenic variation.

The between-host model
To calculate the reproduction number (i.e., the pathogen
fitness), we model a dynamic contact network in the neighborhood
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of one iitially infected host. The profiles of pathogen load over
time obtained from the within-host model then determine the
infectiousness of the infected host to its neighbors. (We utilize the
mean-load profiles averaged over individual hosts.) Epidemiolog-
ical dynamics are determined by 4 parameters. Two of these relate
to properties of the transmission route: the infectiousness
parameter vz and the contact rate between hosts o. Together
these define a two-dimensional parameter space we term
transmission space. 'The other two define properties of the contact
network between hosts: the replacement rate of neighbors w and
the cliquishness/clustering of the network ¢ (i.e., the proportion of
pairs of contacts of a host who are also contacts of each other).
These two parameters define what we term contact space.

We build a model (cf. Methods) incorporating these 4
parameters (plus implicitly the within-host pathogen space
parameters) to calculate the number of first generation infections
from an infected individual in an entirely susceptible population.

Varying the 4 parameters of transmission and contact space, we
obtain three different classes of fitness landscapes over pathogen
space — as represented by Fig. 3D-F. The maxima of each
landscape differ with respect to their antigenic mutation rate (and
hence the resulting level of antigenic diversity) and within-host
pathogen replication rate. By changing the contact rate and
keeping the other transmission as well as the contact space
parameters fixed, one can shift between these classes. In general (as
shown further below), low, intermediate, and high contact rates
induce moderate, high, and low antigenic diversity, respectively, as
evolutionarily favored outcomes (represented by the locations of
the fitness maximum in Fig. 3D-F).

within-host

between-host

Figure 3. Qualitative relationship between between-host R, and within-host dynamics as a function of parameters governing
within-host antigenic diversity J and replication rate p. (A) the cumulative pathogen load X,; (B) the duration of infection D; (C) a combination
of the latter two at the initial load-peak (relevant for transmission, i.e., #(1 — exp (¥/vr)), quantified at the 1st peak ? of the pathogen load ¥, cf. (6)).
The reproduction number Ry is calculated for a transmission network with (D) low [x=0.1/day], (E) intermediate [« =1/day], (F) high contact rates
[=10/day], where network parameters and infectiousness and are utilized that allow for ChDs (i.e, N =20, 7=0.2, ¢ =0.75, ®=0.001, and vy = 108).
Within-host parameter values are set to default values as given in the Methods section. The shapes of the surfaces and the locations of the maximums
are similar for the upper and lower row, i.e., for (A) and (D), (B) and (E), (C) and (F). The three distinct pairs of locations of the maxima correspond to
our infection-type classification — representing FLIs, STIs, ChDs, respectively.

doi:10.1371/journal.pcbi.1000536.g003
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Infection types

There are clear similarities between the three classes of fitness
landscapes (Fig. 3D-F) and the different within-host infection
characteristics plotted in Fig. 3A—C. Low contact rates induce
landscapes that resemble the cumulative pathogen load, interme-
diate contact rates give landscapes resembling the the duration of
infection surface, and high contact rates map onto the surface of
Fig. 3C which characterizes the relative importance of the initial
peak in the pathogen load profile. We classify the optima of these 3
classes of fitness landscape infection types, labeling them A, B, and
C, respectively.

Varying the infectiousness parameter vy can also move the
fitness landscape between these types — as vy —0 (the STT limit;
ie., g—1, Ry— D), the fitness landscape becomes more similar to
the duration of infection surface (Fig 3B), while for vr—co (the
FLIs limit; ie., g—v, Ry—ZX,), it becomes more similar to the
cumulative pathogen load surface (Fig. 3A); cf. (7) and (6). It is
important to note that both of these limits involve substantial
antigenic diversity — where transmission fitness is dominated by
cumulative pathogen load (infection type A), while moderate
antigenic diversity is seen, and when infection duration dominates
fitness (infection type B), high antigenic diversity is selected for.
Neither maps on to the special case of infection type C (Fig. 3F) in
which optimal transmission fitness is achieved by a set of
parameters giving very low antigenic diversity (in essence a single
strain). For low antigenic diversity to be optimal, it is necessary for
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fitness to be dominated by the peak pathogen load achieved during
primary infection (i.e., the first peak of pathogen load).

Varying the transmission and contact space parameters more
systematically, one can map out the regions of parameter space for
which particular infection types are optimal (Fig. 4). This shows
how the emergence of pathogens of different types depends on the
properties of the between-host contact network. Pathogens with
low antigenic diversity (and thus short infectious periods) are
favored by high network cliquishness (i.e., when an individual’s
contacts are contacts of each other — as is the case for household
and school contacts), and the rate of turnover of network
neighbors is low (again the case for household and school
contacts).

So far we have assumed only the pathogen space parameters (&
and p) can change during pathogen evolution. Now we examine
making the infectiousness threshold vz a parameter which can
evolve under selection — albeit with constraints on its lower
bound set by the transmission route of the pathogen concerned.
Fig. 5 shows the results as a function of contact rate o for two
different choices of contact space parameters and lower bounds on
the infectiousness threshold parameter, suitable for a respiratory
pathogen and an STT respectively. Reproduction numbers (Fig. 5B)
lie in the expected range, and the three regimes of antigenic
diversity corresponding to the types A/B/C) can be found in the
evolutionarily optimal values of ¢ (Fig. 5A,C). Note that only type
A and type C diversity is seen for the respiratory pathogen
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Figure 4. Evolutionarily optimal antigenic diversity as a function of epidemiological contact rate ¢ and the infectiousness vy.
Different plots show results for different choices of between-host contact network, as defined by the replacement rate of network neighbors o
[horizontal] and the cliquishness ¢ [vertical]. For each set of parameters, pathogen space parameters are tuned to give optimal transmission fitness
(Ro). The color indicates the degree of antigenic diversity (represented by the value of § giving maximal Ry) seen for the evolutionarily optimal point
in pathogen space [blue =low diversity, red = high diversity]. Blue represents single strain ChD-like type C pathogens, which are not present for low
network cliquishness and high replacement rates (bottom right quadrant). Green represents intermediate antigenic diversity type A pathogens, while
orange and red represent high antigenic diversity type B pathogens — the arrows indicate the critical infectiousness threshold v§™* = 1062, Maximum
transmission probability per contact assumed to be y=0.2, with network neighborhood size of N =20 (typical of ChDs).

doi:10.1371/journal.pcbi.1000536.9004
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parameter choices, while only type B is seen for the STI parameter
set. Indeed for the STI parameter set, the evolutionary stable state
is independent of the contact rate, and is determined by vr
evolving to its minimum value.

As expected, the evolutionary optimal value of the infectiousness
parameter (Fig. 5B) is always close to the minimal attainable value,
except in the type C pathogen regime (where cliquishness is
necessary; cf. Fig. 4). The reason for the deviation from the
minimum value lies in a reduced local network saturation, which is
characteristic for type C: concentrating infectiousness over the
shortest possible time period (and consequently lengthening the
latent period) shortens the overlap between generations of
infections, and this reduces the chance that the secondary cases
of an index case infect remaining susceptible contacts of the index
(before the index can infect them). The effect (which yields an
enlarged susceptible number S in (6)) is minor, however — the
difference in Ry between the optimal value of vy and the
minimum bound set for a pathogen type is typically very small.

The evolutionarily optimal replication rate p is always low for
STI-like contact parameters (giving type B pathogens), reflecting
the need for long-lived infections, but shows greater variability for
respiratory pathogen parameter regimes (Fig. 5D) — being high in
the type A regime, but low for type C. The latter result reflects a
tradeoft between height of the initial peak in pathogen load and
length of the latent period — longer latency, as explained above,
can increase the number of direct infections caused by an index

-
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case by reducing the overlap between generations of infection.
Only higher (minimal) infectiousness values vy — realistic for
ChDs utilizing the respiratory transmission route — increase the
optimal replication rate for type C infections (cf. Text S1, Sect.
B.2). Note that these results are consistent with a recently
formulated hypothesis on tradeoffs between reproductive rate
and antigenic mutability [25], proposing a reciprocal relationship
between these two (pathogen space) parameters in real-world
infections.

Re-examining Fig. 4, it i3 clear that type A infections (green
areas) only exist when the infectiousness parameter vz exceeds
some minimum value (indicated on the graphs in Fig. 4 with an
arrow). In the absence of constraints, selection for maximal
transmissibility will clearly cause v to evolve towards 0. Hence
the effect of constraints on imposing a lower bound on vr has a
critical effect on what range of pathogen types are expected. We
define the value of the lower bound on infectiousness below which
infection type A is no longer found the critical infectiousness threshold.
Evolutionary dynamics show a phase transition at this point, as
can be seen in Fig. 6 which maps the areas of contact parameter
space for which different infection types are seen for choices of the
lower bound on vr just above and below the critical point v§.

As discussed already, the transmission route is likely to be the
most important determinant of the lower bound on vz, with STIs
and other non-airborne pathogens, including those requiring a
vector, being likely to achieve a much lower value of vy than
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Figure 5. Evolutionarily optimal pathogen parameters as a function of the epidemiological contact rate, « (in units of day™'). For each
value of o, the infectiousness threshold vz, within-host replication p, and antigenic diversity J, are tuned to maximize the reproduction number Ry.
(A) Ry [colored areas indicate the infection type according to the corresponding ¢ value, and Ry > 1]; (B) vz — subject to minimum bound v3'™; (C)
antigenic variation rate ¢; (D) replication rate p. Three sets of results [colored curves] are shown, for network parameters typical of STis [red], FLIs
[green], and ChDs [blue]. The following parameters were used: v = 10, N=2, y=0.6, ¢ =0.1, for STls; vt = 108, N=5,y=0.1, $=0.75, for FLIs;
vpt= 10°, N=20, y=0.2, $=0.75, for ChDs; and w=0.01 in all three cases. (We only examine the corresponding biologically realistic regimes of ¢,
discretized as indicated by dots.) The results demonstrate how the infections of our type-classification outcompete each other for different host-

contact rates.
doi:10.1371/journal.pcbi.1000536.9005
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exist for particular values of contact space parameters: ABC [white], AB [yellow], BC [purple], B [red]. Exactly which infection type is evolutionarily

optimal is then determined by the contact rate « (cf. Fig. 5A).
doi:10.1371/journal.pcbi.1000536.9006

respiratory pathogens (as assumed in Fig. 5). This is clear if one
views vr as quantifying how much shed pathogen is typically
wasted to achieve a single infectious contact. We therefore
speculate that the critical infectiousness threshold may have a
significant biological effect, with STIs — and also vector-borne
infections — being within the sub-critical domain (Fig. 6B), and
with ChDs and FLIs — not necessarily relying on a respiratory
transmission route being super-critical (Fig. 6A). Within the
super-critical regime, the presence of low-diversity ChD-like type
C infections depends less on the precise value of the critical
infectiousness threshold and more on the contact rate and contact
parameters. Infections of type C occur in contact networks with
high cliquishness and low replacement rates — but not in the
opposite case (cf. presence of blue areas in Figs. 4 and 5A). Vector-
borne infections (representing contact networks of large neighbor-
hood sizes N or high replacement rates @, and cliquishness ¢ not
playing a role) are thus excluded to be type C. At first sight they
seem to be type A, because of large reproduction numbers. Large
Ry, however, can also be the result of large neighborhood sizes or
high replacement rates — immediate from (6) and (8). The
quantity being important in this context is the lower bound on
possible infectiousness values, which is small (i.e., sub-critical,

VI <y this identifies vector-borne infections as type B.

Discussion

The work in this paper was motivated by a desire to understand
why the most transmissible human pathogens — archetypal
childhood diseases such as measles and rubella — show
remarkably little antigenic variation, while less transmissible
diseases — such as influenza (and many other respiratory viruses)
and sexually transmitted diseases show substantial diversity.
Addressing this question requires consideration of how evolvable
parameters governing the natural history of infection within a host
affect the transmission characteristics of a pathogen in the host
population.

We developed a relatively simple multi-strain model of the
within-host dynamics of infection. Pathogen particle consume
resource to replicate, and their replication is inhibited by a
dynamically modeled immune response with two components:
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strain-specific immunity, and cross-immunity. Cross-immunity
was assumed to be the key fitness cost of antigenic diversity within
the host; the benefit is a much enhanced duration of infection (and
thus transmission). Pathogens which have a low rate of generating
new antigenic variants are cleared from the host much faster than
those with a high rate of antigenic diversification, but also
maximize the initial peak level 