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Abstract

The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently
been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the
storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated
potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for
understanding step properties and show this hypothesis to be consistent with the available data, in particular the
observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque
relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a
comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes
novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful
general insights into the design of highly efficient molecular machines.
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Introduction

Bacteria swim by virtue of tiny rotary motors that drive rotation

of helical flagella. These motors are powered by a transmembrane

proton (or Naz) flux which is converted into torque. However,

little is known about the detailed mechanisms of energy

conversion, or torque generation. Recently, a new result has

provided direct insight into motor operation [1]: at low speeds,

the bacterial flagellar motor proceeds by steps. This stepping is

stochastic in nature, as manifested by the occurrence of occasional

backward steps even for motors locked in one rotation direction.

What is the origin of motor steps and how can these steps be

reconciled with the near perfect efficiency of the motor observed

at low speeds [2]? We argue that steps, including backward steps,

are an inevitable consequence of the physical structure of the

motor—a stator driving a ‘‘bumpy’’ rotor through a viscous

medium.

In response to chemotactic signals, flagellar motors switch from

counterclockwise to clockwise rotation causing cells to tumble or

change directions. In Escherichia coli, the basic mechanism of torque

generation appears to be the same for both directions of motor

rotation [3]. Torque is generated by the passage of Hz ions (or in

some organisms Naz ions) through the cytoplasmic membrane.

As shown schematically in Fig. 1A, torque is applied to the rotor,

including the flagellum, by the stator, which is comprised of

independent torque-generating units (MotA/B complexes) an-

chored to the peptidoglycan cell wall. The exact number of

torque-generating units can vary from motor to motor, with the

maximum estimated to be at least 11 [4]. The rotor includes 26

circularly arrayed FliG proteins that contact the MotA/B

complexes. The torque-speed relation of the motor has been

measured under a range of conditions [5–8]. The maximum

torque in the high load, low speed regime tracks the electrochem-

ical potential difference or proton motive force (PMF) across the

membrane, and the motor operates with nearly perfect efficiency

[2]. Whereas torque and efficiency fall off at high speeds, proton

flux and motor rotation are always strongly coupled with & 120
protons passing through the membrane per MotA/B unit per

rotation [2].

Recent experiments, where rotation was measured by attaching

a polystyrene bead to a flagellar stump driven by a counterclock-

wise-locked Naz-powered chimaeric motor at low speeds (low

Naz-electrochemical-potential difference and low stator num-

ber), revealed that the motor proceeds by steps [1]. The steps have

average size &13:8o, which corresponds to 26 steps per rotation,

exactly the number of copies of FliG around the rotor. Occasional

backward steps are observed and, interestingly, these are smaller

on average than forward steps (10:9o versus 13:8o). These

observations, as well as the stepping mechanism itself, have so

far remained unexplained. It has been suggested that stepping is

caused by the stochastic passage of ions. However, as pointed out

in [1], the energy provided by passage of a single ion can only

move the rotor attached to a 1mm polystyrene bead by 5o, much

less than the typical observed step size.

Here we propose a simple physical model to explain stepping:

the stator applies nearly constant torque to the rotor, but, at the

same time, contact forces on the rotor produce a potential and

therefore an additional torque with approximately the 26-fold

periodicity of FliG. Flagellar rotation is viewed as a circular

random walk in a bumpy potential biased to favor rotation in a

particular direction by the torque exerted by the stator elements.

Our model naturally accounts for the existence of backward steps,
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as well as the discrepancy between forward and backward step

sizes, and also predicts that step statistics depend on the absolute

position of the rotor around the circle. Our predictions are found

to be consistent with the available data, including angular diffusion

of the motor [9], and suggest how steps could be used to study the

physical structure of the motor. A novel testable prediction is that

the torque-speed relation will become sublinear at very low

torques.

Model
Our model for stepping relies on two main assumptions:

constant or nearly constant torque between stator and rotor and

an approximately 26-fold periodic contact potential.

(1) All torque-generating units apply torque simultaneously and

additively. Following the model of Meister et al. [10], we

assume that each MotA/B complex acts as a set of protein

springs that reversibly store the energy available from Hz (or

Naz) translocations (see Fig. 1B). The protein springs are

attached to fixed sites of the rotor circumference. When an

Hz passes through the membrane, it causes a spring to detach

from its attachment site, stretch, and reattach to the next site.

At stall, all springs are maximally stretched, such that the

PMF matches the energy necessary to stretch a spring to its

next site. At low speeds, the rotor moves and springs relax, but

these are quickly restretched by Hz passage, so that the

system remains in quasi-equilibrium with the torque set by the

PMF. Spring stretching may vary slightly among units, but

since there are several motor units, we assume that the

instantaneous torque self-averages and is nearly constant in

time. Under this scenario, steps cannot be explained at the

level of a single pair of MotA/B and FliG subunits, but must

arise at the global level of the rotor-stator interaction.

(2) There are contact forces between the stator and the rotor.

These forces may be caused by contact between the MotA/B

stator units and FliG proteins, but also possibly by contact

with FliF (M-S ring), FlgH or FlgI proteins (distal rod, L, and

P rings, respectively) each of which forms a circle of 26 copies.

There may be other periodicities to the contact forces as well,

arising from the filament and the hook, which are 11-fold

periodic, from FlgK and FlgL (hook-filament junction, 11

copies each), FlgB, FlgC and FlgF (proximal rod between L

and P rings, 6 copies each) and FliE (Rod-MS-ring junction, 9

copies). We assume that a 26-fold periodicity is dominant, in

agreement with experimental observations. We therefore

collect all contact forces in a potential V (h) which we suppose

to be approximately 26-fold periodic (Figure 1C).

Since the motor operates at the molecular scale, its rotation is

intrinsically stochastic as it is subject to random thermal

fluctuations. Another potential source of noise is fluctuations of

the torque applied by the individual MotA/B stators, due to the

discrete nature of the proton flux. However, in presence of

Figure 1. Model for stepping of the flagellar motor. A. Side view of the flagellar motor. B. Top view of the motor highlighting the model’s
essential ingredients. The passage of Hz across the inner membrane causes the stretching of protein ‘‘springs’’ which link the peptidoglycan-
anchored stator complexes (MotA/B) to the rotor (FliG, etc.). In the schematic, stretched springs are attached to a stator at one end, and to an
attachment site (represented by blue dots) at the other end, and apply a torque to the rotor. Contact forces between the stators and the rotor also
produce a potential of interaction, which is approximately 26-fold periodic due to the 26 FliG subunits. The 26-fold periodicity of FliG and the 11-fold
periodicity of the hook and filament are represented. h represents the absolute angular position of the rotor. C. Left: Rotation of the rotor as a whole
corresponds to a viscously damped random walk in a tilted corrugated potential U(h) arising from the combined torque and contact potential. Right:
Example of a trace generated by the model (blue) and the inferred steps (red) between local potential wells (shown with purple shading).
doi:10.1371/journal.pcbi.1000540.g001

Author Summary

Many species of bacteria swim to find food or to avoid
toxins. Swimming motility depends on helical flagella that
act as propellers. Each flagellum is driven by a rotary
molecular engine–the bacterial flagellar motor–which
draws its energy from an ion flux entering the cell. Despite
much progress, the detailed mechanisms underlying the
motor’s extraordinary power output, as well as its near
100% efficiency, have yet to be understood. Surprisingly,
recent experiments have shown that, at low speeds, the
motor proceeds by small steps (,26 per rotation),
providing new insight into motor operation. Here we
show that a simple physical model can quantitatively
account for this stepping behavior as well as the motor’s
near-perfect efficiency and many other known properties
of the motor. In our model, torque is generated via
protein-springs that pull on the rotor; the steps arise from
contact forces between static components of the motor
and a 26-fold periodic ring that forms part of the rotor. Our
model allows us to explain some curious properties of the
motor, including the observation that backward steps are
shorter on average than forward steps, and to make novel,
experimentally testable predictions on the motor’s speed
and diffusion properties.

Steps in the Bacterial Flagellar Motor
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multiple independent stator units, this noise averages out and can

be neglected. Under the combined influence of the applied torque,

the contact potential, and thermal fluctuations the rotor performs

a circular and continuous random walk in a tilted, approximately

periodic potential, which we model by the following Langevin

equation:

dh

dt
~{

1

n

LU

Lh
zj(t), ð1Þ

where n is the drag coefficient, t the total torque exerted via

protein springs by the stators, and where the potential U(h)
includes the torque, and the approximately 26-fold periodic

contact potential:

U(h)~ V (h) { th:

(contact potential) (torque)
ð2Þ

The term j(t) represents Gaussian white noise and accounts for

thermal fluctuations: Sj(t)j(t’)T~2Dd(t{t’), where D is the rotor

diffusion coefficient, related to the temperature and the drag

coefficient via Einstein’s relation: D~kT=n. In experiments, a

load (usually a polystyrene bead) is attached to a flagellar stump

and this load is largely responsible for the drag. For simplicity, we

assume that linkage between motor and load is instantaneous, as

the relaxation is rapid compared to the typical stepping time (see

Discussion).

Results

Steps are barrier-crossing events
Numerical simulation of the model (Eq. 1) shows that rotation

proceeds in steps (Fig. 1C). These steps correspond to jumps

between adjacent wells of the tilted potential. Jumps/steps are

possible thanks to thermal fluctuations which drive the system out

of energy minima; without these fluctuations, the system would

remain stuck in one well forever. Steps therefore correspond to

crossings of the energy barriers separating wells. According to the

Arrhenius law, the average time to cross a barrier increases

exponentially with the barrier height. Because of the tilt induced

by the torque, steps in the forward direction correspond to lower

energy barriers than steps in the backward direction (cf. Fig. 1C).

Forward steps are therefore more likely to occur than backward

steps, so that on average the motor moves forward.

Backward steps are smaller than forward steps
To further investigate stepping in our model, we wrote a step

detector algorithm similar to that described in [1], and applied it

to a simulation of &2:105 rotations (see Materials and Methods).

Fig. 2A shows the histogram of step sizes. As in the experiment, we

find that backward steps are smaller on average than forward

steps: the mean forward step is &13:8o (&360o=26), against 12:0o

for backward steps. (The precise values vary with the particular

choice of potential and torque, but the mean step size is always

larger for forward than backward steps.)

Recognizing steps as barrier crossing events allows us to readily

explain the difference between average forward and backward

steps sizes using a simple intuitive argument, as illustrated in the

inset to Fig. 2A. Backward steps occur infrequently because the

energy barriers for these steps are higher than for forward steps. By

contrast, all forward steps must occur as the motor moves forward,

regardless of the heights of energy barriers. In addition, as shown

in the inset to Fig. 2A, barrier heights and step sizes tend to be

positively correlated. Roughly speaking, we can assume that

higher barriers extend over longer ranges. We confirmed the

validity of this assumption by randomly generating many

approximately 26-fold periodic potentials V (h) with a very general

functional form (results shown in Fig. 3). Therefore, backward

steps occur mostly over the lower barriers, and lower barriers

correspond to smaller step sizes. This implies that backward steps

are on average smaller than forward steps. Note that this argument

relies on the fact that the barriers are not all identical.

To test the scenario proposed above, we asked whether the size

of forward steps immediately preceding or following backward

steps differ from the average of 13:8o. According to our picture,

the barrier crossed by these forward steps should be the same as

the one crossed by the backward step immediately preceding or

following, implying a small barrier and therefore a small forward

step size. Fig. 2B–E shows that indeed forward steps preceding of

following a backward step are smaller on average, 12:0o in the

experiment, 12:4o in our simulation, than the mean forward step

of 13:8o. (Note that even for forward steps over the same barrier,

backward steps are still slightly smaller on average in both

experiment and simulation. This suggests that the step detection

algorithm has a small systematic bias—see Materials and

Methods.)

Importance of absolute position of the rotor
The difference between forward and backward step sizes relies

on the 26 barriers around the circle not all being identical. These

heterogeneities may exist because the potential V (h) is only

approximately 26-fold periodic and contains other periodicities as

well arising from the filament, hook, or other parts of the rotor. In

any event, an essential prediction of our model is that step sizes

and backward step frequencies will depend strongly on absolute

position (i.e. modulo 360o), reflecting the fixed contact potential

V (h). We now examine how step frequencies and sizes depend on

the properties of particular barriers, specified by the position of the

rotor around the circle, and how this can tell us something about

the detailed nature of contact forces.

According to our model, backward steps should be much more

likely to occur at low barriers. In contrast, where forward steps

occur should be much less sensitive to barrier heights. This follows

simply because for each complete rotation the number of forward

steps over any barrier is one plus the number of backward steps

over that same barrier. Therefore, as long as backward steps are

rare, the average number of forward steps over each barrier will be

close to one per rotation and therefore the frequencies of forward

steps will be similar for all barriers. This is illustrated in Fig. 4A,

which presents average step frequencies for each of the 26 barriers

of a particular potential (chosen to be the same as in Fig. 2), as

calculated from first-passage theory (see Materials and Methods).

As expected, there is considerable variation among barriers in

backward-step frequencies, but much less variation in forward-step

frequencies.

To relate average step sizes to absolute position, we examined

the sizes of backward and forward steps for each of the 26 barriers.

To properly assign steps to barriers, we sorted steps into 26 equal

bins according to the angular position of the rotor when the step

occurred, and calculated the average backward and forward step

sizes in each bin. We applied this procedure to simulations of

*105 rotations generated with three different potentials U(h) (see

Materials and Methods), and to four experimental traces,

corresponding to four distinct cells, totaling 700 rotations [1].

According to our model, forward and backward steps across the

same barrier should have the same average size. In the simulations

(Fig. 4B), mean forward and backward steps across the same

Steps in the Bacterial Flagellar Motor
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Figure 2. Backward steps are smaller than forward steps. A. Probability distribution of step sizes using a approximately 26-fold periodic
potential (see main text), showing that backward steps are on average smaller than forward steps, in agreement with experiment. Inset: Backward
steps rely on low barriers, which occur preferentially where angular steps sizes (e.g. Dh2) are small. B–E. Forward steps immediately following or
preceding backward steps are found to be smaller on average (12:0o in the experiment, 12:4o in the model) than the mean of all forward steps (13:8o

in model and experiment, black dots). Crosses denote mean and standard deviation of backward and subsequent or previous forward steps, while
black dots and horizontal lines give the mean (13:8o) and standard deviations of all forward steps. Note change of scale between simulation and
experiment. The experimental data are from [1].
doi:10.1371/journal.pcbi.1000540.g002
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PLoS Computational Biology | www.ploscompbiol.org 4 October 2009 | Volume 5 | Issue 10 | e1000540



barrier were found to be linearly correlated, though with a

systematic offset toward smaller backward steps. (As discussed

above, this offset is likely the result of a bias in the step detection

algorithm.) We found that mean forward and backward step sizes

across the same barrier are also positively correlated in the

experiment (Fig. 4D), in agreement with our prediction (with the

same bias towards smaller backward steps). Overall, these results

suggest that the absolute position of the rotor accounts for much of

the variability observed in step size, and supports our model of a

fixed, nearly periodic contact potential.

We next show that, both in the simulation and in the

experiment, the barriers with a high frequency of backward steps

are the same barriers where step sizes are short. To this end we

plot the frequency ratio of backward steps to forward steps across

each barrier versus the average forward step size (which we

showed in Fig. 4B,D correlates with the backward step size), for

both simulations (Fig. 4C) and experiment (Fig. 4E). In both cases

backward-step frequencies fall off sharply with average forward

step size.

Since barriers where steps are smaller have higher backward-

step frequencies than other barriers, they contribute more to the

average backward step size. Therefore, the mean backward step is

smaller than 360o=26&13:8o, which would be the mean

backward step size if all barriers contributed equally. In contrast,

forward-step frequencies vary little from barrier to barrier, so that

all barriers contribute more or less equally to the average forward

step size, which is therefore approximately 13:8o. This explains

why backward steps are smaller than forward steps on average.

Sublinear speed versus torque relation at fixed load
The recognition that steps are barrier-crossing events has a direct

implication for how rotation speed depends on torque. In the

absence of contact forces (i.e. V (h)~0), the average rotation speed f

depends linearly on torque: f ~t=2pn. However, when the contact

forces are comparable to the torque, rotation is hindered by barriers,

and the system spends much of the time in local energy minima.

Rotation is then not only limited by drag, but also by the rate of

barrier crossing, leading to lower rotation speeds: f vt=2pn. We

computed analytically (see Materials and Methods) the torque-speed

relation for loads with various drag coefficients for a perfectly 26-fold

periodic sinusoidal potential with amplitude 1:5kT , as shown in

Fig. 5A (using approximately 26-fold periodic potentials yielded

qualitatively identical results). At high torques, the linear relation is

recovered asymptotically, which follows because increasing torque

decreases the barriers to forward rotation, and eventually eliminates

them completely, as shown in the insets to Fig. 5A.

Rotor diffusion
Fig. 5B shows the effect of the contact potential on the effective

long-time diffusion coefficient Deff . At low torques, diffusion is

slowed down by barriers, while at high torques one recovers the

natural diffusion coefficient D. Interestingly, at intermediate

torques rotor diffusion is actually enhanced by the contact

potential. In this regime, the contact potential is a small but

variable correction to the torque. This variability contributes to

the variance of the rotation speed, thus effectively enhancing rotor

diffusion (see Materials and Methods). At large torques, Deff

approaches D asymptotically:

Deff~D 1z3
S(LhV )2Th

t 2

" #
: ð3Þ

To check the consistency of the predicted diffusive behavior

against previous results, we compared our model’s prediction with

experimental measurements of the variance in the rotation time

[9,11]. In [9], the rotation time of a tethered cell was measured.

Simple diffusion predicts that the variance in rotation time per

cycle is:

SdT2T~
2D

(2p)2f 3
: ð4Þ

For a single fully-powered torque-generating unit, torque is estimated

to be t~250 pN:nm:rad{1 [7]. The measured speed in [9] was

noisy and depended on the particular cell but was about f&3{5 Hz
for three torque-generating units, leading to an estimate for the drag

coefficient n~t=(2pf )&25{40 pN:nm:rad{2, and for the diffu-

sion constant D~kT=n&0:1{0:15 rad2=s. Thus the variance in

cycle time for three torque-generating units predicted by simple

diffusion is SdT2T&0:7{2:0:10{4s2, which is consistent with the

reported value of SdT2T&2:1:10{4s2 [9]. We conclude that it may

not be necessary to consider other sources of fluctuations (e.g. proton

translocations) to explain the observed variance in cycle time. Note that

in these experiments the torque was high, and therefore contact forces

are not expected to have had a significant effect on diffusion.

Our model also predicts a negative feedback reaction from the

MotA/B protein springs that in principle could reduce diffusion.

Namely, every time the rotor moves forward, the springs relax,

causing a transient decrease of torque (and the opposite every time

the motor moves backward). To estimate the magnitude of this

effect, we model torque dynamics by linking spring elongation to

rotor position, and by assuming that the springs ‘‘restretch’’ to

their equilibrium position prescribed by the PMF with a

characteristic relaxation time (see Materials and Methods). Within

Figure 3. The height of barriers to backward steps is positively
correlated with the backward step size. For 100 randomly
generated potentials V (h), we plotted the size of each of the 26 steps
versus the height of the corresponding barrier to backward steps (i.e.
the energy difference between the minimum of U(h) and its immediately
preceding maximum). Each color corresponds to a particular potential.
We used: V (h)~A26 cos(26h)zA6 cos(6h)zA9 cos(9h)zA10 cos(10h)
zA11 cos(11h)zA16 cos(16h), with A26~1:5kT , and A6, . . . ,A16 drawn
uniformly at random with fixed total power

X
j
A2

j ~(1:0kT)2 . The torque
is t~10kT&41 pN:nm:rad{1 .
doi:10.1371/journal.pcbi.1000540.g003
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Figure 4. Absolute position of the rotor matters. A. A typical approximately 26-fold periodic tilted potential U (red line) used in our
simulations. For each of the 26 barriers in U , we show the frequencies of forward and backward steps across that barrier obtained analytically from
first-passage theory (see Materials and Methods). Backward steps occur much more frequently at low barriers. B. Average backward and forward step
sizes for each of the 26 barriers around the circle. Each color corresponds to a simulation with a different choice of the potential U . C. The ratio of
backward over forward step counts for a given barrier decreases with the average forward step size (colors as in B). D and E. Same as B and C, but
with experimental data [1]. Each color corresponds to a different cell. For each cell and each position around the circle, we show a data point only if
there were at least 10 backward steps.
doi:10.1371/journal.pcbi.1000540.g004
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this model, the effective diffusion coefficient is found to be

D(1{2m=n), where m is the slope of the torque-speed relation of

the motor near stall. The value of m ranges from

:03 to :07 pN:nm:s:rad{2 depending on the temperature [6]

and is therefore much smaller than relevant values of the drag

coefficient n&0:5{50 pN:nm:s:rad{2. We conclude that in the

conditions of the discussed experiments, the effect of negative

feedback from the springs on diffusion is negligible.

Distribution of waiting times
According to our model, the distribution of waiting times

between steps is expected to be roughly exponential. The

distribution of waiting times between steps (forward or backward)

for an exactly 26-fold periodic potential is indeed exponential

(Fig. 6A). When the potential is heterogeneous, the average

waiting time depends on the barrier. Even though the distribution

of waiting times across each barrier is exponential, the overall

waiting-time distribution is not, appearing rather as a ‘‘stretched’’

exponential (Fig. 6B). The experimental distribution also resem-

bles a stretched exponential (Fig. 6C).

Discussion

Our model explains stepping of the bacterial flagellar motor by

interpreting its rotation as a viscously damped random walk driven

by a constant torque and by a heterogeneous contact potential

caused by the physical irregularities of the rotor. In this picture,

steps are recognized as barrier-crossing events between adjacent

minima of a tilted and corrugated energy potential. Corrugations

are caused by contact between the stators and the protein arrays

(FliG, among others) making up the rotor structure. Recently a

more accurate picture of this structure has emerged, thanks

notably to electron microscopy studies [12].

Our model predicts a 2p periodicity of the potential, so that the

absolute angular position of the rotor with respect to the stator is

an underlying determinant for step statistics, and this prediction is

found to be consistent with the available experimental data. In

particular, our model offers an explanation for the experimental

observation that backward steps are smaller than forward steps on

average.

Another prediction of the model is that rotor speed grows

sublinearly as a function of torque. At low torques rotation is slow

because of trapping in local minima, whereas at high torques the

barriers between minima are lowered and eventually eliminated.

Additionally, we predict that at low torques rotor diffusion is

hindered by barriers, while at high torques the variability of the

potential actually enhances diffusion. Although in principle other

sources of fluctuations, such as ion translocation, could impact

rotor diffusion, we showed that in the relevant regimes simple

diffusion can account for nearly all of the observed variance in

cycle time [9]. In order to verify these predictions experimentally,

one would need to simultaneously measure the rotor speed and the

proton (or Naz) motive force, believed to be proportional to

torque at low speeds, in the regime where torque and contact

forces are comparable. (Note that in the stepping data [1] we have

analyzed, torque could vary during the course of the experiment as

the result of changes in the number of stator units.) Interestingly,

both a stepping behavior and a sublinear speed vs. torque

relationship were reported in experiments on flagellar motors in

Streptococcus [13]. Cells were starved, and then energized or de-

energized to control PMF. Motion was found to have a rotational

symmetry of 5 1
2
, which corresponds to one revolution of the one-

start helix of an axial component (11 in two revolutions). When

energized (increasing PMF), cells displayed a sublinear speed vs.

PMF dependence in agreement with our prediction. However,

when cells were de-energized (decreasing PMF), this relation

became linear. Such history dependence could occur if the stator

elements hindering rotation are pushed away as PMF increases,

leaving rotation unhindered during PMF decrease.

Our model is consistent with other experimental results on the

bacterial flagellar motor. Because the model relies on the

assumption that the energy from ion translocation is reversibly

stored in protein springs [10], it implies a near-perfect efficiency of

Figure 5. The model predicts a sublinear torque-speed relation
and a peak in rotor diffusion. A. Rotation speed of the rotor as a
function of torque for loads with different drag taken from [7]: solid
curves, from top to bottom, 2pn~2:7, 4:3, 5:1, 8:5, and 28 pN:nm:s:rad{1 .
The potential was chosen to be perfectly 26-fold periodic:
V (h)~A sin (26h), with A~1:5kT . As torque increases, the rotation speed
asymptotes to the behavior expected in the absence of barriers, f ~t=2pn,
represented here for the case of the lowest load 2pn~2:7 pN:nm:s:rad{1

(dashed line). At small torques, the rotation speed is limited by the rate
of barrier crossing (left inset), while at high torques the tilt makes barriers
easy to cross (right inset), and rotation is only limited by drag. B. Effective
diffusion coefficient as a function of torque for a load with drag coefficient
2pn~1 pN:nm:s:rad{1: solid curves, V (h)~A sin (26h) with A~0:5kT ,
1kT , and 1:5kT . The real diffusion coefficient D is represented by a dashed
line.
doi:10.1371/journal.pcbi.1000540.g005
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the motor at low torques [2]. The same mechanism can account for

both clockwise and counterclockwise motor rotation [3]—these two

cases simply corresponding to the springs being stretched in opposite

directions. If the contact potential stays the same when the motor

changes direction, our model predicts that backward steps will occur

preferentially at the same absolute angles irrespectively of the

direction of rotation. The observation that the duty ratio is very close

to one even with a single torque-generating unit [7,14] can be

encompassed in our model by assuming that each torque-generating

unit comprises at least two springs. The advantage of a spring

mechanism over other mechanisms is that it naturally entails&100%
efficiency, at least at lower speeds. When the system is in

thermodynamic equilibrium, which is the case near stall where

kinetic rates are much faster than spring relaxation, the average

energy provided to the springs by the passage of one proton is exactly

equal to the potential energy difference e|PMF between the

exterior and the interior of the cell. This is simply a consequence of

reversibility. The key point is that all the energy stored in protein

springs is eventually used to move the rotor. This stands in contrast to

mechanisms driven by irreversible conformational changes, where

some energy is typically wasted because the energy required for the

conformational change is less than the energy provided by the source,

e.g. ATP hydrolysis for myosin motors. The utilization of springs for

the reversible storage of the energy suggests a general mechanism

underlying the operation of high-efficiency molecular machines.

Our study has focused on the adiabatic regime, where springs

are near equilibrium with respect to the PMF, as this is the

relevant regime for the stepping experiments. However, our model

predicts that when the proton flux becomes kinetically limited, the

springs will fail to restretch completely, causing the torque to drop.

This observation can explain the observed ‘‘knee’’ in the motor’s

torque-speed relationship [5], when coupled to an explicit model

of proton translocation [15].

In our analysis we have neglected one effect that is not crucial for

our analysis, but which may prove important for inferring the detailed

nature of the contact potential. Specifically, we have assumed that

equilibration of the elastic linkage between the motor and the load is

rapid compared to the waiting time between steps. For a torsion

constant kh&400 pN:nm:rad{2 [16,17] between the rotor and the

load, and a drag coefficient 2pn&1:0{10 pN:nm:s:rad{2, the

relaxation time is th~n=kh~0:4{4 ms. In contrast, the typical

waiting time between steps ranges from 10 to 100 ms, depending on

experimental conditions. If the elastic linkage was too soft, the

polystyrene bead would respond to the motion of the rotor with a

delay th, and steps would be smoothed out. This does not seem to

occur in the experiment.

Another effect, which we have considered (see Rotor diffusion) but

did not include in our simulations, is the relaxation of MotA/B protein

springs as a rotor step occurs. For example, when the rotor moves

forward, the torque decreases because the protein springs relax.

Usually these springs are restretched so quickly by ion translocation

that the transient decrease of torque can be neglected. However,

during a barrier crossing event the rotor motion might be so fast that

protons are not able keep up. This would result in a temporary drop in

torque and make barrier crossing more difficult. A similar argument

applies to backward steps. We have already shown that at the ‘‘mean-

field’’ level, where rotation speed and ion flux are time-averaged, this

negative feedback has only a small effect. However, the instantaneous

rotation speed during a step can be much larger than its average. How

fast can a proton translocate through the motor? The maximum flux of

protons through a single motor unit can be estimated by considering

the maximum rotation speed before the torque starts dropping (the

‘‘knee’’ of the torque-speed relationship [5]). For a single motor unit in

natural conditions, this speed is about 150 Hz for a torque of

Figure 6. The distribution of waiting times between steps
(backward or forward). A. Simulation with a perfectly 26-fold
periodic contact potential V (h). There is only one type of barrier, and
the distribution of waiting times is roughly exponential. (The contact
p o t e n t i a l i s V (h)~A sin (26h) w i t h A~1:5kT , a n d t o r q u e
t~10kT&41 pN:nm:rad{1.) B. Simulation with an approximately 26-
fold periodic contact potential. There are 26 distinct barriers, each of
them having a different characteristic waiting time. The overall waiting
time distribution is therefore the sum of 26 exponentials. (The contact
potential and torque are the same as in Fig. 2.) C. Experiment – the
distribution is consistent with a sum of exponentials.
doi:10.1371/journal.pcbi.1000540.g006
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250 pN:nm:rad{1 [7]. The power generated by the motor is then

150|2p| 250 &240,000 pN:nm:s{1. Each proton provides at

most 150 mV|e~24 pN:nm, so that the number of protons per

second is at least 240,000=24~10,000. The timescale of proton

passage is therefore less than 0:1ms. A single rotor step corresponds to

the passage of &3protons [1], so restretching the protein springs

should take less than 0:3 ms, which is below the current experimental

time resolution. For comparison, an instanton calculation [18] reveals

that the typical time for crossing a barrier is bounded from below by

(2p=26)|n=max jLhU j&0:2 ms (for 2pn~1 pN:nm:s:rad{1, and

U(h)=kT~1:5 cos(26h){10h).

In our analysis we have also neglected the effect of the ‘‘shot

noise’’ arising from the discrete nature of the proton flux. This shot

noise leads to fluctuations in torque, which could in principle affect

the stepping behavior as well as the rotor diffusivity. While we

have neglected this source of noise on the basis that it is averaged

out by the presence of multiple stators, its influence can be

significant at very low loads [15].

Other molecular motors have shown stepping behavior,

including the actin-myosin motor [19], the dynein-microtubule

motor [20], and kinesin [21]. In these ATP-powered motors, which

are less powerful than the bacterial flagellar motor by orders of

magnitude, stepping is a built-in and essential part of motor

operation. By contrast, we have argued that in the bacterial flagellar

motor the observed stepping arises solely from steric hindrance.

Our work leaves open a number of questions. It would be

interesting to infer the precise form of the contact potential V (h)
from rotation data and see how and whether it varies in time and

among motors, potentially yielding new insight into the dynamics

of motor assembly and reorganization. To this end a more

sophisticated approach to learning the potential may be required,

e.g. employing maximum likelihood techniques. Lastly, one still

needs to understand the mechanism of torque generation,

including the role played by the discreteness of ion translocation,

the chemical nature of protein springs and their attachment sites,

as well as the energy conversion process.

Materials and Methods

Experimental and simulation data
All the experimental data presented in this paper is from [1] and

were used with the kind permission of Richard Berry. The

simulation data were obtained by numerical integration of Eq. 1

by Euler’s method.

Step-finding algorithm
The same step finding algorithm as the one described in [1] was

used on both simulation data and experimental data to extract

steps. First, an entire episode (angular position vs. time) was fitted

by a single step function, and thus divided into two intervals. This

procedure was repeated iteratively Nsteps times—at each iteration

the interval for which the data had the largest range of angles was

replaced by a best-fit step function. Then, a quality factor

Q~(�xx2{�xx1)2=(var x1=n1zvar x2=n2) was calculated for each

assigned step, where x1 (x2) is the angular position left (right) of the

step, and n1 (n2) is the number of data points on the left (right) of

the step. Finally, steps with a low quality factor were removed and

their adjacent intervals merged until all steps have a quality factor

greater than Qmin.

This step finding algorithm introduces a small bias that tends to

underestimate the sizes of backward steps. For each interval, the

algorithm finds the mean value of the angular position in this

interval. But steps do not occur instantaneously, and the data points

leading from one interval to the other are themselves included in the

interval means. As a result, these means are biased toward where the

rotor is coming from and where it is going. When the rotor is

stepping forward, these two biases tend to cancel each other.

However, when the rotor steps backward, these steps are usually

both preceded and followed by forward steps. Thus, the interval

before the backward step is biased toward lower angular positions,

and the interval after the backward step is biased toward higher

positions. As a result, the biases reinforce each other such that

backward steps are estimated to be smaller than forward steps. We

have checked that even on a perfectly 26-fold periodic potential

V (h)~A cos(26h), with A~1:5kT and a torque t~10kT , the

most probable forward step size according to the algorithm was

13:8o&360o=26, which is correct, while the most probable

backward step size was 13:0o, which is 0:8o to small.

The step frequencies presented in Fig. 4A were obtained analytically

using first-passage theory [22,23]: Label the wells i~1, . . . ,26, and

denote the local minima of U(h) by hi. Consider three consecutive

wells centered at hi{1, hi and hiz1 respectively. Starting at hi, call pz
i

the probability of first jumping forward and p{
i the probability of first

jumping backward. These probabilities are given by:

pz
i

p{
i

~

Ð hi

hi{1
dheU(h)=kTÐ hiz1

hi
dheU(h)=kT

, pz
i zp{

i ~1: ð5Þ

Given the transition probabilities pz
i and p{

i , we write a master

equation for the probability pi(m) of the rotor being in well i after k

steps.

pi(m)~pi{1(m{1)pz
i{1zpiz1(m{1)p{

iz1: ð6Þ

At large m a stationary state is reached, and pi : ~pi(m??) satisfies

the conservation equation:

pi~pi{1pz
i{1zpiz1p{

iz1: ð7Þ

The step frequencies presented in Fig. 4 are then given by pip
z
i and

pip
{
i . (Note that the step frequencies sum to one,X26

i~1
pip

z
i z

X26

i~1
pip

{
i ~1.)

Torque-speed dependence
The torque-speed relation shown in Fig. 5A was also estimated

using first-passage theory. For simplicity we assumed a perfectly

26-fold periodic potential, but the results are qualitatively the same

when the periodicity is only approximate. The average time to

move from one minimum of the potential to the next is given by:

StstepT~
1

D

Ð D
0

dhe{U(h)=kT
Ð hzD

h dh’eU(h’)=kT

1ze{tD=kT
, ð8Þ

where D~2p=26 and t is the torque. This yields a rotation speed:

f ~
D(pz{p{)

2pStstepT
~

D

2pStstepT
tanh

tD

2kT

� �
, ð9Þ

where pz and p{ are obtained from Eq. 12. The asymptotic

expansion of Eq. 9 for t& LV=Lhj j, kT yields

f&
t

2pn
1{

S(LhV )2Th

t 2

" #
: ð10Þ
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The effective diffusion coefficient Deff shown in Fig. 5B is

estimated using similar techniques (cf. [22,23] and Materials and

Methods).

Rotor diffusion
The effective diffusion coefficient is estimated using the

techniques of first-passage theory [22]. For an exactly 26-fold

periodic potential, this effective diffusion coefficient is given by [23]:

Deff~
D2

2

1

StstepT
z

(pz{p{)2

StstepT3
(St2

stepT{2StstepT2)

" #
, ð11Þ

where D~2p=26 is the step size. pz and p{ are the probabilities of

first jumping forward or backward, respectively, and are given by:

pz{p{~ tanh
tD

2kT

� �
, pzzp{~1: ð12Þ

tstep is the time before a step occurs (forward or backward). Its first

two moments are:

StstepT~
1

D

Ð D
0

dhe{U(h)=kT
Ð hzD

h dh’eU(h’)=kT

1ze{tD=kT
, ð13Þ

St2
stepT~

2

D(1ze{tD=kT )

ðD
0

dhe
U(h)
kT

ðh
h{D

dh’e{
U(h’)
kT t1(h’) ð14Þ

with

t1(h) ~

Ð h

{D dh’eU(h’)=kT
� � Ð D

h dh’
Ð h’
{D dh’’e½U(h’){U(h’’)�=kT

D
Ð D
{D dh’eU(h’)=kT

{

Ð D
h dh’eU(h’)=kT

� � Ð h

{D dh’
Ð h’
{D dh’’e½U(h’){U(h’’)�=kT

D
Ð D
{D dh’eU(h’)=kT

:

ð15Þ

Expanding Eq. 11 for large torques gives:

Deff~D 1z3
S(LhV )2T

t2

" #
: ð16Þ

To estimate the magnitude of the negative feedback of the MotA/

B protein springs on diffusion, we model the dynamics of rotor angle

and torque by the following mean-field differential equations:

dh

dt
~

t

n
zj(t), ð17Þ

dt

dt
~{

t{t PMF

trelax

{k
dh

dt
: ð18Þ

The first equation is the same as Eq. 1 but with a variable torque and

without contact forces. In the second equation, torque is assumed to

follow the stretching/unstretching of the springs with rotation, and

therefore the rate of change of torque is linearly related to the rate of

change of rotor angle through an effective spring constant k (second

term of r.h.s. of Eq. 18). At the same time, due to the restretching of

springs upon proton passage, torque relaxes toward its equilibrium

value t PMF (first term of r.h.s. of Eq. 18). Solving the second equation

for steady-state rotation yields the torque-speed relationship for the

motor: t~t PMF{2pmf , with m : ~ktrelax. Solving both equations

for the effective diffusion coefficient in the limit m=n%1, we find

Sdh2T=t~2D 1{2m=nzO((m=n)2)
� �

.

Waiting-time distribution
We recorded the distribution of waiting times obtained by the

step-finding algorithm, both for the simulation and for the

experiment. For the simulation, in the case of a perfectly 26-fold

periodic potential (Fig. 6A), there is only one type of barrier, and

the waiting-time distribution is approximately exponential. When

the potential is only approximately 26-fold periodic (Fig. 6B), the

waiting-time distribution is the sum of 26 exponentials, and

resembles a stretched exponential. The waiting-time distribution

for the experiment (one cell, Fig. 6C) is consistent with a sum of

exponentials. The stretched appearance of the experimental

distribution may be due to non-uniform barriers, as predicted by

our model, but may also be due in part to the observed variability

in average speed, presumably due to changes in torque, during the

course of the experiment.

Parameters values
For all numerical simulations and analytic calculations the

potential was chosen to be of the form:

V (h)~A cos(26h)zB cos(10h)zC cos(11h): ð19Þ

Experimentally, there is evidence for components of the contact

potential with *10{11 fold periodicity (see Ref. [1], Fig. 3b).

Except where stated otherwise, we used A~1:5kT , T~290K

and 2pn~1 pN:nm:s:rad{1. In Fig. 2 and 4A, we used

B~C~0:6kT . In Fig. 4B and 4C we chose three sets of values

for B, C, and t , in units of kT : (B~0:6, C~0:6, t~10),

(B~1, C~0:5, t~15) and (B~0:3, C~0:8, t~12). In Fig. 5,

the torque-speed relation and rotor diffusion were calculated with

B~C~0.
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