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Abstract

The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very
efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based
on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the
image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear
dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion
pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of
these elements makes the motion detection model robust across a large variety of images, velocities and accelerations.
Furthermore the performance of the entire system is more than the incremental improvements offered by the individual
components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model
can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical
solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the
development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial
vehicles and collision avoidance sensors.
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Introduction

The extraction of useful motion cues for navigation through

visual scenes is technically challenging. While artificial systems

struggle to solve this task in real time, insects with low-resolution

eyes and small brains (less than a million neurons) [1] are able to

avoid obstacles and successfully navigate through complex

surrounds during high-speed flight [2]. This efficiency is inspiring

for software engineers who struggle to achieve similar performance

in artificial vision utilizing high resolution cameras, sophisticated

software, and computers with hundreds of millions of transistors.

Furthermore, insect vision has many unique features that lend it to

useful applications. Despite inherently low resolution in even the

best fly eyes [3] and visual processing that is simple and tractable

enough for modeling, insects achieve spectacular flight control

using passive visual sensors. Accurate models of such a system

would allow replication of an insect’s ability to discriminate visual

scenes based on contrast, shadow, motion etc [4].

Many insects are adept at high-speed aerial maneuvers based on

visual cues, using motion vision for the detection of targets [5], for

visual odometry [6] and angular velocity estimation [7]. Among

insects dipteran flies stand out with highly acrobatic pursuit

behavior at angular velocities of several thousand degrees per

second [8], although these higher speeds likely exceed the useful

coding range for motion sensitive neurons [9]. Many species are

also excellent hoverers, able to maintain a fixed position for

extended periods of time. These extreme flight modes extend

vision to the upper and lower limits of the temporal resolution

described for insect higher order visual neurons [10] and make

them an ideal candidate to study motion vision, in particular the

accuracy of wide-field angular velocity estimation.

Models For Motion Detection
There are four main classes of motion detection models,

namely: (1) differential methods; (2) region-based matching; (3)

phase-based and (4) energy-based techniques (for review see [11]).

All four consist of three basic components (pre-filtering, local

motion estimation and integration over the field of view) but vary

markedly in the approaches used to realize these steps.

Differential. These methods including gradient-based

models, determine velocity from spatiotemporal derivatives and

models exist that employ both first [12] and second order

derivatives [13]. Despite producing reasonably accurate results

under a number of realistic scenarios differential methods

are sensitive to the type of numerical differentiation and

spatiotemporal smoothing used, as ‘raw’ methods (without

sufficient smoothing) can produce discontinuous results. Due to

the differentiation they are also particularly susceptible to errors

under noisy conditions [14].

Region or feature based matching. Such techniques

normally involve maximizing a cross-correlation or minimizing a

difference measure such as the RMS error [15]. These also include

the use of probabilistic approaches, Kalman Filters [16] and

Monte Carlo localization [17], to generate and determine location

on topological maps. The use of some modified neural networks to
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determine image velocity [18] can also be considered in this

category. When accurate numerical differentiation can not be used

due to noise, low frame counts or aliasing it is common for

engineers to use region-based matching techniques. However these

methods tend to only be accurate at high velocities and are less

able to accurately estimate sub-pixel displacements. Although,

unlike most other methods of velocity detection, the time required

for reliable velocity estimation is generally much less and can be

obtained in only 2–3 frames.

Phase-based. These techniques for determining image

motion rely on the phase behavior of arrays of band-pass filters

[19]. These filters decompose the input signal according to scale,

speed and orientation. Operating in the complex domain phase-

based techniques are in effect a differential technique operating on

phase rather than amplitude, which has been shown to be more

stable [20]. While such models have been shown to produce more

accurate responses than others types of motion detection [11] they

can still suffer from noise and discontinuity limitations as with

gradient-based models.

Energy- or frequency-based. Methods that use the output

energy of velocity-tuned filters to estimate motion are in this

category [21,22]. These techniques have rarely been used in

practical applications as they tend to give outputs contingent on

non-motion parameters of the image, can have non-trivial initial

condition equations and some have underlying assumptions that

are not often true (i.e. some assume the input stimulus is equivalent

to white noise).

Biological Vision Uses Correlation-Based Motion
Detection

It has been shown that certain energy-based methods are

equivalent to correlation-based methods [23]. Given the problems

with this class of motion detection it is perhaps surprising that

correlation-based models appear to be the ubiquitous form of

motion detection in biology. The correlation motion detector

model [24] has been used to explain direction selective motion

detection in a wide variety of insects, birds and mammals,

including humans [25–27]. This model involves a non-linear

correlation of adjacent spatial samples, with an asymmetric delay

filter giving rise to direction selective responses within a local

elementary motion detector or EMD [24,28]. While the term

‘‘EMD’’ has been used in the context of numerous variant or

alternative forms of local motion detector, in insects arrays of

correlation-based EMDs are then summed by so-called lobula

plate tangential cells (LPTCs) to provide measurements of wide-

field optical flow or motion of specific targets [29]. By analogy to

insect EMDs, our subsequent use of this term thus specifically

refers to EMDs based on a local correlation operation.

Two key questions arise from the observation that biological

motion detectors are of the correlation class. Firstly, assuming

biological vision has strong selective pressures to attain a robust

and efficient system that is optimized for the task, what are the

compelling advantages for this type of motion detector in the

context for which they are used? Secondly, how does the biological

system overcome the intrinsic problems with this type of motion

detector?

Possible Advantages of Motion Correlation
Detectors based on motion correlation have been shown to have

significant advantages over gradient models [30] where detector

noise is problematic [14,31], e.g. at low contrasts or luminance.

Certain features of the correlation EMD make it an extremely

useful primitive for biological motion processing, particularly its

robustness to both temporal and spatial noise [32]. However, such

EMDs are also sensitive to non-motion-related parameters of

visual stimuli, and do not by themselves give an unambiguous

indication of angular velocity [33], which is at odds with the

apparent ease with which insects analyze this parameter [6]. This

is due in large part to the inherent sensitivity of correlation-based

EMDs to contrast and spatial structure of local features within

moving scenes. This leads to ambiguity in the local response as a

function of angular velocity, a phenomenon we term ‘pattern

noise’ [33]. However previous work [34] has suggested that static

and dynamic non-linearity associated with obvious components of

physiological implementation of the model helps overcome some

of the inherent limitations of the basic EMD.

One contributing factor in the ability of correlation based motion

models to accurately encode angular velocity is the relative

consistency of the spatial statistics of natural scenes, in spite of

structural difference [33]. Natural images tend to possess spatial

power spectra with an approximate 1/f 2+u characteristic, where f is

spatial frequency and u is small (i.e. a straight line on a log-log scale)

[35]. In addition to similarity between different scenes this

characteristic implies a self-similarity in natural imagery at different

spatial scales, although residual differences in structure remain.

A recent electrophysiological breakthrough was made showing

that unlike when using sinusoidal stimuli the LPTCs of insects

shown natural images robustly encoded angular velocity indepen-

dently of the contrast in the scene (see Figure 3B from [36]), a

characteristic not predicted by earlier models. This highlights the

importance of testing biological motion detection, and models

based upon it, under as ‘natural’ conditions as possible.

In this paper we provide an explanation for a controversy that

has plagued visual science. How is it that biological motion

detecting neurons can reliably encode angular velocity across

different scenes when electrophysiological evidence shows that

they use correlation-based EMDs? To do this we extend motion

models, based directly on the well-studied LPTCs in the insect

visual system [34,37], by inclusion of additional dynamic non-

linear components that combine to provide a robust estimate for

global angular velocity and thus account for hitherto poorly

understood properties of the fly LPTCs. The inclusion of these

non-linearities, while overcoming many of the problems with

motion energy models, is only slightly more complex computa-

tionally than the raw EMD model and far more efficient than most

other motion detection algorithms. Furthermore, the model works

on ‘real-world’ luminance levels, rather than the 8-bit normalized

images captured by most current digital systems, making it more

easily implemental on low power custom imagers.

Author Summary

Building artificial vision systems that work robustly in a
variety of environments has been difficult, with systems
often only performing well under restricted conditions. In
contrast, animal vision operates effectively under extreme-
ly variable situations. Many attempts to emulate biological
vision have met with limited success, often because
multiple seemingly appropriate approximations to neural
coding resulted in a compromised system. We have
constructed a full model for motion processing in the
insect visual pathway incorporating known or suspected
elements in as much detail as possible. We have found that
it is only once all elements are present that the system
performs robustly, with reduction or removal of elements
dramatically limiting performance. The implementation of
this new algorithm could provide a very useful and robust
velocity estimator for artificial navigation systems.

Bioinspired Velocity Detection
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Methods

High Dynamic Range Image Capture
Our primary purpose was to develop a model robust against the

statistical variance between different scenes in nature, where

luminance can vary by over 6 decades or more. In order to

capture images for use as stimuli we therefore used a Nikon D-70

digital camera and panoramic tripod head attachment to obtain

14 panoramic images from a variety of urban and natural

locations around Adelaide, South Australia in high dynamic range

(HDR) format. Locations were selected to represent a range of

luminance, contrast and spatial clutter conditions. Each panorama

was obtained using a series of 12 overlapping panels saved in 16-

bit NEF (raw) format (12-bits of actual dynamic range). Each panel

was imaged at 3 different exposure levels (22.0 and +2.0EV

bracketing) in order to capture components of the scenes that

exceeded the dynamic range of the camera sensor. We used

PTGui (New House Internet Services BV) to stitch the 12

overlapping images together for each of the three different

exposures into full 360 degree panoramas. For each panorama

over-saturated pixels were discarded and local luminance was

established using a linear gamma curve for the camera luminance

values and cosine weightings depending on individual pixel values,

i.e. low and high pixel values were assigned low weights while mid

range pixels had high weights [38]. We combined the panoramas,

with an offset depending on exposure, and converted them to

floating point format (IEEE single precision standard) at

800061600 pixel resolution and full color using custom software

written in LabView (National Instruments). Such high resolution

was not needed for the detail, as insect optics are too coarse to

make use of it, but rather to permit accurate simulation of slow

image speeds. The full color HDR images are available for use by

interested parties by contacting the authors.

Since the motion processing pathway of insects is known to be

monochromatic [39,40] only the green channel was used as inputs

to the motion detection model. All images used in this study, and

the associated mean 1D row power spectra, and are shown in

Figure 1. There was a larger roll-off in the higher frequency

Figure 1. Panoramic input images. (upper) The model used high-dynamic range inputs however they have been normalized, gamma corrected
and reduced to 8-bits of dynamic range for reproduction here. Images are ranked from highest to lowest contrast based on the raw elementary
motion detection contrast measure (CEMD: see text for details) and cover a wide range of different environments and lighting conditions. Real world
brightness (Cd/m2) and contrast values are given in Table 1. Only the green channel of the images (shown) was used as inputs to the model. (lower)
Average 1D row power spectra of the 14 natural panoramic images used as inputs to the motion processing model. All have an approximately linear
relationship between power and spatial frequency (on the logarithmic axis) common in natural scenes. The vertical offset (contrast) in the graphs
varied almost 10dB between the different images. The roll-off at higher frequencies was caused by stitching artifacts and was outside the pass-band
of the models used.
doi:10.1371/journal.pcbi.1000555.g001
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components of the images than would be expected from the non-

idealities of the lens used, caused by stitching artifacts in the

generation of the HDR panoramic images. The inevitable time

delay between taking each of the panels resulted in small

movements of the fine details in the scene (e.g. leaves) thus

producing a low-pass effect. Furthermore, spatial corrections for

the lens distortions and software alignment of the panels to

produce panoramas may have reduced the detail in the

overlapping panel sections. However, the frequency region in

the pass-band of the insect LPTCs modeled in this work (,1

cycle/degree) appeared unaffected by this smoothing.

Image Statistics
Table 1 shows the brightness and contrast for the 14 images

illustrated in Figure 1. Unlike in traditional imagery HDR images

vary enormously in mean luminance. In order to compensate for

this, and produce contrast metrics that were not dependant on

image brightness, a crude global gain control was used (divide by

mean luminance). Because image normalization is a major role of

the biological photoreceptors this step was omitted in subsequent

modeling. Additionally, since defining image contrast is so difficult

for natural scenes, we used several different measures to quantify it

(Table 1), based either on the global image statistics, or taking into

account the specific receptive field properties of local motion

detection and the biological system it is intended to mimic [41].

RMS Contrast (CRMS) is the global standard deviation divided

by global mean. As a global measure it gives a simple to calculate

estimate of the contrast in the whole image and makes no

assumptions about directionality. However it can produce large

values simply by virtue of the fact many images contain large, yet

uniform, bright (e.g. sky) and dark (e.g. ground) sections that do

not necessarily produce strong local motion cues during horizontal

(yaw) motion.

Row Contrast (CRow) is the square root of the mean 1D row

power spectra. Since the neurons we were mimicking are selective

for horizontal (yaw) motion having an estimate bias in this

direction was appropriate. However this measurement weighted

all spatial frequencies equally, a situation that resulted in more

influence being given to higher spatial frequencies (fine detail) than

in either the biological system or our model of it.

Effective Row Contrast (CEffective) is the square root of the y-

intercept in the line of best fit for the mean 1D row power spectra

between 0.01 and 0.5 cycles/degree (on a log-log scale) to match

the observed spatial coding range for insect vision. Note that 0.5

cycles/degree is the Niquist limit for hoverfly spatial sampling,

which is approximately 1 degree separation between pixels [42],

while field of view of 100 degrees or more are not uncommon in

fly LPTCs [43]. This measure took advantage of the linear (on a

log scale) relationship between image power and frequency in

natural images and also the optical limitations (spatial sampling) of

the system. While this is a more insect-biased contrast measure-

ment than either of the previous two metrics it was still essentially

based on low order image statistics.

EMD Contrast (CEMD) is the square root of the response of a

basic motion correlator model. The images were blurred and

optically sampled as for motion detection (section 3.2), then passed

through a basic unelaborated EMD model at a single speed, below

the velocity maximum of the system. The size of the response to

this raw EMD model gave an estimate of image contrast that took

into account the exact conditions experienced by the motion

detection model. Since the images were high dynamic range,

image normalization (division by global mean) was performed so

this measure of contrast was only influenced by the structure

within the environment and not the absolute luminance of the

image.

Comparison of the differences in contrast by these four

measures confirms we achieved our objective in obtaining a set

of images that should provide an enormous range in responses for

a classical motion energy model tuned to similar spatial sampling.

Also, while the different contrast metrics did show some

differences they produced similar results, with the average

correlation (r2) between the CEMD measure and the other three

approximately 0.7. Note that recent electrophysiological work

using a comparable set of images (but low dynamic range) did

show that neurons in the brain of the fly were able to robustly

detect angular velocity independent of the scene [36].

The row contrast measurement (CRow) gave the smallest range

of estimates for image contrast. This was due to the fact it was

more heavily biased towards high spatial frequencies than the

other measures and frequencies above 5–6 cycles/degree were

likely to be influenced by lens distortion and stitching artifacts,

hence reducing the contrast of the images. This limitation was

addressed when using effective row contrast (CEffective) by

logarithmically weighting the spatial frequency (i.e. more weight

to lower frequencies) and limiting it to details larger than 0.5

cycles/degree where distortions were minimal.

Motion Detection Model
The motion detector used in this paper, shown in Figure 2, was,

at its core, based on the Hassenstein-Reichardt Correlator [24].

However we added a number of elaborations (Figure 2B) to help

overcome the limitations of this class of model. This more robust

model took into account a number of the processing steps known,

or presumed, to exist in the fly visual system and is described in the

results. All stages of the model were simulated using Matlab

(MathWorks).

Optics. The optical model used to blur and sample the

panoramas was based the resolution and optical quality of the fly

visual system [39,42,44] and pilot simulations. However, a fixed

resolution and optical blur was selected rather than using settings

that varied across the image as with the natural compound eye.

Images were first blurred with a 2D Gaussian to simulate the

Table 1. Image Statistics.

Image Luminance (Cd/m2) CRMS CRow CEffective CEMD

A 1138 3.335 2.193 3.228 1.762

B 356 3.652 2.908 5.674 1.538

C 877 3.048 1.671 2.312 1.389

D 490 4.642 2.656 3.413 1.382

E 491 2.465 2.050 1.348 1.170

F 276 4.407 2.134 2.839 1.147

G 2715 1.455 1.666 1.686 1.072

H 1684 1.600 1.826 1.962 1.013

I 11648 0.930 1.341 0.662 0.681

J 3339 0.932 1.391 0.973 0.665

K 3901 1.140 1.448 1.277 0.644

L 5112 0.889 1.242 0.846 0.572

M 27993 0.731 1.034 0.686 0.520

N 9249 0.807 1.145 1.013 0.444

Range 101 6.352 2.813 8.565 3.972

doi:10.1371/journal.pcbi.1000555.t001
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optical properties of the lens (Dr= 1.4 degrees, full width at half

maximum) prior to hexagonally sampling the image as per the

photoreceptor spacing in the eye (DQ= 1 degree, horizontal

spacing between adjacent pixels).

EMD. Each model incorporated a basic correlational

elementary motion detector (EMD) [45] with the minimum

processing required to generate motion sensitive outputs. In this

model a delayed version of the output from one detector is

multiplied with the (non-delayed) output of an adjoining detector.

The elimination of flicker and the generation of a response in the

opposite direction was achieved by subtracting two mirror

symmetric units. Comparisons were made between pixels

centered on the current spatial location and the nearest and

next-nearest neighbors. These comparisons were then weighted for

directionality and position [46] before combining to produce a

motion vector for horizontal motion (corresponds to yaw rotation

for a panoramic image). Earlier modeling of ‘basic’ EMDs (e.g.

[47]) employed first order low-pass filters with time constants in

the order of 35 ms. In our model the delay element was achieved

by cascading three first order low-pass filters, all with the same cut-

off frequency (fc = 12 Hz), and an additional fixed time delay of

2 ms. This set of parameters was chosen as it gave a biologically

realistic transfer function with a small delay before a smooth rapid

rising phase and a longer falling phase (approximately log-normal

response). The value used produced an optimum at approximately

100 degrees/s, in line with neurobiological recordings from fly

motion sensitive neurons viewing similar natural images [36], and

corresponded to a temporal cut-off frequency around 5.5 Hz,

similar to that found using sine wave stimuli in flies [48].

Model Analysis
We tested the model under a range of velocities (6 points per

decade) from 0.01 degrees/s to 1000 degrees/s by rotating the

panoramic input images within the virtual environment. Although our

modeling used discrete time we utilized a high sample rate relative to

the time constants of biological vision in order to approximate

continuous time processing. The sample rate of the simulation was

1 kHz for all rotation speeds below 200 degrees/s and 5 kHz for all

rotations above 200 degrees/s. The working angular velocity range of

the model was below 100 degrees/s, with faster rotations producing

increasingly smaller responses. Thus all analysis was limited to the

range 0.1 degrees/s to 100 degrees/s. We employed linear sub-pixel

interpolation during the simulated yaw rotations to ensure an accurate

simulation of smooth motion at low velocities.

Figure 2. Motion processing model. A) Schematic of a basic correlator elementary motion detector (EMD) used as the fundamental motion
detection algorithm in this paper. B) Diagrammatic representation of the fully elaborated motion processing model used in this study. C) Legend
describing the symbolic representations used in B). Each stage of the model represents the processing occurring on a pixel-wise basis within the
insect visual system. Connections between near-by processing columns (nearest or next-nearest neighbors) in the 2D network occur between stages,
mostly in the form of spatial high-pass filtering, with the only global stage a final spatial summation at the start of stage 5. Each stage is further
divided into smaller processing steps involving operations such as 1st order low-pass filtering, centre-surround antagonism, non-linear gains or
divisive feedback. Further detail is presented in the text.
doi:10.1371/journal.pcbi.1000555.g002
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In order to avoid ‘neural after-images’ the initial conditions

were set to the mean luminance of the image. Simulations were

run for 1050 ms to allow sufficient time for the system to reach

steady state. All analysis was based on the average response of the

last 50ms.

Two parameters were calculated to quantify the output of the

model at each angular velocity in terms of image invariance.

Coefficient of Variation (CV) was defined as the standard

deviation of the response of all images at a given rotational speed

divided by the mean of the responses and is shown in equation 1.

This parameter was used to show variation (ambiguity) in model

responses to different images at a specific angular velocity. Lower

coefficients of variation meant less variability and a more

reproducible result across different images. However, having a

low CV does not automatically make a system a good velocity

discriminator. Overlapping horizontal lines will have a low CV but

will produce the same output value for a range of velocities,

making it impossible to distinguish between different image speeds.

CVi~
si

2xi

ð1Þ

Where CVi is the coefficient of variation at point i, s is the

standard deviation of the image responses, x is the mean of the

model responses to the images and i is the test velocity. CV is

expressed as a percentage in the text.

Z Score was defined as the difference in the means at the two

consecutive velocities divided by the sum of the two consecutive

standard deviations then scaled for the number of samples per decade

(i.e. local slope divided by local variability) and is shown in equation 2.

Unlike CV this parameter represents the ability of the system to

discriminate between velocities. A higher Z score meant that the

ability to determine the difference between velocities was greater.

Zi~ppd|
xi{xi{1

sizsi{1
ð2Þ

Where Zi is the Z score at point i, ppd is the number of test points per

decade (in this case 6), x is the mean of the model responses to the

images, s is the standard deviation of the image responses, i is the test

velocity and i21 is the previous test velocity.

All results are given in the form mean695% confidence interval

unless otherwise stated. Global CV or Z score statistics were

calculated as the average over the range 0.1 to 100 degrees/s. This

range was chosen as the maximum closely matches the optimal

point seen in biological motion detecting neurons [36] and the

minimum is within the accuracy of the animation method used to

simulate image motion (linear interpolation). However the model

parameters could be altered to create a different coding range if

desired.

Results/Discussion

Being one of the most extensively studied systems in

neurobiology the fly motion system [7,45] was used as the base

line for all variables (such as time constants, gain factors etc) in the

model where available. Where such data did not exist, or was

ambiguous, a best estimate was used that was consistent with

typical values found in other neuronal systems. In such cases a

small amount of parameter optimization was used to ensure

accurate coding was not compromised. It was not unusual to find a

parameter could take a range of values without having a significant

impact on angular velocity coding, i.e. the system was not critically

dependant on the exact values used.

Motion Detection Model
Each stage of the model depicted in Figure 2B was built up

sequentially in order to investigate the contribution of each stage

to reliable angular velocity encoding. The response of the model to

each of the 14 images, and the effect of adding each of the

processing stages into the chain, is shown in Figure 3. As with all

correlation-based EMD models the system produced ambiguous

responses, with the same signal value for two different velocities

either side of an optimum. However in practice this limitation

could be overcome by using the system only within the coding

range (i.e. below the optimum).

Basic EMD. Consistent with Dror et al [33] the basic EMD

model (Raw) gave broadly similar shaped angular velocity tuning

curves over the range tested and peaking at around 100 degrees/s,

but with huge variance in the response gain as a function of

angular velocity (CV = 12161.17% and Z score = 0.40860.063 in

the range 0.1 to 100 degrees/s). Hence making it completely

unusable as an angular velocity estimator as the response at any

one angular velocity was vastly different for each image.

Stage 1 – phototransduction. This stage was a model to

account for the non-linearities in blowfly phototransduction, and

was based on our modified version [49] of a parametric model

initially proposed by van Hateren and Snippe [50]. This included

dynamic pixel-wise control of several parameters: gain, the corner

frequency of a low pass temporal filter, dynamic gamma

correction and a saturating non-linearity (Naka- Rushton

transform). These all resulted in a useful dynamic range

compression by increasing the gain of dark sections of the image

while simultaneously and independently reducing the gain in

higher luminance sections. This processing has been shown to be

functionally equivalent to that found in primate cone receptors

[51] and also facilitates the detection of small targets in clutter

[52]. All parameters were set to those found in our previous

photoreceptor recordings [49].

The inclusion of the biomimetic photoreceptor processing

improved the performance of the model by over 600% compared

to that from the unelaborated (raw) EMD model. However the

performance of the system as a reliable angular velocity estimator

was still quite low. Coefficient of variation (21.961.22%) and Z

score (2.9660.495) values showed the variation between scenes

still represented a significant portion of the entire response. The

addition of this stage moved the model from what has been

previously only attempted using normalized low dynamic range

images [34] into a form that could be used under real-world

luminance inputs with no pre-conditioning.

Stage 2 – spatial-temporal redundancy reduction. This

stage was designed to account for additional processing by the

second-order neurons, lamina monopolar cells (LMCs) in flies,

which are analogous to bipolar cells in mammalian eyes [53].

They remove redundancy in both space and time in an

information theoretic optimal way based on the local light level

[54]. Processing steps included variable (higher cut-off in areas of

higher luminance) and relaxed first-order high-pass filtering

(permitting some DC component of the signal to be propagated)

in both space and time depending on light levels [55] and a

saturating non-linearity (tanh; see equation 3). The sign inversion

seen in neurophysiological recordings from these cells was not

included as it had no impact on the performance of the system

[56]. Similarly neural superposition was not included as it would

have served no purpose. Neural superposition involves the

combination of a number of (in the case of the hover-fly 6)

independent samples of the same point in space to reduce noise

[57]. Since this simulation had essentially no detector or model

noise (or none that would be influenced by this) it was excluded.
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In the case of implementing spatial high-pass filtering the

‘surround’ was defined as the response from the neighboring 6

pixels on the hexagonal grid. These signals were inverted,

attenuated, delayed and smoothed (proposed operation of the

amacrine cells in the biological system) before combining with the

signal from the centre pixel [58]. Where possible the changes in

filtering due to luminance conditions were based on previously

published recordings from fly LMCs [59].

y(x)~ tanh (Gx) ð3Þ

Where y(x) is the output signal limited to the range 61 (designed

to mimic the limited bandwidth in a physical system) and G is the

input gain.

The inclusion of LMC-like processing after the addition of stage

1 to the raw EMD model produced minor but mixed results.

There was a non-significant 28% increase in the average Z score,

meaning the ability to distinguish between velocities was slightly

improved. However it also caused a 10% (not significant) increase

in CV, resulting in slightly more variability in the responses

produced by the difference scenes. Thus the LMC processing

provided little extra benefit in this configuration. This is itself was

surprising since the processing of the LMC (spatial-temporal high-

pass filtering) has been considered an important element in the

pre-processing of motion detectors based on EMDs [33].

However, this model for LMC processing does not fully capture

all the non-linear components of LMC operation and it is likely

missing sections play an important role in this, or other, visual

tasks.

While it is clear that photoreceptors must be on the motion

processing pathway there remains debate about subsequent

neuronal stages with proponents both for [60,61] and against

[62] the inclusion of LMCs on the motion pathway. We decided to

keep the LMCs in the model as the processing (high-pass spatial-

temporal filtering) was theoretically beneficial to both motion

processing and optimizing information transmission in limited

bandwidths. However, we also performed tests with this stage

removed to determine the actual effect the LMC model had on the

reliability of angular velocity coding (below).

Stage 3 – local motion estimation. This stage incorporated

hypothetical elaborations to the core EMD. These elaborations

were additional stronger spatial high-pass filtering (nearest and

next-nearest neighbors on the 2D image plane), for which there is

some anatomical evidence [63], as well as additional saturating

non-linearities (as per equation 3) after the multiplication

(correlation) between the delayed and undelayed spatially

separated pixels. The basis for this saturation was that biological

neurons have a limited bandwidth, so expansive non-linearities

(such as multiplication) must be bounded. Soft saturation, such as

that produced by a tanh function, is commonly seen in biological

sensory systems and has been proposed by others to exist in the

motion pathway [64] in order to account for certain contrast

tuning properties of LPTCs [65]. Unfortunately recordings from

the insect medulla region, the second optic lobe neuropil and the

region believed to contain the EMD-like processing, are difficult

and rare [66,67] due to the relative difficulty in obtaining stable

recordings [68], so the gain was estimated to provide a good

compromise between utilizing the available bandwidth and

producing saturating responses.

The inclusion of the saturating non-linearities and further

spatial high-pass filtering had little beneficial effect on either the

average CV (9% reduction) or Z score (2% reduction) within the

operating range (,100 degrees/s). However it did increase the

rate of roll-off and the similarity between images at high speeds

Figure 3. Model responses after various processing stages. A)
Steady-state responses, integrated over the entire image, of the model
to all 14 input images over the range of velocities tested after inclusion
of various modeling stages as depicted in Figure 2. Lines are color
coded to the images as shown in Figure 1. B) Summary statistics of
model performance after each stage of processing. All data are given as
mean of responses over the range 0.1–100 degrees/s. Error bars
represent 95% confidence intervals. The inclusion of each of the stages
improved the ability of the model to reliably encode velocity by
reducing the variability in the response between images. S illustrated
that the responses were summed over all space, EMD stands for
correlational elementary motion detector and was the fundamental
motion estimation operation. For a detailed description of the
processing of each stage, and the exact effects on velocity consistency
between images, see main text.
doi:10.1371/journal.pcbi.1000555.g003
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(Figure 3A). Damping in this section of the velocity curve has been

shown to be important from a control systems point of view in

reducing potential instability in the system during periods of very

high rotational velocities [69].

Stage 4 – local motion adaptation. This stage was a novel

model for local motion-dependent gain reduction (local motion

adaptation) as observed in the rotational motion sensitive neurons

in the fly visual system [70]. The motion adaptation was

implemented via divisive feedback of a spatial-temporal low-pass

filtered version of the local motion signal (nearest and next-nearest

neighbors on the 2D image plane). This feed-forward gain control

was made direction independent, as shown in biology [71], by the

addition of a full-wave rectifier on the input to the low-pass filters.

This motion gain control permitted a form of predictive coding

where the gain in regions of high motion-energy (clutter) was

reduced and the signal amplified in regions of low clutter. The

basic premise was to increase the statistical independence of local

motion signals by reducing their co-variance, hence increasing the

information content in the global signal. Unlike the motion control

used in our previous modeling [34] this new type of adaptation did

not act as a contrast normalization stage. Hence the model

retained one of the most curious recent findings in the fly that can

not be accounted for by the work of Shoemaker et al. While

images of different contrast produce similar outputs in LPTCs

artificially reducing the contrast of images results in a reduction of

the responses, but the responses are still similar across the different

images [36]. Other processing stages included were a static

saturating non-linearity (tanh; 2nd last block in stage 4 of Figure 2B)

and a compressive non-linearity shown in equation 4 (last block in

stage 4 of Figure 2B).

y(x)~sign(x)| xj jp ð4Þ

Where y(x) is the compressed output of the local motion gain

control stage, x is the local motion estimation after the local gain

control and saturating non-linearity and p is the power used to

compress the response range (i.e. boost the response to low speed

rotation relative to that of high speed rotation). The nominal value

for p was 0.5. This value was chosen in order to partially correct

for the square-like expansion caused by the multiplication in the

EMD stage and to produced a signal that was log-linear over most

of the signaling range, another unexpected neurophysiological

finding by Straw et al [36]. Since p,1 it was necessary to use the

modulus of the local motion signal to produce real results. The

directionality of the result was maintained by the use of the sign

function that produced 21 if x,0 and 1 if x.0.

This processing had little effect on the average Z score (2%

increase), but did reduce the average CV (48% reduction) and

decrease the required output bandwidth by boosting the response

to low velocities while suppressing high velocities. So while in a

noise free simulation, such as that presented here, there was no

real improvement in the ability to accurately encode velocities this

stage will have implication in real-world implementations where

noise and limited bandwidth are important considerations. It is

also important to note that in previous modeling the inclusion of

‘local motion gain control’, either on its own or in tandem with

other processing, constantly made angular velocity coding worse

[34].

Stage 5 – large-field integration. This stage was a

representation of the processing performed by the LPTCs in flies

and was the summation of all stage 4 outputs and represented the

first, and only, global calculation in the model. The low number of

global calculations means that it is easier to construct physical

models, such as aVLSI [34,72] or FPGA implementations. Note

that this is the first stage for which there is evidence of global

integration in the biological system. This stage included a non-

linear spatial correction factor [73] designed to account for the fact

that not all EMDs will be activated by a given natural scene at any

instant. This was followed by a final saturating non-linearity (tanh;

equation 3). This stage did not contain additional global

components of motion adaptation such as the famous ‘waterfall

effect’, which are a known feature of biological visual systems [74].

In the absence of a clear role for these phenomena in velocity

coding they may add an unnecessary level of complexity to

artificial systems required to estimate actual rather than relative

angular velocity.

Adding this final stage to the rest of the processing chain had a

marked positive improvement on both the CV (25% reduction)

and the Z score (93% increase), making the model much more

robust. However, it should be noted that the improvement of the

model response after the inclusion of stage 5 was not solely due to

the performance of that stage but rather the accumulated actions

of each of the preceding stages. The replacement of the

photoreceptor model for a standard normalization operation

(divide by image mean), while still maintaining all other

operations, reduced the average Z score from 7.2861.62

(mean695% confidence interval) to 1.4260.42. The removal of

stage 2 from the complete model caused the average Z score to

drop by over 40% to 4.3560.77, despite this stage having had no

significant effect when added after stage 1 in the absence of other

elaborations. These findings highlight the importance of looking at

the performance of the system as a whole rather than the

individual components of the model.

Effect of Optical Sampling
The response of the modeling showed that the inclusion of

bioinspired processing components could, in tandem, produce

reliable angular velocity coding of visual inputs. However it was

important to determine the requirements of this approach from an

optical sampling view-point. In order to test the robustness of

angular velocity coding for different spatial sample rates, we ran

the full model for a range of possible constant sampling optical

configurations. The spatial baseline used was the hoverfly (Eristalis

tenax), where resolution (DQ) is maximally about 1 degree but can

drop off to almost 2 degrees in the periphery [42]. Other types of

flies can have even less resolution, e.g. Land [75] reports 2.8

degree resolution in house flies (Musca domestica) and as low as 5.8

degrees in fruit flies (Drosophila melanogaster). Furthermore accep-

tance angles (Dr), which can be approximated by a Gaussian blur

with a full width at half maximum of 1.4 degrees (standard

deviation of 0.59 degrees) in hoverflies [44], can be as large as 2.6

degrees in bees [76] and even 4 degrees in dark adapted locusts

[77].

The results of varying Dr and DQ are shown in Figure 4 and at

no time did we attempt to mimic the variable resolution found to

exist across the biological compound eye. In all cases the optimum

condition (producing the largest average Z score) was a DQ of 2

degrees with a Dr of 2.8 degrees. When Dr was kept constant at

2.8 degrees (Figure 4a) all tested values of DQ resulted in

significantly lower Z scores than the case of 2 degree sampling,

except for 1.26 degrees (p,0.05). However this solution came at

the expense of increased computational effort, with 2.5 times more

samples (and hence processing power) required to realize it.

At a fixed DQ the location of the optimal angular velocity

(corresponding to the largest Z scores) can be shifted to higher

velocities by increasing Dr. In this system it was found that there

was no significant difference in the reliability of angular velocity

coding when using Dr of 2.8, 3.53 and 4.44 degrees and with no
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difference in the number of calculations required to produce these

results (assuming the blur was not performed by software

convolution of an over sampled system, in which case smaller

blur would be less computationally expensive) then the selection of

blur would depend only on the application, with systems with

larger blurs tuned for higher velocities.

By keeping the Dr/DQ equal to 1.4 (Figure 4c) it was possible to

show that the system performance was not significantly different

over a range of spatial sampling values (1.26–2.52 degrees). As

with the constant sampling case increasing the absolute blur

moved the optimal point to higher velocities. However in our

model computational time increased between these limits by a

factor of 4. In computation, as in biology, greater efficiency might

thus make lower spatial sampling rates more desirable.

Overall the optical model found to produce the most accurate

angular velocity coding was achieved using a DQ of 2 degrees and

a Dr of 2.8 degrees. While the spatial sampling rate is lower than

that found in the majority of insects the blur to sampling rate ratio

(Dr/DQ ) of 1.4 is the same as that seen in bees [76,78] and flies

[42,44]; a ratio that has been predicted as optimal in an

information-theoretical sense [79,80]. In comparison experiments

in primates have shown that the detection of high temporal

frequency stimuli is governed by the relatively low resolution

magnocellular pathway [81]. Furthermore, throughout the animal

kingdom, ranging from invertebrates to vertebrates including

humans, the mechanisms underlying motion detection can be

attributed to correlational EMD-like processing [82]. Thus there is

substantial evidence for a common strategy of low-resolution

motion vision in many biological systems.

The reason that the optimum spatial sampling rate is so low is

because the system was tested under both natural and urban

images. Natural scenes have a fractal pattern (self-similarity at

different scales) that means, in general, more information can be

gained by increasing the resolution of the image. In contrast urban

scenes (such as indoor locations) have a high degree of spatial

redundancy (such as uniformly painted walls), where increasing

the resolution provides little increase to the overall information

gained. Since the EMD is a motion energy model it relies on

information change between pixels, if there is little information

change there is little energy and hence a small motion signal. Thus

increasing the resolution had little or no effect on the velocity

consistency of the natural scenes, as they all tended to scale

together, but it did cause the urban scenes to produce relatively

smaller responses. Hence the ideal spatial resolution of a system

may be dependant on the mix of urban and natural environments

it needs to operate in. This finding is in direct opposition to the

current trends in cameras and computer vision towards support for

systems with higher spatial resolution.

Unlike in most traditional artificial systems the optimum

condition for this system was not a sharply focused image. This

is because, due to the low spatial resolution, the system needed to

detect sub-pixel motion in order to reliably encode slow velocities.

If there were no optical overlap between pixels this would not be

possible. However with overlap it was possible to detect small

motion changes both within a given pixel and also in the

neighboring pixels. Conversely, too much optical blur made the

differences between the pixels too small, hence reducing the

independence of each sample and resulting in less accurate

angular velocity detection.

Varying Model Parameters
Although it is possible to elicit a motion response by stimulating

only two adjacent receptors (see Figure 2A) integration over a

larger area reduces phase dependant pattern noise [33]. The

optimum integration size will be task-dependent. For the special

case simulated in this paper of ‘pure yaw’ (e.g. as needs to be

compensated for by a hovering fly) complete elimination of pattern

noise in the time domain can be achieved by sampling across the

full 360 degrees of the horizontal visual field. However, what

additional spatial summation is required to reduce variability due

to differences in spatiotemporal contrast over the vertical extent of

the field of view? To address this, we varied the number of vertical

rows averaged in stage 5 to investigate the degree to which spatial

integration across a larger receptive field influenced angular

velocity coding. In this case, we used the fully elaborated model

(i.e. all stages), with 2 degree spatial sampling and 2.8 degree

optical blur as previous experiments had suggested this to be an

optimum optical design due to its compromise between Z score

and computational efficiency (section 3.2). All conditions involved

a central row around the horizon and an equal number of rows

Figure 4. Effect of image blur and spatial sampling on velocity
discrimination. A) the optical blur (Dr) was a constant 2D Gaussian of
2.8 degrees (full width at half maximum) and the spatial sampling rate
(DQ) was varied. B) The spatial sampling was set to 2 degrees (180 pixels
in horizontal dimension) and the optical blur varied. C) The optical blur
was fixed at 1.4 times larger than the spatial sampling rate, which was
varied. The circles show, in order, the Z score between each of the 19
tested speeds between 0.1 and 100degrees/s inclusive (equally spaced
on a log scale, i.e. 18 intervals). The columns and error bars show mean
Z scores and standard errors of the mean respectively. In each case it
was found that the maximal Z score (i.e. best discrimination between
velocities) was with a spatial sampling of 2 degrees and an optical blur
of 2.8 degrees.
doi:10.1371/journal.pcbi.1000555.g004
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evenly spaced above and below the centre up to a maximum of 72

degrees (29 rows due to hexagonal sampling and the inability to

use the outer most rows). The results are shown in Figure 5. The

maximal average Z score was obtained by using 25 rows, however

due to the logarithmic shape of the curve using any number of

rows greater than 7 produced results within 10% of the full

resolution.

The effect of varying the slope of the curve and point of

maximal response is shown in Figure 6. The slope of the model

can be modified to fit the desired scope of velocities for a given

application. Using a smaller range (i.e. greater response gain as a

function of angular velocity) made the system more robust against

noise, which is more likely to be a problem at low speeds or where

the output bandwidth is limited. However in a noise free

simulation there was little or no benefit in reducing the working

range. The average Z score was 6.7761.16, 7.5361.62 and

7.1561.59 (mean695% confidence interval) for slope parameters

of 0.3, 0.5 and 0.75 respectively.

The maximum (optimal) angular velocity of the system could be

changed depending on the requirements of the system (Figure 6b).

In all cases the variation between images was much greater outside

the working range (above the optimum angular velocity). This is

because the variability within individual images (pattern noise)

increased with angular velocity and with a decreasing response to

the true angular velocity the signal became swamped with noise.

Dynamic Stimuli
In all of the test conditions described in the paper to date the

image angular velocity was constant and the motion detection

model was given sufficient time to reach steady-state before the

results were taken. However this is not a realistic situation for a

motion sensor that would typically be required to produce a

reliable response under dynamic conditions. In order to test the

model under conditions of variable angular velocity and

acceleration a 20 second stimulus was constructed that consisted

of variable width periods of constantly (in the log domain)

increasing and decreasing angular velocity. The exact waveform,

and the model response, is shown in Figure 7. With the median of

the coefficient of variation being 7.28% the model showed little

variation in response to the different scenes, even under rapid

accelerations (6844 degrees/s2). In fact the median coefficient of

variation under constant conditions over the same rotational

velocities (10020.5 degrees/s) was 6.91%, indicating a decrease in

performance reliability of less than 5.5% under dynamic

conditions where the model was not permitted to reach stead-state.

Despite the system only being tested under positive angular

velocities there were situations when the model produced negative

results indicating that the model got the direction of motion

wrong. This aliasing occurred at low velocities following high

velocities and at the point where the stimulus went from

decreasing to increasing rotational velocities. Moreover, it was

Figure 5. Effect of varying the vertical rows in global
summation stage on velocity discrimination. A) The number of
rows used in the global summation (stage 5 in Figure 2) was varied. In
each case a row centered on the horizon was used and other rows were
equally separated both above and below the horizon. Little improve-
ment is gained by averaging more than 7 rows together. B) Only 3 rows
were used in the calculation but the separation of the rows from the
centre was varied. The optimal separation of rows occurred at
approximately 21 degrees, i.e. rows at +21, 0 and 221 degrees with
reference to the horizon. Due to the large amount of image similarity in
the vertical dimension separations less than this resulted in samples
that were not distinct enough to assist with velocity estimation. Values
were calculated as the mean Z score across all velocity intervals used,
error bars represent one standard error of the mean.
doi:10.1371/journal.pcbi.1000555.g005

Figure 6. Effect of varying the working range and velocity
optima. Average model responses for all 14 natural images. The model
can be configured to detect different velocity ranges and to have a
peak response at different velocities. Error bars represent one standard
deviation. A) The slope refers to the exponent of a power function
implemented at the end of stage 4. Despite the clear reduction in
response amplitude at the higher slope value there was no significant
difference in Z score between a slope of 0.3 and 0.75 in the range 0.01–
1 degrees/s (paired t-test, p.0.05). This finding is most likely due to the
lack of noise in the model and would change in any real-world
implementation. B) The peak response of the model is a function of the
(3rd order) delay filter implemented in the Hassenstein-Reichardt
detector (stage 3). Using a slower delay filter shifts the maximum
response point to lower velocities and increases the rate of roll-off
outside the pass-band. In the case of the slowest delay filter used the
response is inverted (aliased) at very high velocities.
doi:10.1371/journal.pcbi.1000555.g006
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more prevalent under larger accelerations. Despite not being

explicitly included in the motion model (see section 3.1 stage 5) this

result is somewhat analogous to the waterfall effect where after the

rapid removal of a large motion stimulus motion detecting neurons

tend to hyperpolarize.

Although flies are capable of extreme angular accelerations

during saccades, much larger than the 844 degrees/s2 tested here,

[83] it is not clear that the visual system is used for coding under

such situations. Some authors (e.g. [69]) have made the point that

the visual motion response may be deliberately damped to avoid

sensitivity to such events in order to avoid instability in the

optomotor response, in lieu of a mechanism for saccadic

suppression (as in primate vision) otherwise required. Other

sensory systems likely play a role in encoding high-speed

acceleration (e.g. halteres) and the visual motion pathway seems

deliberately tuned to low speeds in flies (see [84]).

Horizontal Field of View
In all previously described results the full 360 degrees of

horizontal visual space was integrated in order to remove the

dependence of the result on the part of the image being analyzed

(pattern noise). Although it can be reduced by integrating over

smaller areas [85] using a fully panoramic field of view has been

show to be the only way to eliminate the periodic responses

dependant on image statistics [86]. Behavioral experiments in the

fly have shown that they are sensitive to the contrast and

orientation of patterns at the level of individual receptor pairs (i.e.

single EMDs) [87] or when they cover a larger (non-panoramic)

area of space [88]. While not realistic for the output of a single

neuron [89] the outputs of populations of motion sensitive LPTCs

combine to give an almost complete panoramic view, as evidenced

by the output of neck motor neurons [90], thus minimising pattern

noise by means of spatial integration [87]. In addition to

integrating over wider fields of view incorporating saturation

and other non-linear processing elements predicted to exist in the

biological motion processing pathway can modify and reduce

pattern noise when a limited field of view is used [33,91].

In order to investigate the role of horizontal field of view on the

temporal response of the system we reduced the field of view of the

model to 20 degrees of visual space in both the raw (but

normalized for image brightness) and fully elaborated models.

Under such conditions there were two important sources of

variability to consider, that between images (inter-image, as

already reported) and that within images (intra-image, i.e. the time

domain variability of the system in response to a constant input).

The responses of the model to a constant velocity of 50 degree/s

are shown in Figure 8. With the limited spatial integration and

most basic EMD model the average coefficient of variation within

images over a full rotation was 66.3627.1% (mean6standard

deviation) and the variation between the 14 image means was

46.6%. Thus showing the response was not a constant indicator of

individual image velocity, or a good inter-image velocity estimator.

Increasing the field of view to 360 degrees dramatically reduced

the intra-image variation to 0.8260.44%, however as expected it

had no effect on the intra-image variation. Using the full model

with the limited field of view resulted in an intra-image variation of

Figure 7. Response of the motion detection model to dynamic stimuli. The time domain response of the model to all images as tested under
velocity ramps of different slopes. Image assignments and line coloring is the same as Figure 1. Despite the relatively large, and variable, accelerations
involved the motion model produces very consistent responses for the different images. Aliasing (reversal of signaled direction) can be seen when
the stimulus changes from decreasing to increasing velocity under the high acceleration.
doi:10.1371/journal.pcbi.1000555.g007
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23.965.1%, reduced compared to the case with the spatially

limited raw model but not to the same extent as with the

panoramic view. The inter-image variation in this case was 11.7%,

much improved over both raw cases. Finally, the full model with

full 360 degree field of view produced both the smallest intra-

image (0.4860.14%) and inter-image (2.2%) variations. The

difference in the inter-image variations between the full and

limited field of view tests was due to both the reduced saturation

(in the spatially limited case) and the different weighting factors in

the non-linear global summation stage.

Conclusion
By constructing a model for motion detection based on elements

known, or suspected, to be present in the biological system we

have shown that accurate and robust detection of global motion

can be achieved using a system with very low resolution based on

relatively simple mathematical operations. The key to the

operation of the model was the way multiple non-linear elements

interacted to produce an estimate of angular velocity that was

independent of the scene it was viewing. Moreover, the

performance of the system as a whole was greater than the linear

addition of the individual components taken in isolation.

While we have based our model on parameters derived from

physiological analysis of the fly motion pathway the model may

also be applicable to data from other species. In previous work

Ibbotson described ‘velocity tuned’ (VT) neurons in the honeybee

that appear to differ from our model and fly neurons in having

monotonic responses to very high speeds (1000 degrees/s) and

apparently less dependent on spatial period of square-wave

patterns [92]. While a degree of pattern invariance may result

from the adaptive nature of our model, the apparent lack of

response roll-off in the Ibbotson data is more difficult to reconcile

with the fly data. Interestingly, however, because the bee spatial

optimum is much lower than in flies (coarser spatial sampling) and

the temporal optima much higher (shorter delay) [84], the useful

‘‘coding range’’ (as referred to in our model description) is

predicted to be shifted to 10 times that in flies (see [93]), where

velocity optima for natural scenes are already 200 degrees/s [36].

Since the Ibbotson data set only explored velocities below 1000

degrees/s it is thus likely that patterns were not animated at high

enough velocities to see the response roll-off predicted by a

correlation-based model (including our fully elaborated model).

There is strong evidence that the fly motion pathway processes

negative and positive contrasts separately [47]. However, the

motion model described here does not incorporate any kind of

‘contrast asymmetry’. Although several authors have explored

whether the motion pathway is fed by separate ‘on’ and ‘off’

pathways (e.g. [94,95]), no studies have yet provided conclusive

results. Recently we have shown that the separation between ‘on’

and ‘off’ pathways can be a useful primitive in target detection

[96,97]. While others have shown that contrast separation can be

used as a pre-processing stage in a different type of EMD-based

model [98] the current model shows it is not a necessity for the

accurate detection of wide field angular velocity using correlation-

based EMDs.

There is a significant push to reduce the complexity of bio-

inspired algorithms so they will run in real-time on modern

computer platforms [99]. The complexity of the model described

in this paper may be too much to realize in a real-time application

based on a single serial CPU. However its highly parallel nature

Figure 8. Temporal response of spatially restricted basic and elaborated models. Image appeared over a content grey background at time
2400ms. Due to adaptive elements in the early visual processing an appearance artifact is visible in the elaborated models. Images were kept
stationary until time 0 when the velocity stepped up to 50 degrees/s. In addition to the raw correlator elementary motion detector (Figure 2A) the
basic model also included a normalization factor for the image brightness. The vertical scales for the model settings are different in each case in order
to show the full variations under each condition. The variation in the time domain response (pattern noise) when the model had only a 20 degree
field of view (FoV) was much larger than when averaged over the full 360 degrees of visual space. Furthermore, the inclusion of the model
elaborations reduced not only the variations between images but also the pattern noise within individual images, even in the absence of a large field
of view. Inset shows a close-up of the model response to the velocity step (shown as dotted gray line). Even at the very high acceleration induced by
this stimulus the model maintains a similar response profile for all images tested. Image assignments and line coloring is the same as Figure 1.
doi:10.1371/journal.pcbi.1000555.g008
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and low resolution make it an ideal candidate for implementation

in either a FPGA or GPGPU [100] based platform. Furthermore

reduced versions have already been produced in analog VLSI

[101] and may be suitable for serial digital systems as well [102]

where frame rates in excess of 100Hz have already been achieved

using standard consumer-level computers. It is also important to

note that the computational complexity of an EMD based system

can be orders of magnitude less than alternative schemes for

computing local velocity vectors in optic flow analysis (e.g. [103]).
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