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Abstract

The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However,
such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is
the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper,
we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and
analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy.
We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance
arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal
while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug
administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type.
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Introduction

Alteration of the normal regulation of cell-cycle progression,

division and death lies at the heart of the processes driving

tumorigenesis. A detailed molecular understanding of these

processes provides an opportunity to design targeted anti-cancer

agents. The term ‘targeted therapy’ refers to drugs with a focused

mechanism that specifically act on well-defined protein targets or

biological pathways that, when altered by therapy, impair the

abnormal proliferation of cancer cells. Examples of this type of

therapy include hormonal-based therapies in breast and prostate

cancer; small-molecule inhibitors of the EGFR pathway in lung,

breast, and colorectal cancers – such as erlotinib (Tarceva), gefitinib

(Iressa), and cetuximab (Erbitux); inhibitors of the JAK2, FLT3 and

BCR-ABL tyrosine kinases in leukemias – such as imatinib

(Gleevec), dasatinib (Sprycel), and nilotinib (Tasigna); blockers of

invasion and metastasis; anti-angiogenesis agents like bevacizumab

(Avastin); proapoptotic drugs; and proteasome inhibitors such as

bortezomib (Velcade) [1,2]. The target-driven approach to drug

development contrasts with the conventional, more empirical

approach used to develop cytotoxic chemotherapeutics, and the

successes of the past few years illustrate the power of this concept.

The absence of prolonged clinical responses in many cases,

however, stresses the importance of continued basic studies into

the mechanisms of targeted drugs and their failure in the clinic.

Acquired drug resistance is an important reason for the failure

of targeted therapies. Resistance emerges due to drug metabolism,

drug export, and alteration of the drug target by mutation,

deletion, or overexpression. Depending on the cancer type and its

stage, the therapy administered, and the genetic background of the

patient, one or several (epi)genetic alterations may be necessary to

confer drug resistance to cells. In this paper, we investigate drug

resistance emerging due to a single alteration. For example,

treatment of chronic myeloid leukemia (CML) with the targeted

agent imatinib fails due to acquired point mutations in the BCR-

ABL kinase domain [3]. To date, ninety different point mutations

have been identified, each of which is sufficient to confer resistance

to imatinib [4]. The second-generation BCR-ABL inhibitors,

dasatinib and nilotinib, can circumvent most mutations that confer

resistance to imatinib; the T315I mutation, however, causes

resistance to all BCR-ABL kinase inhibitors developed so far.

Similarly, the T790M point mutation in the epidermal growth

factor receptor (EGFR) confers resistance to the EGFR tyrosine

kinase inhibitors gefitinib and erlotinib [5], which are used to treat

non-small cell lung cancer. Other mechanisms of resistance

include gene amplification or overexpression of the P-glycoprotein

family of membrane transporters (e.g., MDR1, MRP, LRP) which

decreases intracellular drug accumulation, changes in cellular

proteins involved in detoxification or activation of the drug,

changes in molecules involved in DNA repair, activation of

oncogenes such as Her-2/Neu, c-Myc, and Ras as well as

inactivation of tumor suppressor genes like p53 [6–11].

The design of optimal drug administration schedules to

minimize the risk of resistance represents an important issue in

clinical cancer research. Currently, many targeted drugs are

administered continuously at sufficiently low doses so that no drug

holidays are necessary to limit the side effects. Alternatively, the

drug may be administered at higher doses in short pulses followed
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by rest periods to allow for recovery from toxicity. Clinical studies

evaluating the advantages of different approaches have been

ambivalent. Some investigations found that a low-dose continuous

strategy is more effective [12], while others have advocated more

concentrated dosages [13]. The effectiveness of a low-dose

continuous approach is often attributed to its targeted effect on

tumor endothelial cells and the prevention of angiogenesis rather

than low rates of resistance [14]. The continuous dosing strategy is

often implemented as combination therapy, sometimes including a

second drug administered at a higher dose in a pulsed fashion.

A significant amount of research effort has been devoted to

developing mathematical models of tumor growth and response to

chemotherapy. In a seminal paper, Norton and Simon proposed a

model of kinetic (not mutation-driven) resistance to cell-cycle

specific therapy in which tumor growth followed a Gompertzian

law [15]. The authors used a differential equation model in which

the rate of cell kill was proportional to the rate of growth for an

unperturbed tumor of a given size. They suggested that one way of

combating the slowing rate of tumor regression was to increase the

intensity of treatment as the tumor became smaller, thus

increasing the chance of cure. The authors also published a

review of clinical trials employing dosing schedules related to their

proposed dose-intensification strategy, and concluded that the

concept of intensification was clinically feasible, and possibly

efficacious [16]. Later, predictions of an extension of this model

were validated in a clinical trial evaluating the effects of a dose-

dense strategy and a conventional regimen for chemotherapy [17].

Their model and its predictions have become known as the

Norton-Simon hypothesis and have generated substantial interest

in mathematical modeling of chemotherapy and kinetic resistance.

For example, Dibrov and colleagues formulated a kinetic cell-cycle

model to describe cell synchronization by cycle phase-specific

blockers [18]; this model was then used for optimizing treatment

schedules to increase the degree of synchronization and thus the

effectiveness of a cycle-specific drug. Agur introduced another

model describing cell-cycle dynamics of tumor and host cells to

investigate the effect of drug scheduling on responsiveness to

chemotherapy [19]; this model was then used to optimize

scheduling of chemotherapeutics to maximize efficacy while

controlling host toxicity. Other theoretical studies include a

mathematical model of tumor recurrence and metastasis during

periodically pulsed chemotherapy [20], a control theoretic

approach to optimal dosing strategies [21], and an evaluation of

chemotherapeutic strategies in light of their anti-angiogenic effects

[14]. For a more comprehensive survey of kinetic models of tumor

response to chemotherapy, we refer the reader to reviews [22–24]

and references therein.

There have also been substantial research efforts devoted to

developing mathematical models of genetic resistance, i.e. resistance

driven by genetic alterations in cancer cells. Since mutations

conferring resistance can arise as random events during the DNA

replication phase of cell division, the dynamics of resistant

populations are well-suited to description with stochastic mathe-

matical models. Coldman and co-authors pioneered this field by

introducing stochastic models of resistance against chemotherapy to

guide treatment schedules (see e.g., [25,26] and references therein).

In 1986, Coldman and Goldie studied the emergence of resistance

to one or two functionally equivalent chemotherapeutic drugs using

a branching process model of tumor growth with a differentiation

hierarchy [25]. In this model, the birth and death rates of cells were

time-independent constants and each sensitive cell division gave rise

to a resistant cell with a certain probability. The effect of drug was

modeled as an additional probabilistic cell kill law on the existing

population, and the drug could be administered in a fixed dose at a

series of fixed time points. The goal of the model was to schedule the

sequential administration of both drugs in order to maximize the

probability of cure. Later, the assumption of equivalence or

‘symmetry’ between the two drugs was relaxed [27]. These models

were also extended to include the toxic effects of chemotherapy on

normal tissue, and an optimal control problem was formulated to

maximize the probability of tumor cure without toxicity [26]. More

recently, Iwasa and colleagues used a multi-type birth-death process

model to study the probability of resistance emerging due to one or

multiple mutations in populations under selection pressure [28].

The authors considered pre-existing resistance mutations and

determined the optimum intervention strategy utilizing multiple

drugs. Multi-drug resistance was also investigated using a multi-type

birth-death process model in work by Komarova and Wodarz

[29,30]. In their models, the resistance to each drug was conferred

by genetic alterations within a mutational network. The birth and

death rates of each cell type were time-independent constants and

cells had an additional drug-induced death rate if they were sensitive

to one or more of the drugs. The authors studied the evolution of

resistant cells both before and after the start of treatment, and

calculated the probability of treatment success under continuous

treatment scenarios with a variable number of drugs. Recently, the

dynamics of resistance emerging due to one or two genetic

alterations in a clonally expanding population of sensitive cells

prior to the start of therapy were studied using a time-homogenous

multi-type birth-death process [31,32].

One common feature of these models of genetic resistance is

that the treatment effect is formulated as an additional

probabilistic cell death rate on sensitive cells, separate from the

underlying birth and death process model with constant birth and

death rates. Under these model assumptions, the drug cannot alter

the proliferation rate of either sensitive or resistant cells; however,

a main effect of many targeted therapies (e.g. imatinib, erlotinib,

gefinitib) is the inhibition of proliferation of cancer cells. Inhibited

proliferation in turn leads to a reduced probability of resistance

since resistant cells are generated during sensitive cell divisions. In

this paper, we utilize a non-homogenous multi-type birth-death

process model wherein the birth and death rates of both sensitive

Author Summary

Recently, the field of anti-cancer therapy has witnessed a
revolution by the discovery of targeted therapy, which
refers to compounds targeting specific pathways causing
abnormal growth of cancer cells. The clinical success of
such drugs has been limited by the evolution of acquired
resistance to these compounds, which leads to a relapse
after initial response to therapy. Current dosing proce-
dures are not designed to optimally delay the emergence
of resistance; the identification of such optimal dosing
schedules represents an important challenge in clinical
cancer research. Here, we design a novel methodology to
identify the optimum drug administration strategies that
reach this clinical goal. Our model describes the evolu-
tionary dynamics of a tumor cell population during
therapy. We consider drug resistance emerging due to a
single (epi)genetic alteration and calculate the probability
of resistance arising during specific dosing strategies. We
then optimize treatment protocols such that the risk of
resistance is minimal while considering drug toxicity and
side effects as constraints. Since this methodology can be
extended to describe situations arising during administra-
tion of cytotoxic chemotherapy as well, it can be used to
identify optimum drug administration schedules to avoid
resistance for any cancer and treatment type.
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and resistant cells are dependent on a temporally varying drug

concentration profile. This study represents a significant departure

from existing models of resistance since we incorporate the effect

of inhibition of sensitive cell proliferation as well as drug-induced

death, obtaining a more accurate description of the evolutionary

dynamics of the system. In addition, we generalize our model to

incorporate partial resistance, so that the drug may also have an

effect on the birth and death rates of resistant cells. The goals of

our analysis also differ from those of previous work. Coldman and

Murray were interested in finding the optimal administration

strategy for multiple chemotherapeutic drugs in combination or

sequential administration [26]; they aimed to maximize the

probability of cure while limiting toxicity. Komarova was

interested in studying the effect of multiple drugs administered

continuously on the probability of eventual cure [30]. In contrast,

in this paper we derive estimates for the expected size of the

resistant cell population as well as the probability of resistance

during a full spectrum of continuous and pulsed treatment

schedules with one targeted drug. We then propose a methodology

for selecting the optimal strategy from this spectrum to minimize

the probability of resistance as well as to maximally delay the

progression of disease by controlling the expected size of the

resistant population, while incorporating toxicity constraints. In

many clinical scenarios, the probability of resistance is high

regardless of dosing strategy, and thus the maximal delay of

disease progression is a more realistic objective than tumor cure.

The methodology developed in this paper can be applied to study

acquired resistance in any cancer and treatment type.

Methods

Consider a population of M drug-sensitive cancer cells at the

time of diagnosis. These cells may represent the total bulk of tumor

cells or, alternatively, cancer stem cells only; if only the latter cells

are capable of self-renewal to produce and maintain a resistant cell

clone, then the effective population size M equals the number of

cancer stem cells in the tumor. We assume for now that there are

no resistant cells present at the time of diagnosis; this assumption

will be relaxed in later sections. The evolutionary dynamics of the

sensitive and resistant cancer cell populations are modeled as a

multi-type branching process [33].

Let us first consider this process during a continuous dosing

schedule. Cells are chosen at random to divide or die in

accordance with a specified growth and death rate. During

therapy, the growth and death rates of sensitive cancer cells are

denoted by q1 and c1, respectively. During each sensitive cancer

cell division, a resistant cell arises with probability u; such a cell has

growth and death rates q2 and c2 during treatment. The growth

and death rates during therapy are determined by the dose

intensity of treatment.

Let Xt denote the random process representing the number of

sensitive cancer cells at time t, and let Yt denote the number of

resistant cancer cells at time t. The initial conditions at the start of

treatment, t~0, are defined as X0~M and Y0~0. Denote the

state of the process after the n-th event (represented by a cell birth

or death) as (Xn,Yn). The transition probabilities of the stochastic

process are given by

P((Xnz1,Ynz1)~(Xnz1,Yn)jXn,Yn)~q1Xn(1{u)=Rn,

P((Xnz1,Ynz1)~(Xn{1,Yn)jXn,Yn)~c1Xn=Rn,

P((Xnz1,Ynz1)~(Xn,Ynz1)jXn,Yn)~(q2Ynzq1Xnu)=Rn,

P((Xnz1,Ynz1)~(Xn,Yn{1)jXn,Yn)~c2Yn=Rn:

Here Rn~Xn(q1zc1)zYn(q2zc2) is the sum of the rates,

normalizing the total probability to 1. The arrival times between

events are exponentially distributed: if tn denotes the time at the

beginning of the n-th step, then tnz1{tn is an exponential

random variable with parameter Rn.

Let us now consider the evolution of these cell populations

during general pulsed treatment schedules. To investigate dosing

strategies consisting of drug pulses and treatment holidays, we

implement time-varying growth and death rates in the stochastic

process model. During treatment pulses, the growth rates of

sensitive and resistant cells are again denoted by q1 and q2,

respectively, while their death rates are given by c1 and c2. During

drug holidays, the growth rates of sensitive and resistant cells are

given by r1 and r2, respectively, and their death rates by d1 and d2

(see Table 1 for a summary of notation). Here we assume that the

drug reaches its maximum concentration immediately after

Table 1. Notation.

Symbol Definition (units, where applicable)

Xt Number of sensitive cancer cells at time t

Yt Number of resistant cancer cells at time t

M Initial number of sensitive cancer cells

q1 Growth rate of sensitive cancer cells during therapy (time 21)

c1 Death rate of sensitive cancer cells during therapy (time 21)

q2 Growth rate of resistant cancer cells during therapy (time 21)

c2 Death rate of resistant cancer cells during therapy (time 21)

r1 Growth rate of sensitive cancer cells during treatment break (time 21)

d1 Death rate of sensitive cancer cells during treatment break (time 21)

r2 Growth rate of resistant cancer cells during treatment break (time 21)

dt Death rate of resistant cancer cells during treatment break (time 21)

Ton Length of treatment pulse (time)

Toff Length of treatment break (time)

u Mutation rate per sensitive cell division

pi,0 Number of sensitive cancer cells at beginning of i-th treatment cycle

pi,1 Number of sensitive cancer cells at end of i-th treatment cycle

B Number of sensitive cell divisions before extinction of sensitive cell
population

W Number of treatment cycles before extinction of sensitive cell
population

Wt Number of treatment cycles until time t

P Probability of resistance

R(T) Expected number of resistant cells at time T

Ti
j Example toxicity constraint (i-th member of j-th family)

K Ton + Toff

aon q12c1

aoff r12d1

c aonTon + aoffToff

This table shows frequently used notation.
doi:10.1371/journal.pcbi.1000557.t001
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administration and remains at that level until the beginning of the

treatment break; additionally, we assume that the intensity of the

dose does not vary from pulse to pulse. The length of each

treatment pulse is denoted as Ton and the length of each treatment

break is denoted as Toff . Each treatment cycle consists of one pulse

and one break, and every treatment cycle has the same length:

K~TonzToff . Thus, a strategy in which Toff ~0 corresponds to

the continuous dosing regimen. Both sensitive and resistant cells

expand in the absence of therapy, r1wd1 and r2wd2. We consider

only drugs at concentrations that lead to a reduction of the

sensitive cancer cell population (q2vc2). The (epi)genetic

alteration conferring resistance may be neutral (r1~r2), advanta-

geous (r1vr2), or disadvantageous (r1wr2) in the absence of

therapy. If r2~q2 and d2~c2, then the drug has no effect on

resistant cancer cells and the mutation confers complete resistance;

it is this case that we consider first. We investigate only viable

treatment options (i.e. dosing strategies that are capable of

depleting the sensitive cancer cell population). Specifically, we

define aon:q1{c1, aoff :r1{d1, and c:aonTonzaoff Toff , and

require that the relation cv0 must hold. This criterion ensures

that the sensitive cell population decreases on average over time. If

this criterion is not met, the question of resistance becomes less

important as the treatment schedule does not prevent the

expansion of the sensitive cancer cell population. Figure 1 shows

an example of the dynamics of sensitive cancer cells during

continuous and pulsed drug administration.

The probability of resistance
Let us now calculate the probability of resistance during a given

dosing schedule. Under the assumption of complete resistance, the

probability of extinction of a resistant cell clone starting from one

resistant cell is d2=r2, regardless of which dosing strategy is used

[33]. The number of resistant cells produced from the sensitive cell

population is on average proportional to the number of sensitive

cell divisions; these two quantities are related through the

mutation rate u.

As a preliminary calculation, consider the behavior of the

sensitive cell population, Xt, with constant growth rate q1 and

death rate c1. Under the assumption that the mutation rate u is

small enough such that the stochastic emergence of resistant cells

from sensitive cells has negligible effects on the sensitive cell

number, we approximate Xt as a simple birth-death process.

Recall that the initial size of the sensitive cell population is M; then

the mean abundance of the sensitive cell population at time t is

approximated as p(t)~ ½Xt�~M exp½aont�. The number of

sensitive cell divisions in the time interval ½0,T � is approximately

given by

b(T ,q1,c1,M)~

ðT

0

Mq1 exp½(q1{c1)s�ds

~
Mq1

q1{c1
( exp½(q1{c1)T �{1):

ð1Þ

The number of surviving resistant cell clones arising from the

sensitive cell population in the time interval ½0,T � is then

binomially distributed as Bin(b(T ,q1,c1,M),u(1{d2=r2)).

Let us now study the probability of resistance under a general

pulsed treatment regimen. Define pi,0 as the expected number of

sensitive cancer cells at the beginning of the ith treatment cycle,

and pi,1 as the expected number of sensitive cancer cells at the

beginning of the ith treatment holiday. Then we have

p1,1~MeaonTon , p2,0~p1,1eaoff Toff , p2,1~p2,0eaonTon , etc. We obtain

the general formulae for the number of sensitive cancer cells at the

beginning and end of the ith treatment cycle as

pi,0~Me(i{1)c ð2Þ

pi,1~Me(i{1)ceaonTon ,

where c~aonTonzaoff Toff . The number of cycles W before

extinction of the sensitive cell population is approximated as

W&ceil ½ln (1=M)c{1�. To estimate the total number of sensitive

cancer cell births before extinction, we sum the number of births

during the on- and off-treatment phases over all cycles. Let Ci be

the number of sensitive cancer cell births during the ith on-

treatment phase and Di the number of births during the ith off-

treatment phase. The expected number of births, B, during the

entire treatment regime is then approximated as

B:
XW
i~1

CizDi~
XW
i~1

b(Ton,q1,c1,pi,0)zb(Toff ,r1,d1,pi,1): ð3Þ

Here b is the estimated number of sensitive cancer cell divisions in

the treatment interval, evaluated as in equation (1). Next, let us

define the functions f (T ,q1,c1)~
q1

q1{c1
eT(q1{c1){1
� �

and

F~½1{eWc�=½1{ec�. We can express each sum as the geometric

series

XW
i~1

Ci~Mf (Ton,q1,c1)
XW
i~1

ec(i{1)~Mf (Ton,q1,c1)F , ð4Þ

XW
i~1

Di~Mf (Toff ,r1,d1)eaonTon F :

Then we obtain the expected number of sensitive cancer

cell births during the entire duration of therapy as

B~FM f (Ton,q1,c1)zf (Toff ,r1,d1)eaonTon
� �

. We can approximate

F with F&(1{1=M)=(1{ec). Substituting in the correct

expressions for f (Ton,q1,c1) and f (Toff ,r1,d1), we obtain a final

estimate for the number of sensitive cell divisions before the

extinction of sensitive cells as

B&
M{1

1{ec

� �
q1

q1{c1
eaonTon{1
� �

z
r1

r1{d1
eaoff Toff {1
� �

eaonTon

� �
:

The number of surviving resistant cell clones produced from the

sensitive cell population is a random variable with distribution

Bin(B,u(1{d2=r2)). We can thus make a Poisson approximation

to estimate the probability that at least one surviving resistant cell

clone is produced before the extinction of sensitive cells as

P~1{e{Bu(1{d2=r2): ð5Þ

In the special case of continuous dosing, Toff ~0, the number of

sensitive cell divisions is approximated by

Evolution of Resistance to Targeted Therapies
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B&
(1{M)q1

q1{c1
: ð6Þ

As a consistency check, this formula can also be arrived at via

equation (1) with the initial size of the sensitive cancer cell

population, M, and the amount of time until the extinction of the

sensitive cells, T& log (1=M)=aon. Then the probability of

resistance emerging during continuous dosing is again calculated

using formula (5) with equation (6).

When the (epi)genetic alteration confers partial resistance to the

cell (i.e. when r2=q2 and/or c2=d2), then the probability of

resistance emerging during continuous dosing is given by

P~1{e{Bu(1{c2=q2), ð7Þ

where B is again calculated as in equation (6). To accommodate

this modification in pulsed schedules, we introduce ‘effective’

growth and death rates for resistant cells. The effective growth rate

of resistant cells is given by qeff ,2~½q2Tonzr2Toff �=½TonzToff �,

Figure 1. The dynamics of sensitive cancer cells during continuous and pulsed anti-cancer therapy. Subfigure (A) shows the dosing
schedule specified by the growth rate of sensitive cancer cells as a function of time. The dashed line represents a dosing schedule in which the drug is
administered at the maximum dose tolerated without treatment breaks. The solid line represents a schedule in which the drug is administered in
pulses followed by drug holidays. Subfigures (B) and (C) show sample paths for the sensitive cell population during pulsed and continuous therapy,
respectively. During treatment pulses as well as during continuous therapy, the sensitive cancer cell population declines while it expands during
treatment breaks. Parameters are M = 10000, r1 = 1.75, d1 = 1.0, c1 = 1.0, Ton = 3.0, and Toff = 1.0.
doi:10.1371/journal.pcbi.1000557.g001
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while the effective death rate of resistant cells is ceff ,2~

½c2Tonzd2Toff �=½TonzToff �. For general pulsed schedules, the

probability of resistance is then approximated by

P~1{e{Bu(1{ceff ,2=qeff ,2), ð8Þ

where B is calculated as in equation (5).

The expected number of resistant cells
We next approximate the expected number of resistant cancer

cells at time t. To calculate this quantity, we estimate the number

of surviving resistant cell clones produced during each small time

interval and then calculate the growth of each resistant cell clone

until time t. More precisely, we take the convolution of the rate of

production of resistant cell clones from the sensitive cell process

with the average rate of clonal expansion of resistant cells.

Let us first consider general pulsed treatment schedules. Using

methods from the previous section, we find that the expected

number of sensitive cancer cell divisions until time t is given by

B(t)~
1{eWtc

1{ec

� �
M(f (Ton,q1,c1)zf (Toff ,r1,d1)eaonTon ):

Here Wt denotes the fractional number of treatment cycles until

time t. After making the approximation Wt&t=(TonzToff ), we

have

B’(t)&
cect=½TonzToff �

(ec{1)(TonzToff )
M(f (Ton,q1,c1)zf (Toff ,r1,d1)eaonTon ): ð9Þ

Since the number of resistant cells produced directly from the

sensitive cell population until time t is binomially distributed,

Bin(B(t),u), the expected number of such cells is given by B(t)u.

Thus we estimate the average number of resistant cells at time T

as

R(T)~u

ðT

0

B’(t) exp½(T{t)(r2{d2)�dt ð10Þ

&
Muc

ec{1

{eT(r2{d2)zeTc=½TonzToff �

(d2{r2)(Toff zTon)zc

q1

aon

eTonaon{1
� �

z
r1

aoff

eToff aoff {1
� �

eaonTon

� �
:

In the special case of continuous dosing strategies, Toff ~0, the

average number of resistant cells at time T is given by

R(T)~Muq1
e(q1{c1)T{e(r2{d2)T

(q1{c1){(r2{d2)
: ð11Þ

Once again we can check for consistency by deriving this formula

via equation (1). Recall that the expected number of sensitive

cancer cell births starting from a population of size M until time T

is given by b(T ,q1,c1,M) (equation (1)). Then the expected

number of resistant cells produced is b(T ,q1,c1,M)u, and the

expected number of resistant cells at time T is given by

R(T)~u

ðT

0

Lb

Lt
exp ½(r2{d2)(T{t)�dt

~Mu

ðT

0

q1 exp ½t(q1{c1)�exp ½(r2{d2)(T{t)�dt

~Muq1
e(q1{c1)T{e(r2{d2)T

(q1{c1){(r2{d2)
:

We are also interested in calculating the expected number of

resistant cells averaged only over those patients who develop

resistance. This quantity is clinically relevant since many treatment

choices may inevitably lead to resistance; in those cases, the drug

should be dosed in such a way that the number of resistant cells is

minimum, thereby maximizing the time until detection of

resistance and disease progression. Mathematically, this amounts

to estimating the expected size of the resistant cell population,

conditioned on the event that at least one surviving resistant clone

is produced prior to the extinction of sensitive cancer cells. We

make the approximation that the expected resistant cell number,

conditioned on the complementary event of no surviving resistant

cell clones, is negligible. Then the expected number of resistant

cells averaged over the cohort of patients who develop resistance is

estimated as

S(T)~
R(T)

P
: ð12Þ

Pre-existing resistance
Suppose that at the start of therapy there exists a small

population of resistant cells. We may then adapt the theory to

calculate the probability of resistance and expected size of the

resistant clone under various dosing schedules. Let us consider the

initial population as two separate populations: M(1{s) sensitive

cells and Ms resistant cells, where s is the initial fraction of

resistant cells (assume for simplicity that Ms is an integer). Then

the probability of avoiding resistance is given by the probability

that the pre-existing resistant cell clones become extinct times the

probability that the initial sensitive cell population does not give

rise to any surviving resistant clones during treatment. Let Ps

denote the probability, calculated as in equation (5), of de novo

resistance arising from the initial sensitive population of size

M(1{s). The probability of extinction of the pre-existing clone is

given by Pe
r~1{(q2=c2)Ms if q2vc2 and Pe

r~1 otherwise. (Note

that q2 and c2 may be replaced by qeff ,2 and ceff ,2 in the case of

pulsed schedules with partial resistance). Then the total probability

of resistance is given by

P~1{(1{Ps)P
e
r : ð13Þ

Let Rs(T) represent the expected number of resistant cells arising

from the initial sensitive cell population of size M(1{s),
calculated as in equation (10). The expected number of resistant

cells at time T is given by Rs(T) plus the expected current size of

the initially resistant population. Thus we have

R(T):Rs(T)zMs exp½(q2{c2)T �, ð14Þ

where once again the rates q2 and r2 may be replaced by their

effective values in the case of pulsed therapy with partial

resistance.
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Results

Exact stochastic simulations of the process (Xt,Yt) are

performed using the standard Monte Carlo technique; each time

an event occurs, a cell is chosen to divide or die based on the

current cell growth and death rates and the population size of each

cell type. When the drug concentration changes, the cell growth

and death rates are modified accordingly.

Let us now investigate the fit between the analytic approxima-

tions and exact stochastic computer simulations, as well as the

parameter dependence of these approximations. We first study the

dependence of the probability of resistance emerging during a

continuous dosing schedule on the growth rate of sensitive cancer

cells during therapy, q1 (Fig. 2A), and their initial number, M

(Fig. 2B). The simulations exhibit a good fit with the analytical

approximations. As the growth rate of sensitive cells during

therapy (q1) increases, the risk of developing resistance increases as

well. Similarly, as the initial size of the sensitive cancer cell

population increases, the number of sensitive cell divisions until

extinction becomes larger, thus enhancing the likelihood of

producing a successful resistant cell clone. Hence the probability

of developing resistance also increases with M.

We next investigate the expected number of resistant cells as a

function of time for varying growth rates of sensitive and resistant

cells during continuous treatment. When the sensitive cell growth

rate during treatment, q1, increases and the growth rate of

resistant cells, q2, is kept constant, then the expected number of

resistant cells increases (Fig. 2C). This behavior is apparent from

Figure 2. The probability of resistance and expected number of resistant cells during continuous therapy. (A) The probability of
developing resistance during continuous therapy as a function of the growth rate of sensitive cells during treatment, q1. The probability of resistance
increases with the growth rate. Solid lines represent the analytical approximations and Monte Carlo simulation results are plotted as dots. Parameters
are M = 10000, q2 = 1.25, u = 1025, and c1 = c2 = 1.0. (B) We show the probability of developing resistance during continuous therapy as a function of
the number of sensitive cancer cells at diagnosis, M. The probability of resistance increases linearly with M. Parameters are q1 = 0.75 and all others as
in (A). (C) We show the expected number of resistant cells as a function of time during continuous therapy for different values of the growth rate of
sensitive cells during treatment, q1. The expected number of resistant cells increases with time and with q1. Parameters are M = 1000, q2 = 1.2,
u = 1024, and c1 = c2 = 1.0. (D) We show the expected number of resistant cells as a function of time during continuous therapy for different values of
the growth rate of resistant cells during treatment, q2. The expected number of resistant cells increases with time and with q2. Parameters are q1 = 0.5
and all others as in (C).
doi:10.1371/journal.pcbi.1000557.g002
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equation (11); during therapy the denominator (q1{c1){(q2{c2)
is always negative, thus making exp½(q2{c2)T � the dominant term

in the numerator. Therefore the growth rate of the expected

population size is dominated by the growth rate of resistant cells at

later times as the other time-dependent term in the numerator

approaches zero. Figure 2D confirms that as q2 increases, the

expected number of the resistant cell population also increases.

Let us now consider treatment schedules incorporating pulsed

doses and treatment holidays. We first investigate the dependence

of the probability of resistance on the growth rates of sensitive and

resistant cancer cells during treatment phases, q1 and q2, the

duration of each treatment pulse, Ton, and the initial number of

sensitive cancer cells, M (Figs. 3A–D). As in the case of continuous

dosing, the probability of resistance increases as q1 and q2

increase. An increase in the duration of each treatment pulse, Ton,

decreases the probability of resistance while an increase in M
linearly enhances the risk of resistance. The parameter depen-

dence of the expected number of resistant cells as a function of

time is shown in Figs. 3E and 3F. The expected number of

resistant cells increases with increasing growth rates of sensitive

and resistant cancer cells during therapy (q1 and q2).

Optimizing dosing strategies
Using the estimates derived above, we now propose a method

for optimizing dosing strategies to minimize the probability of

resistance. In cases where the emergence of resistance is certain,

this method will predict a dosing strategy that maximally delays

the detection of resistance by minimizing the number of resistant

cancer cells. The optimal dosing strategy is selected from a range

of tolerated treatment schedules specified by toxicity constraints.

In practice, these toxicity constraints, in addition to the growth

and death rates of sensitive and resistant cells at varying dose

levels, must be determined experimentally for each drug and

cancer type. In the following we will construct example toxicity

constraints to demonstrate the methodology and test for sensitivity

to the constraint profile.

A modification of treatment schedules can change the duration

of each treatment pulse (affecting Ton and Toff ), the intensity of the

dose (affecting growth and death rates of sensitive cancer cells, q1

and c1), or both. When considering complete resistance, the

growth and death rates of resistant cells are unaltered by changing

treatment strategies. We assume that all other parameters are

unaffected by changes in administration schedules as well. Thus,

we consider toxicity constraints to provide a bounded domain in

the four-dimensional parameter space spanning Ton,Toff ,q1, and

c1. We can immediately reduce the dimension of the constraint

domain to two, since Ton specifies Toff explicitly through the fixed

length of the treatment-and-break cycle, K~TonzToff , and q1

and c1 are both dependent on the concentration of the drug and

thus cannot vary independently. Therefore, we consider toxicity

constraints in the form of a function specifying the maximum

amount of time, Ton, that a drug can be administered to a patient

at a particular concentration before causing dose-limiting

toxicities. In the following, we make the simplifying assumption

that this drug concentration specifies the death rate of sensitive

cancer cells, c1, and does not alter the growth rate, q1;

alternatively, we can also investigate treatment strategies that

modulate the growth rate rather than the death rate of sensitive

cancer cells, or both. We assume that such relationships between

Ton and c1 are monotonically decreasing functions of c1; see

Figure 4A for an example of a toxicity constraint.

From clinical trial data we obtain the maximum amount of time

for which a range of drug concentrations are tolerated, leading to a

relationship between Ton and the drug concentration. The effect of

particular drug concentrations on c1 and/or q1 may then be found

experimentally by exposing sensitive cancer cells to drug doses and

measuring the growth and death rates in vitro. Such investigations

identify a toxicity constraint relating Ton and c1. We display

example constraint functions in Figures 4B and 4C.

We next show some example toxicity data for the targeted drug

erlotinib, which is an EGFR inhibitor used in treating solid

malignancies such as non-small cell lung cancer. Compiling data

from several clinical trials [34–36], we obtain a relationship

between the drug dose and plasma concentration (measured as the

maximum concentration achieved after a single dose). This data is

plotted in Figure 5A; here we observe a relatively linear

relationship between dose and plasma concentration. We also

compiled data points on the number of days each particular dose

was tolerated in continuous daily administration. We converted

each dose level to concentration using the linear relationship

found, and plot these points in Figure 5B. A conservative toxicity

constraint in terms of Ton vs. concentration is plotted, where we

assume that any concentration or length of pulse increased beyond

what was tolerated in the trials would not be admissible. This

toxicity constraint, in conjunction with further experimental data

on the growth and death rates of sensitive and resistant cancer cells

at various concentrations, would enable us to calculate optimal

dosing schedules for this specific system using our model.

For our theoretical investigations, we now introduce several

example families of toxicity constraints to test for sensitivity of the

probability of resistance to several key aspects of the shape of the

curve. All of these example constraints are convex, monotonically

decreasing functions of c1. Thus we have implicitly assumed that

as the drug concentration increases and the cell death rate

increases, the maximum tolerated length of a treatment pulse

decreases. In the first family, we vary the maximum dose that can

be tolerated for the full treatment schedule of K days. In the

second family we vary the maximum dose that can be tolerated for

just one day, and in the third family we vary the degree of

convexity of the constraint curve, or the initial rate of decrease in

Ton as the concentration increases.

Consider the first family of toxicity curves in Figure 6A,

specified by

Ti
1(c1)~

AiK

(c1{Bi)
2

, for i~1,2,3, ð15Þ

where Bi~(K1=2ai{6)=(K1=2{1) for a1~2:1, a2~2:3, a3~2:5

and Ai~(6{Bi)
2=K . In our notation, Ti

j , the subscript j denotes

the constraint family and the superscript i indicates a specific

function belonging to this family. These constraints serve to vary

the endpoint representing the maximum dose that can be tolerated

for a full treatment cycle (K days) while fixing the endpoint

representing the maximum dose that is tolerated for just one day of

a treatment cycle, specified by the death rate c1~6. In other

words, in this family of constraints we vary the continuous-dose

concentration endpoint (represented by black circles in Figure 6A)

of the toxicity constraint via the parameter ai, while keeping the

form of the constraint and the high-dose concentration endpoint

fixed.

We also test for sensitivity to two other aspects of the toxicity

constraints: the high-dose concentration endpoint (i.e. the

maximum dose that is tolerated for just one day) and the degree

of concavity of the curve. Figure 6B shows a family of constraints

varying the high-dose endpoints (shown in black circles). These

example constraints are specified by equation
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Figure 3. The probability of resistance and expected number of resistant cells during pulsed therapy. (A) We show the probability of
resistance during pulsed therapy as a function of the growth rate of sensitive cancer cells during each treatment phase, q1. The risk of resistance
increases as the growth rate is enhanced. Lines represent the analytical predictions and dots show the Monte Carlo simulation results. Parameters are
M = 1000, r1 = 1.3, r2 = q2 = 1.1, u = 1024, and d1 = d2 = c1 = c2 = 1.0. (B) We show the probability of resistance during pulsed therapy as a function of the
growth rate of resistant cancer cells during a treatment phase, q2. The risk of resistance increases as the growth rate is enhanced. Parameters are
q1 = 0.5 and all others as in (A). (C) We show the probability of resistance during pulsed therapy as a function of the duration of each treatment phase,
Ton. The risk of resistance decreases as the pulse becomes longer. Parameters are as above. (D) We show the probability of resistance during pulsed
therapy as a function of the initial size of the sensitive cancer cell population, M. The risk of resistance increases with M. Parameters are as above. (E)
and (F) We show the expected number of resistant cells as a function of time during pulsed therapy when q1, (E), and q2, (F), are varied. The expected
number of resistant cells increases with both quantities. Parameters are as above.
doi:10.1371/journal.pcbi.1000557.g003
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Ti
2(c1)~

AiK

(c1{Bi)
2

, for i~1,2,3, ð16Þ

where Bi~(2:3K1=2{bi)=(K1=2{1) for b1~5,b2~6,b3~7 and

Ai~(bi{Bi)
2=K . Likewise, a family of constraints varying the

degree of convexity is exhibited in Figure 6C and specified by the

following equations:

T1
3 (c1)~Aic1zBi, ð17Þ

T2
3 (c1)~

Ai

c1
zBi,

T3
3 (c1)~

Ai

(c1{Bi)
2

,

where, for each function, the Ai and Bi are determined by setting

the endpoints to be

Ti
3(6)~1, ð18Þ

Ti
3(2:3)~K :

Once the toxicity constraint is established (e.g. Figure 4), the

tolerable range of treatment schedules is specified by the area

under the curve on the (Ton,c1){plane. We then aim to locate the

optimal point within this area that minimizes the probability of

resistance. In situations in which the optimum probability of

resistance is 1 or close to 1, we aim to locate the optimal point

minimizing the expected number of resistant cells conditional on

developing resistance, thus maximizing the time until disease

progression. We note from the analytical approximations that a

change in the mutation rate u does not modify the choice of

optimal dosing schedule. We also observe from our analytical

approximations that the optimizing points must always lie directly

on the toxicity constraint curve itself – intuitively, any point lying

below the toxicity curve represents a weaker than tolerated dosing

schedule and hence cannot minimize the risk of resistance. Once a

minimizing point is located, the optimal treatment schedule is

entirely specified since the duration of treatment pulses are given

by Ton, the length of the drug holiday is given as the remainder of

the cycle duration (Toff ~K{Ton), and the intensity of the dose is

specified by the death rate of sensitive cells, c1.

To illustrate this concept, let us consider the toxicity constraint

T1
1 from equation (15). Recall the constraint cv0 restricting the

treatment schedules to viable dosing strategies in which the

population of sensitive cells decreases overall in time. This

constraint may restrict the domain of the toxicity curve to a

limited range of c1. For the current example, this restriction is

shown in Figure 5. We can then calculate the probability of

resistance, the expected number of resistant cells, and the

conditional expected number of resistant cells over the range of

treatment schedules specified by this restricted constraint curve.

Note again that in the formula describing the expected number of

resistant cells, equation (10), the growth rate of R(T) is dominated

by the growth rate of resistant cells, exp½(d2{r2)T �, at later times,

since the other time-dependent term in the expression,

Figure 4. Examples for toxicity constraints. Subfigure (A) shows
an example toxicity constraint in the form of a function defining the
maximum tolerated duration of treatment, Ton, versus the death rate of
sensitive cancer cells during therapy, c1, for a 28-day treatment cycle.
This type of toxicity constraint can be derived from experimental and
clinical data in the form shown in subfigures (B) and (C). In subfigure (B),
we display an example of the type of data available from clinical trials
that relate Ton to the drug concentration. Hence for a given drug
concentration, a treatment pulse of Ton days was tolerated. In (C), we
show an example of how the drug concentration can be related to the
death rate of sensitive cancer cells during treatment, c1, through in vitro
experiments.
doi:10.1371/journal.pcbi.1000557.g004
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Figure 5. Erlotinib pharmacokinetic data and toxicity constraint. Subfigure (A) shows the relationship between dose and plasma Cmax

concentration obtained after a single dose (mM). These data were reported in [34,36]. Subfigure (B) shows points depicting clinically tolerated
schedules, as reported in [34–36]. The doses administered are converted to plasma concentration using the linear relationship found in subfigure (A).
We also plot a conservative toxicity constraint where we assume that any concentration or length of pulse increased to levels beyond those tolerated
in the trials would not be admissible.
doi:10.1371/journal.pcbi.1000557.g005
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exp½Tc=(TonzToff )�, approaches zero as T increases. Thus we

can neglect the latter term when considering the long-term growth

of the resistant cell population. Rewrite equation (10) as

R(T)&CRe(d2{r2)T . Here CR is the time-independent constant

comprised of the remaining terms in equation (10) except for

exp½Tc=(TonzToff )�. Analogously, the expected number of

resistant cells conditional to the emergence of resistance is

approximated by A(T)&CRe(d2{r2)T=P.

In Figures 7A–C, we show the probability of resistance, P, the

time-independent term of the equation describing the number of

resistant cells, CR, and CR=P over the range of treatment

schedules specified by the restricted constraint curve from

Figure 6D. As the drug concentration and hence the death rate

of sensitive cancer cells, c1, increase, we move along the constraint

curve from the continuous-dose endpoint towards the high-dose

endpoint. As a particular numerical example, consider an initial

number of sensitive cancer cells of M~109, a mutation rate

conferring resistance of u~5:10{10, and a neutral resistance

mutation (r2~r1,d2~d1). Then the probability of resistance,

shown in Figure 7A, is minimized when c1~3:15. This result is

subsequently used to identify the corresponding optimal treatment

schedule in Figure 6D, which in this case is given by Ton~6:05
days, Toff ~21:95 days, and a drug concentration achieving

c1~3:15. When this optimal treatment schedule is used, the

probability of resistance is below 10%. However, if a higher dose is

chosen, the probability of resistance may increase up to 1. This

example illustrates the importance of locating the optimal dosing

regime for the clinical management of patients.

The values proportional to the expected number of resistant

cells, CR, and to the conditional expected number of resistant cells,

CR=P, are displayed in Figures 7B and 7C. Interestingly, in the

event that resistance occurs, the optimal treatment schedule for

Figure 6. Families of toxicity constraints relating the duration of a treatment phase to the death rate of sensitive cancer cells. (A) We
show examples for toxicity constraints which vary the endpoint representing the maximum dose that can be tolerated for a full treatment cycle of
K = Ton days. The treatment cycle is K = 28 days, and the endpoint representing the maximum dose that is tolerated for just one day is specified by the
death rate c1 = 6. Black dots represent different continuous-dose endpoints. (B) We show examples for toxicity constraints which vary the endpoint
representing the maximum dose that can be tolerated for a single day only, Ton = 1. Parameters are as above and black points represent the high-
dose endpoints. (C) We show examples for toxicity constraints which vary the degree of the convexity of the curve. Parameters as above. (D) We show
an example for a toxicity constraint (equation (16)) in which the range of c1 is restricted to satisfy the viable treatment option constraint, c,0. The
dotted line shows the full toxicity constraint curve, T1

1, while the solid line shows the portion of the curve in the range in which c,0. Parameters are
r1 = 1.3, d1 = 1, and q1 = 1.3.
doi:10.1371/journal.pcbi.1000557.g006
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minimizing the resistant cell population is specified by c1~4:08,

which differs from the optimal schedule for minimizing the

probability of developing resistance. For a general cohort of

patients treated with this dosing schedule, the probability of

developing resistance would be close to 1; for the subset of patients

who do develop resistance, however, this dosing schedule would

delay disease progression by the largest amount of time.

Parameter dependence of optimal dosing strategies
Let us now examine the dependence of these optimal dosing

regimens on variations in parameters and toxicity constraints.

Specifically, we investigate the sensitivity of the optimal dosing

strategies to several characteristics of the toxicity curves: the

maximum dose that can be administered for the whole treatment

cycle of K days (the continuous-dose endpoint), the maximum

dose that can be administered for one day only (the high-dose

endpoint), and the degree of concavity of the toxicity curve. The

optimal dosing regimens are identified over a range of parameter

values of r1 and r2.

First, we consider the family of curves Ti
1 for i~1,2,3 (equations

(15) and (14) as shown in Figure 6A). The optimal dosing strategy

minimizing the probability of resistance and/or the conditional

number of resistant cells is displayed in Figure 8. In column (A), we

show the value of c1 that corresponds to the dosing schedule which

minimizes the probability of resistance for a given r1 and r2. The

corresponding minimal probability of resistance is shown in

column (C). Column (B) displays the value of c1 that specifies the

dosing schedule minimizing the conditional expected number of

resistant cells, i.e. maximizing the amount of time until disease

progression in patients who develop resistance. The rows show the

results for constraints T1
1 ,T2

1 , and T3
1 , respectively. Note that the

optimal dosing schedules in the first and second column are not

identical, reflecting the fact that the recommended dosing

regimens for these two clinical goals are different. In addition,

we observe that as the continuous-dose endpoint is varied, the

minimal probability of resistance changes (in column (C)) while the

optimal dosing schedules remain relatively unchanged. In

particular, the minimal probability of resistance decreases as the

continuous-dose endpoint shifts to the right.

Next we consider the family of curves Ti
2, for i~1,2,3

(equations (15) and (16), shown in Figure 6B). We plot the results

in Figure 9, where the columns show the optimal treatment

schedules and the probability of resistance for constraints T1
2 ,T2

2 ,

and T3
2 , respectively. For both clinical goals of minimizing the

probability of resistance and maximizing the time until detection

of resistance, we observe that as the maximum dose tolerated for

one day (the high-dose endpoint) is increased, the optimal dosing

schedule shifts slightly to a more high-dose pulsed regimen in some

regions of the parameter space (particularly when r1 is small).

However, the minimal probability of resistance changes only

slightly as this endpoint is increased.

Lastly, we consider the family of curves Ti
3, for i~1,2,3

(equation (17), shown in Figure 6C). We plot the results in

Figure 10. The columns again show the optimal schedules and the

probability of resistance for constraints T1
3 ,T2

3 , and T3
3 . The results

for the first two constraints, T1
3 and T2

3 , differ markedly from those

of T3
3 . In particular, for functions with a lower degree of convexity,

a high-dose pulsed treatment is optimal for both clinical goals. For

these cases a minimal probability of resistance near zero can be

achieved. However, for T3
3 the optimal dosing schedule shifts more

towards the continuous end of the dosing spectrum, and in certain

parameter ranges the minimal probability of resistance reaches

higher values.

Figure 7. The identification of optimum dosing strategies. (A)
We show the probability of resistance, P, over the range of treatment
schedules specified by the restricted (solid) constraint curve from
Figure 6(d). The probability of resistance is minimized when c1 = 3.15.
We can then use the toxicity constraint curve to identify all other
specifications of the dosing schedule, such as Ton, Toff, the concentration
etc. Parameters are r1 = 1.3, d1 = 1, q1 = 1.3, r2 = 1.3, d2 = 1, M = 109, and
u = 5?10210. (B) We show the time-independent term of the equation
describing the number of resistant cells, CR, over the same constraint
curve as above. This term is minimized when c1 = 3.4, which does not
coincide with the optimum dosing strategy identified in (A). Therefore
the strategy minimizing the probability of resistance may not coincide
with the strategy maximizing the time until detection of resistant cells.
(C) We show the value proportional to the conditional number of
resistant cells, CR/P, over the same constraint curve. Parameters are as
above.
doi:10.1371/journal.pcbi.1000557.g007
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Non-cytoreductive therapies
So far we have only considered treatment strategies during which

the total number of sensitive cancer cells declines on average, i.e.

when cv0 holds. However, for some therapies and cancer types

it is impossible to reduce the number of sensitive cancer cells. Then

the goal of therapy becomes to slow or even halt the rate of tumor

growth. For these cases, the probability of resistance is always one.

However, we can still identify treatment schedules that maximally

delay progression of disease by controlling the number of resistant

cells. The approximations for the expected number of resistant cells

derived above remain valid, except when c~0. In this case, we

revisit the calculation of B(t) and estimate the total number of births

during on- and off-treatment phases as

XWt

i~1

Ci~Mf (Ton,q1,c1)
XWt

i~1

1~Mf (Ton,q1,c1)Wt ð19Þ

XWt

i~1

Di~Mf (Toff ,r1,d1)eaonTon

XWt

i~1

1~Mf (Ton,q1,c1)eaonTon Wt:

Once again making the approximation Wt&t=(TonzToff ), we

obtain

B(t)&
Mt

TonzToff

(f (Ton,q1,c1)zf (Toff ,r1,d1)eaonTon ):

After taking the convolution of the derivative B’(t) with the

expected growth rate of resistant cells, we obtain the expected

number of resistant cells at time T as

R(T)&
Mut

TonzToff

(f (Ton,q1,c1)zf (Toff ,r1,d1)eaonTon )
eT(r2{d2){1

r2{d2

:

Note that for cases when cw0, the formula for the expected

number of resistant cells, equation (10), experiences a singularity in

the denominator when r2{d2~c=½TonzToff �, i.e. when the net

growth rate of the resistant cancer cells equals the net growth rate of

the sensitive cancer cells. However, the range of therapies

considered should be restricted to those in which the net growth

rate of sensitive cancer cells is less than that of resistant cancer cells;

otherwise, the problem of resistance is secondary to the problem of

controlling the sensitive cell population. In these cases, the

singularity does not occur.

Figure 8. Optimal dosing regimens for the family of toxicity curves in Figure 6(A) under variation of the continuous-dose endpoint.
In column (A), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes the probability of
resistance. In column (B), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes the conditional
expected number of resistant cells. In column (C), the minimal probability of resistance corresponding to the optimal schedule from column (A) is
plotted. Rows 1,2, and 3 show results for constraints T1

1, T1
2, and T1

3. Parameters are d1 = 1, q1 = 1.3, M = 109, and u = 5?10210.
doi:10.1371/journal.pcbi.1000557.g008
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Discussion

In this paper, we have constructed a simple mathematical model

using birth and death processes to describe the evolution of

resistance during targeted anti-cancer therapy. We have derived

and validated analytical approximations to this model, which

provide a useful tool for predicting the risk of resistance and the

growth of resistant cell populations under various dosing strategies.

We have used our model and estimates to develop a methodology

for designing optimal drug administration strategies to minimize

the risk of resistance. In cases in which the risk of resistance is high

for any treatment schedule, these strategies are modified to

maximize the time until the progression of disease.

The probability of resistance is shown to be largely dependent

on b, the rate of sensitive cell division, which is the product of the

current sensitive cell population size and its growth rate. Drugs

whose main goal is to increase the death rate of sensitive cells can

decrease the sensitive cell population, thus decreasing b and

reducing the probability of resistance; however, if the initial tumor

size is large, it may take a significant amount of time to deplete the

sensitive cell population. During this delay, there is still a high

probability of generating resistant mutants since the sensitive cell

proliferation rate is unchanged. On the other hand, for drugs that

inhibit sensitive cell proliferation and effectively reduce the growth

rate of sensitive cells, the quantity b is immediately reduced to zero

regardless of the initial size of the tumor. This implies that drugs

that inhibit cancer cell proliferation could be promising for the

prevention of resistance in the absence of pre-existing resistant cell

clones. Combination therapies in which an inhibitor of sensitive

cell proliferation is dosed continuously while short, high pulses of a

drug that increases the death rate of resistant cells are

administered may also be of interest, as are any combination

strategies which separately target the sensitive and resistant

populations.

We have also extended the theory to incorporate pre-existing

resistant cells at the start of therapy. The effect of pre-existing

resistant clones on the optimal dosing strategy is highly dependent

upon system parameters including the growth and death rates of

sensitive and resistant cells, the initial tumor size, and initial

number of resistant cells. Consider the probability of resistance in

this scenario, given by equation (13). We note that the term Pe
r ,

denoting the probability of extinction of the pre-existing clone,

consists of the Ms-th power of a quantity usually less than one

(d2=r2). Thus even a small population of pre-existing resistant cells

can cause the total probability of resistance to be effectively equal

to one. For example, if the growth rate of resistant cells is twice

Figure 9. Optimal dosing regimens for the family of toxicity curves in Figure 6(B) under variation of the high-dose endpoint. In
column (A), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes the probability of resistance.
In column (B), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes the conditional expected
number of resistant cells. In column (C), the minimal probability of resistance corresponding to the optimal schedule from column (A) is plotted. Rows
1,2, and 3 show results for constraints T1

1, T1
2, and T1

3. Parameters are d1 = 1, q1 = 1.3, M = 109, and u = 5?10210.
doi:10.1371/journal.pcbi.1000557.g009
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their death rate, then the probability of extinction for an initial

population consisting of only 30 resistant cells evaluates to

0:530&10{10. Then the total probability of resistance, given by

equation (13), is approximately one. Therefore, the presence of

even a small number of resistant cells at the start of therapy can

effectively prevent a cure. In these cases, we may instead attempt

to delay disease progression by controlling the number of resistant

cells. Equation (14) describes the current size of the resistant

population as the sum of the average de novo and pre-existing

resistant clone sizes. Observe that both terms in this expression

grow at the same exponential rate; the term for pre-existing

resistance starts at time zero with the value Ms, while the term for

de novo resistance starts with value zero at time zero. This fact has

implications for treatment schedules in the case of pre-existing

resistance: as long as an eventual decline of sensitive cancer cells is

achieved, high-dose strategies which slow the effective net growth

rate of resistant cells may be more effective than low-dose

strategies aimed at maximal continuous inhibition of sensitive cells.

By testing several families of toxicity constraints, we have

observed that the optimal dosing strategies are strongly affected by

the degree of convexity of the toxicity curve, thus delineating a

clear priority in experimental efforts to determine the parameters

of this constraint. In our experience of studying published results of

Phase I clinical trials of molecularly targeted anti-cancer therapies,

patient toxicity reports are usually not detailed enough to

accurately determine toxicity curves. In light of our observations,

we would like to stress the importance of publishing detailed

quantitative data on toxicity in clinical trials, so that statistical

analyses can be performed to inform these constraint curves. It is

also important to estimate the growth and death rates of sensitive

and resistant cancer cells during administration of diverse drug

concentrations. These curves can be estimated by studying the

growth and death kinetics of cancer cells, either in vivo or in vitro.

For example, in vitro net growth rates can be determined by

subjecting sensitive and resistant cell populations to drug at

varying concentrations and counting viable cells at multiple time

points. Then, through fluorescence-activated cell sorting tech-

niques, the amount of cell death at multiple time points can be

observed, providing the cell death rate at each drug concentration.

If the parameters of the model are also estimated for treatment

with conventional cytotoxic chemotherapeutics, then our model

can be applied to these treatment choices as well. This

methodology, together with key parameters derived experimen-

tally, can aid in the design of optimum administration strategies of

treatment options for all cancer types that evolve resistance via a

single (epi)genetic alteration.

Figure 10. Optimal dosing regimens for the family of toxicity curves in Figure 6(C) under variation of the convexity of the toxicity
constraint. In column (A), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes the
probability of resistance. In column (B), the color at each point represents the value of c1 that corresponds to the dosing schedule which minimizes
the conditional expected number of resistant cells. In column (C), the minimal probability of resistance corresponding to the optimal schedule from
column (A) is plotted. Rows 1,2, and 3 show results for constraints T1

1, T1
2, and T1

3. Parameters are d1 = 1, q1 = 1.3, M = 109, and u = 5?10210.
doi:10.1371/journal.pcbi.1000557.g010
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