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Abstract

To understand visual cognition, it is imperative to determine when, how and with what information the human brain
categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-
temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions.
Here we sought to understand how the brain globally transforms its representations of face categories from their early
encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We
applied classification image techniques to the behavioral and electroencephalographic data of three observers who
categorized seven facial expressions of emotion and report two main findings: (1) over the 400 ms time course, processing
of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto
the centro-parietal region; (2) concurrently, information processing gradually shifts from encoding common face features
across all spatial scales (e.g., the eyes) to representing only the finer scales of the diagnostic features that are richer in useful
information for behavior (e.g., the wide opened eyes in ‘fear’; the detailed mouth in ‘happy’). Our findings suggest that the
brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough
encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the
P300.
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Introduction

How visual representations evolve over time in the brain remains

a challenge for cognitive neuroscience. We know from psychophys-

ics and neuroscience that the early stages of vision analyze input

across a bank of spatial filters [1–3]. These are thought to produce

complete representations of visual events at different levels of detail

for higher-level categorization processes. Although this idea has

become commonplace, it still remains unknown how representa-

tions transform from a thorough analysis of the retinal input into a

construct that separates the irrelevant details of the environment

from the features that are critical for the categorization task [4].

Early research focused on the respective roles of the coarse vs.

fine scale information (technically, the Low vs. High Spatial

Frequencies, LSF vs. HSF) for visual categorization. It was thought

that coarse scales (i.e. LSF) had general priority [5], through

activating intrinsically faster pathways (i.e. magno-cellular [6,7]),

through representing more detectable information (i.e. with higher

LSF contrast energy), or through engaging automatic mechanisms

adapted by evolution to detect important events (e.g. threatening

stimuli [8,9]), or an interaction of these main factors [10,11].

Recent findings suggested that the visual system could instead be

more opportunistic, initially biased by task, or context, to give

immediate priority to the information needed to categorize the

input (i.e. diagnostic information), at whatever level of detail that

information is represented [12–14]. This change of emphasis from

a fixed use of information from early spatial filters to a task-

dependent, flexible account of encoding raises a number of critical

questions: How does information from all spatial filters become

analyzed and combined into a categorization-supporting con-

struct? Does the construct remain stable over time, and a faithful

representation of the initial inputs? Or does it evolve over time to

optimize the categorization task at hand?

We framed these questions about the dynamics of visual

representations in the context of ecologically important categoriza-

tions for the human species: the six Ekman facial expressions of

emotion plus ‘‘neutral.’’ Facial expressions and spatial scales are

known to modulate the amplitude and phase of the face-sensitive

cortical response N170 [15–23]. However, this event does not mark

the end of the categorization process. Up to 200 ms of further

processing leads to a positive component with an onset around

300 ms (conventionally referred to as a P300), another cortical event

modulated by categorization task [23–25]. So, we can think of the

entire N170 deflection and the P300 response as bracketing a global

process that transforms a face stimulus encoded across the Spatial

Frequencies (SF) impinging on the retina into a categorized face

represented in a format yet to be discovered. Capturing when and

how this transformation takes place in the brain is paramount to

understanding when and how the brain transforms the visual input

into category-specific representations.

In the experiment, observers performed a 7–choice expression

categorization task of FACS-coded faces [26] randomly presented
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one at a time on the CRT monitor: ‘‘neutral,’’ ‘‘happy,’’

‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ ‘‘anger,’’ or ‘‘sad’’. On each trial,

we randomly sampled visual information in five non-overlapping

SF bands of one octave each using the ‘‘Bubbles’’ technique. In

each trial, the random sampling revealed sparse information from

a given facial expression [27] (see Methods, Stimuli). Concurrent-

ly, we measured the response of the brain to the sparse information

by measuring the electroencephalographic (EEG) activity on 58

scalp electrodes, with a 3.9 ms time resolution [17] (see Methods,

Procedure and EEG Recording).

In the ensuing analysis, for each observer we regressed the

sampled information to their behavioral and EEG data, across five

SF bands used in sampling (see Methods, Computation). This

analysis isolated the information subset correlated with behavioral

and EEG responses. For each band, we quantified information in

terms of cycles per face (see Methods, Information in SF bands).

For behavior, the outcome is one classification image per

observer and expression; for the EEG, the outcomes are 115

3.9 ms classification images, for each of the 58 electrodes. From the

conjunction of EEG and behavioral classification images informa-

tion one can track how the facial features important for accurate

categorization of facial expressions are initially encoded and then

dynamically transformed in the brain for categorical decision.

For the first time, we broadly characterized the overall dynamic

transformations of the first 400 ms of feature processing along the

two main dimensions of information sampled with Bubbles. First,

in terms of the feature content (e.g. the eyes, the nose or the

mouth) that appears at different time points of the EEG signal.

Second, in terms of the specific combinations of SF bands that

represents this feature content at each time point.

Results/Discussion

We performed analyses of feature content and SF composition

on all 58 electrodes and time points. To reduce dimensionality, we

selected a subset of 19 electrodes that covered the entire scalp

topography (see Methods, Computation: Sensor-Based EEG

Classification Images). Our detailed analysis concerns the 3

electrodes that best reflected the overall dynamics of change over

the first 400 ms of processing: the Left PO7 and Right P8

Occipito-Temporal electrodes (OTL and OTR, where the N170

reached maximum amplitude) and parietal electrode POz (where

the P300 peaks). These three sensors consistently had the highest

EEG and information peaks throughout the analyzed time course.

In addition, we generalized the results to the entire scalp and all

expressions performing a global analysis on the subset of 19

electrodes (including OTR, OTL and POz).

Our results illustrate that a first occipito-temporal process coinciding

with the N170 time course encodes facial expressions with most of their

feature content, using combinations of all SF bands. Information

processing then moves to parietal regions where this thorough

encoding is trimmed of the redundant Low SF bands, leaving a

detailed HSF representation of diagnostic features over the P300.

Representational Change: Feature Content
In Figure 1, we illustrate the development of sensitivity to features

over time for the expressions Happy and Fear, starting with the

signal. Panel A of Figure 1 represents the time course of the average

and variance of the EEG response to ‘‘happy’’ and ‘‘fear’’ (color-

coded in blue for OTR, in red for OTL and in green for POz). On

Panel B we show the location of the face features the EEG is

sensitive to, over time. Using the same color-code, for the same

electrodes and time points Panel B represents with a dot the

maximum of featural information in the corresponding EEG

classification images (see Methods, Computation: Sensor-Based

EEG Classification Images, Information Maximum). The Y-

coordinate of the maximum in pixel space indicates feature content,

and the X-coordinate corresponds to the time after stimulus onset.

The background facial expressions are the behavioral classification

images representing the facial features that Observer LP used to

correctly classify this expression—i.e. the outside corners of the eyes

and the mouth revealing the teeth for ‘‘happy’’ vs. the wide-opened

eyes revealing the white for ‘‘fear.’’ Panel B therefore illustrates that

the feature content represented in the EEG signal (i.e. the colored

dots) changes over time to represent the entire feature content (e.g.

the eyes and the mouth in ‘‘happy’’) necessary for correct behavioral

categorization response (as shown the background facial expres-

sion). The overlap between the colored dots and the gray-level

background expression makes this point.

To illustrate, consider the first time window elapsing between 136

and 200 ms (isolated by the first two vertical bars). In ‘‘happy,’’ blue

and red dots initially located on the eye region and then the blue and

red dots located on the mouth region reveal that OTR and OTL are

sequentially sensitive to these features over the N170 time course

[17]. In ‘‘fear,’’ the same dots are mostly located on the eyes. Within

this initial time window, the POz green dots fall on both the eyes

and the mouth, for both expressions. The second time window

changes this pattern. Starting at about 200 ms, feature content shifts

more clearly to diagnostic information.

It is interesting to note the repetition of the same feature content

over time—as represented by the similar Y-coordinate locations of

colored dots in panel B. This suggests that novel diagnostic

features are only extracted over a certain time period to be further

processed afterwards. To underline this point, we computed the

time course of the addition of novel, behaviorally relevant

information (see Methods, Computation: Comparison of EEG

and Behavioral Classification Images). The color-coded cumula-

tive curves in Panel B of Figure 1 represent this integration

process. The curves illustrate that most novel information is added

early, in the time window of the N170, before the N170 peak (as

marked as a triangle on Panel A, near the point of maximum

variance in the ERP, marked with an upside-down triangle).

Between 200 and 448 ms the cumulative curves flatten implying

that little novel information enters the EEG classification images.

In sum, the first 400 ms suggest a global transition between two

main phases of processing of feature content. In a phase elapsing

Author Summary

How the brain uses visual information to construct
representations of categories is a central question of
cognitive neuroscience. With our methods we visualize
how the brain transforms its representations of facial
expressions. Using electroencephalographic data, we
analyze how representations change over the first
450 ms of processing both in feature content (e.g., which
aspects of the face, such as the eyes or the mouth are
represented across time) and level of detail. We show that
facial expressions are initially encoded with most of their
features (i.e., mouth and eyes) across all levels of details in
the occipito-temporal regions. In a later phase, we show
that a gradual reorganization of representations occurs,
whereby only task relevant face features are kept (e.g., the
mouth in ‘‘happy’’) at only the finest level of details. We
describe this elimination of irrelevant and redundant
information as ‘trimming’. We suggest that this may be
an example of the brain optimizing categorical represen-
tations.

Dynamics of Trimming Face Representations
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between the first 136 to 200 ms, OTR and OTL electrodes are

initially sensitive to the eyes and then move down on the face to

the diagnostic, expression-specific features when the N170 peaks

[17]. This period corresponds to the appearance of most novel

features in the EEG classification images, suggesting their

extraction from the input. In the following time window elapsing

between 200 and 448 ms, sensitivity to the same diagnostic

features remains, but processing moves from the occipito-temporal

to the parietal regions (green dots) over the time course of the P300

associated with perceptual decision [24,28]. We now examine how

the representation of the features, in terms of their spatial

frequency composition, transforms over time.

Representational Change: Spatial Frequency
Composition

We have shown that the dynamics of feature content evolves

from occipito-temporal to parietal regions. As explained, we know

that early vision decomposes the input stimulus, including

Figure 1. Trimming representations of diagnostic facial features (observer LP, ‘happy’ and ‘fear’). Panel A: Average EEG. Colored curves
represent the average EEG over PO7 (OTL, red), P8 (OTR, blue) and POz (green), while dashed curves represent the variance of the EEG. The upward
triangle represents the point of maximum of EEG variance. On OTR and OTL this point is close to the upside-down triangle, (the maximum of the
derivative of information accumulation shown on Panel B) where most novel, behaviorally relevant information is added to the classification images.
Panel B: Behavior and Brain Feature Content. The gray-level background faces represent the facial features required for categorization behavior.
Color-coded dots represent OTL and OTR sensors in red and blue; POz in green. Their Y coordinates, in correspondence with the behavioral features,
reveal the location of the maximum of information of the EEG classification image at each time point. The color-coded curves plot the time course of
accumulation of new information relevant for behaviour on each electrode. Most new information arrives during the early N170, indicating that most
processing after the N170 is re-organization of inputs already taken up. Panel C: Spatial Frequency Composition. For each dot of panel B, a
corresponding colored dot represents the binary-coded combination of SF bands of this particular feature at this time point. The colored dots trace a
systematic upward trajectory over time in the binary codes, summarized, in yellow, with a cubic fit to those points containing diagnostic information.
The trajectories illustrate that the same diagnostic features evolve from involving most SF bands (between 136 and 200 ms) to involving only the
highest SF bands (between 200 and 448 ms).
doi:10.1371/journal.pcbi.1000561.g001

Dynamics of Trimming Face Representations
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diagnostic features, into a full representation of the SFs impinging

on the retina. But as the behavioral classification images illustrate

(see Figure 1, Panel B), categorization of ‘‘happy’’ only requires the

wrinkled corners of the eyes and the mouth revealing the teeth.

These are fine resolution features. Their information will be fully

represented in HSF, but with little contrast, due to the 1/f2

decrease in contrast energy typical of face stimuli [29,30]. Given

that the early stages of visual processing are more sensitive to

contrast which facilitates their detection and extraction, the later

processing stages could be comparatively more sensitive to the rich

information content of HSF important for perceptual decision and

less so the redundant lower SF representations of features. We

should therefore expect a ‘‘SF trimming’’ of the redundant SF

components of diagnostic representations between the end of the

N170 and later perceptual decision. This could reflect a

reorganization and refinement of facial features following their

occipito-temporal encodings.

To examine this, we plotted in Panel C, for each colored point

of panel B, the corresponding combination of SF bands

representing this particular feature with a binary code (where

11111 means ‘‘all SF bands’’ and 0001 means ‘‘only the highest SF

band’’; see the binary coding to the right of Panel C, and Figure

S1 for examples; see Methods. Computation: Spatial Frequency

Coding). For both expressions and electrodes, the colored binary

codes trace a systematic upward trajectory over time. This

trajectory, fitted with a cubic polynomial represented in yellow,

reflects a change in representations from involving combinations

of most SF bands in the first N170 time window, to representations

involving only the highest SF bands in the time window leading to

the P300. This second phase of processing appears to reflect a

refinement of facial features already extracted from the inputs (cf.

the cumulative curve of novel information peaking at the end of

the N170). Figure S5 illustrates a complementary analysis of the

trimming process by examining the sensitivity of the EEG time

course to information in each SF band, revealing that LSF band

information is gradually eliminated.

Taken together, the analysis of both feature and SF dimensions,

suggest that the same diagnostic features represented in broadband

spatial frequency combinations during the N170 are represented

in higher spatial frequencies during the P300.

Generalization to Seven Expressions
In Figure 2, we generalize these findings by reporting for each

observer the results computed independently for each expression

(n = 7) and then averaged. Panel A presents the average EEG and

variance for each electrode. Panel B the average cumulative

function of new features. Panel C the average cubic fits and Panel

D the averaged total facial information content per SF band (see

Methods, computation of SF information). This generalization

across all seven expressions illustrates for each observer the

occipito-temporal integration of novel information across all SF

bands over the N170 time course, followed by a parietal

transformation of the information over the P300 time course.

This transformation trims the LSF bands, emphasizing HSF

information. Panels B to D jointly illustrate that whereas little new

information is added after the N170 time period, the remaining

information is thinned.

Generalization to 19 Electrodes Covering the Whole
Scalp

So far, our results arose from the three electrodes characteristic

of the overall dynamics of the first 400 ms of information

processing. To establish that the reported trimming process

characterizes the overall evolution of brain representations, we

generalize the analysis and results from three specific electrodes to

19 electrodes covering the whole scalp topography. To simplify the

dimensionality of feature content, spatial frequency composition

and time course, we followed the following steps: For feature

content, we defined three main regions of interest that are

recurrently diagnostic of the seven expressions: the left eye, the

right eye, and the mouth. For spatial frequency composition, we

classified the combinations of SF bands representing the features

into two categories: High (any combination of the first three SF

bands; binary code 1 to 7) and Broad (any other combination,

binary code 8 to 31). For the time course, we divided the first

450 ms into four distinct time intervals.

For each observer, collapsing across all seven expressions, we

computed, for each time interval, the number of times the EEG

classification images of the 19 electrodes represented the diagnostic

features of interest and when they did so, we classified their spatial

frequency content as either High or Broad. For each feature, we

represented the frequency of these encodings over each time

period as the radius of a circle (empty for High; filled for Broad).

The expanding empty circles (High) together with the contraction

of filled circles (Broad) illustrate the trimming process. Trimming,

the shift from Broad spectrum to HSF representation of diagnostic

features therefore characterizes the overall brain dynamics, not

just a few well-chosen electrodes.

To conclude, we report two main findings on the transforma-

tion of feature representations in terms of content and SF

composition that were robust across all three observers and seven

expressions. First, the representation of diagnostic features evolves

from an initial stage of encoding in the occipito-temporal

electrodes to a later stage of perceptual reorganization on the

parietal electrode. These two stages appear to correspond in time

to the N170 and the P300 ERPs. Second, while this occipito-

temporal to parietal shift of information processing happens, the

same diagnostic representations change in SF composition and

quantity of information from broadband and thorough in the

occipito-temporal regions to sparse and rich in HSF information in

the parietal region, supporting the idea of a refinement and

reorganization of facial features.

Conclusion
We argued that the understanding of visual cognition implies an

understanding of when, how and with what information the brain

categorizes its visual inputs. In the context of a biologically

relevant task–the categorization of seven facial expressions of

emotion–we have shown how the brain transforms its visual inputs

(i.e. spatial frequencies impinging on the retina) into a categori-

zation-supporting construct. In three observers, we found that

information sensitivity shifts from the occipito-temporal to the

parietal regions between 138 and 448 ms following stimulus onset.

While this happens, visual representations transform from full

signal encodings of diagnostic features during the N170 time

course, when most new features are acquired, to a representation

preserving only HSF details of the same features following the

N170 peak. This characterization was true for all observers and

input categories.

The transformation from full signal to HSF during the N170,

followed by a progressive trimming of HSF information through

the P300, combined with the observation that little new

information is taken up after the N170 peaks, consistent with

very rapid encoding [31–33], suggests a division of function

between the two phases. From 140 to 200ms, the N170 is

primarily concerned with the take up of information in the

stimulus. This early phase is concerned with generic face

information, but close to the peak becomes biased towards HSF,

Dynamics of Trimming Face Representations
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and expression specific (i.e. diagnostic) information. It is tempting

to associate this information dynamics with spatial attention and

stimulus encoding, both in terms of the two-dimensional locations

of features on the face, but also in terms of the SF composition of

these features in a third dimension of spatial scales. Note that the

exact contribution of SFs may depend on the scale of the

diagnostic information itself. Thus, as a methodological note,

examining generic sensitivity to SFs over this time interval might

not be reliably informative about the N170. In the later time

interval, from 200 to 448ms, the information transfer between

occipital temporal areas and parietal areas appears to involve the

reorganization of the representation, and favors information at

finer spatial scales. It is tempting to interpret these dynamics as an

example of the brain optimizing its internal representations for

decision, perhaps involving memory storage [34–36]. Variability

in the P300 component has been related to active processes such as

evidence evaluation [24], working memory load [37] as well as

categorization [38] However, we cannot rule out the possibility

that trimming may be a passive process, unrelated to selection

[34].

Broad-to-Fine Processing
Our results apparently contradict the typical coarse-to-fine

processing reported in psychophysics [5] and visual cognition

[9,10] (and see [39] for discussions of alternative dynamics). In

coarse-to-fine processing, an initial skeleton of LSF information is

subsequently fleshed out with HSF featural details. Our data

suggest instead a Broad-to-Fine process, in which High and Low

SF information are processed equally up to the peak of the N170

(which coincides with the peak of integration of novel features, see

Figure 2 and Figures S5, and S6), followed by selective processing

of HSF information. In particular, Figure S6 shows that there is no

bias towards LSF information over the N170 [40].

The timing of the observed broad-to-fine processes appears to

be more consistent with a late (as opposed to early) selection model

of attention. However, the early integration of specific SF features

over the N170, from the eyes down on the face, rules out their late

selection, suggesting their early encoding on the N170. This

suggests a more complex model of neural information encoding, in

which the categorization task of the observer controls early N170

encodings of diagnostic features across the broad SF spectrum.

Figure 2. Trimming representations of diagnostic facial features (all observers, averages across 7 expressions). Panel A: Average EEG.
The colored curves represent the average EEG of the seven expressions over Occipito-Temporal sensor PO7 (OTL, in red), P8 (OTR, in blue) and
Parietal POz (POz, in green). Surrounding dashed curves represent the variance of the EEG at these time points. We also represent the point where
most novel information is added, on average. Panel B: Average Cumulative New Information. Panel B shows the cumulative sum of new, behaviorally
relevant information on each electrode, summed for each expression, and then averaged. OTR and OTL take up almost all information before the end
of the N170. Panel C: Spatial Frequency Composition. For each observer, we averaged the cubic polynomial fit derived for each of the seven
expressions shown during the experiment (see Panel B of Figure 1 and Figures S3 and S4 for specific examples). We represented the average
trajectories in time over the binary coding space (with variance represented as dashed lines). The trajectories illustrate the nonlinear trimming of
spatial frequency content of feature representations in the brain from full signal (high-numbered binary codes) before 200 ms (corresponding to
processing in the occipito-temporal regions) to only higher spatial frequency content (low-numbered binary codes) after 200 ms (corresponding to
parietal processing). Panel D: Facial Information Content per Spatial Frequency Band. For each observer, we also averaged across the seven
expressions the respective contribution of each spatial frequency band (thickest line represents lowest Spatial Frequency band). Line height
illustrates the quantity of information (expressed in cycles per face) present in the classification image at this time point. This panel illustrates that all
Spatial Frequency bands initially contribute information on the OTL and OTR (in red and blue) classification images. In contrast, only higher SFs
contribute information to the late classification images on POz (in green).
doi:10.1371/journal.pcbi.1000561.g002

Dynamics of Trimming Face Representations
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These broad spectrum encodings are then trimmed to preserve

their HSF components over the time course leading to the P300.

Full-to-fine processing is therefore compatible with an early,

diagnostic selection of featural information, but a late selection of

SF information. But if this is dependent on the categorization task

of the observer, early selection of SF information may be possible,

if the categorization task requires only this information. To

conclude, the evidence for rapid selection of an initial diagnostic

feature set (over the N170 time course) [31–33] is persuasive.

Although we characterize the changes through the N170

topography to the P300 as a process of information transfer, one

of the limitations of our methods is that we rely on a statistical

relationship with the input space, rather than on a direct

relationship between the early encoding phase and late phase. A

method such as Granger Causality, applied directly to the signal

might reveal the strength of the direct relationship. Our

prediction, based on the analyses here, would be that strong

interactions between sources driving the initial encoding, and

those underlying the later phase are likely to be associated with

successful transfer of HSF diagnostic features. This transfer may be

part of the process of selection of task relevant information, or it

may precede the processes of selection.

From our data set, as with many EEG studies, we cannot

reliably make inferences about the precise sources underlying the

reported SF dynamics and trimming of representations. However,

evidence from brain imaging (e.g. [14]) suggests that the Fusiform

Face Area, one of the sources of the N170 [41], and possibly the

N250 [42] is also a zone of convergence between HSF and LSF

information, and this may also be the first stage in the ‘trimming’

process. We can however, say little, as yet, about the possible

sources of the later stage. However, we note that the reorgani-

zation may also sometimes involve the reactivation of information

occipital temporal areas during the later phase, suggesting that

contemporaneous representation of closely related information

can be spread over multiple locations and presumably multiple

sources [41–43]. Localization of sources and interpretation of their

interactions will form much of our future work.

In summary, our data show the process of transformation from

a thorough visual representation that accurately reflects the

structure of the retinal input, to a sparser representation that

reflects the informational structure of the category.

Methods

Observers
Three University of Glasgow observers (LP, LF and UM) were

paid to take part in the experiment.

Ethics Statement
All three observers had normal vision and gave informed

consent prior to involvement. Glasgow University Faculty of

Information and Mathematical Sciences Ethics Committee

provided ethical approval.

Stimuli
Original stimuli were gray-scale images of five females and five

males taken under standardized illumination, each displaying

seven facial expressions of emotion. The resulting 70 stimuli

(normalized for the location of the nose and mouth) complied with

the Facial Action Coding System (FACS [26]), and form part of

the California Facial Expressions (CAFE) database. As facial

information is represented at multiple spatial scales, on each trial

we exposed the visual system to a random subset of SF information

contained within the original face image. To this end, we first

decomposed the original image into five non-overlapping SF

bands of one octave each (120260, 60230, 30215, 1527.5 and

7.523.8 cycles/face). To each SF band, we then applied a mask

punctured with Gaussian apertures. The size of the apertures was

adjusted for each SF band, so as to reveal 6 cycles per face

(standard deviations of the bubbles were 0.36, 0.7, 1.4, 2.9, 5.1

cycles/degree of visual angle from the fine to the coarse SF band).

Apertures were positioned in random locations trial by trial,

approximating a uniform sampling of all face regions across trials.

Calibration of the sampling density (i.e. the number of bubbles

sampling the face on each trial) was performed online on a trial-

by-trial basis, to maintain observer’s performance at 75% correct

categorization independently for each expression. The stimulus

presented on each trial comprised the randomly sampled

information from each SF band summed together (see Panel A

of Figure S1. for an illustration of the stimulus generation process).

Procedure
Prior to testing, observers learned to categorize the 70 original

images into the 7 expression categories. Upon achieving a 95%

correct classification criterion of the original images, observers

performed a total of 15 sessions of 1400 trials (for a total of 21,000

trials) of the facial expressions categorization task (i.e. 3000 trials

per expression, happy, sad, fearful, angry, surprised, disgusted and

neutral faces, randomly distributed across sessions). Short breaks

were permitted every 100 trials of the experiment.

In each trial a 500 ms fixation cross (spanning 0.4u of visual

angle) was immediately followed by the sampled face information,

as described above (see Figure S1). Stimuli were presented on a

light gray background in the centre of a monitor; a chin-rest

maintained a fixed viewing distance of 1 m (visual angle

5.36u63.7u forehead to base of chin). Stimuli remained on screen

until response. Observers were asked to respond as quickly and

accurately as possible by pressing expression-specific response keys

(7 in total) on a computer keyboard. The experiment was

programmed with the Psychophysics Toolbox for Matlab [44,45].

EEG Recording
We used sintered Ag/AgCl electrodes mounted in a 62-

electrode cap (Easy-Cap) at scalp positions including the standard

10–20 system positions along with intermediate positions and an

additional row of low occipital electrodes. Linked mastoids served

as initial common reference, and electrode AFz as the ground.

Vertical electro-oculogram (vEOG) was bipolarly registered above

and below the dominant eye and the horizontal electro-oculogram

(hEOG) between the outer canthi of both eyes. Electrode

impedance was maintained below 10 kV throughout recording.

Electrical activity was continuously sampled at 1024 Hz. Analysis

epochs were generated off-line, beginning 500 ms prior to stimulus

onset and lasting for 1500 ms in total. We rejected EEG and EOG

artifacts using a [230 mV; +30 mV] deviation threshold over

200 ms intervals on all electrodes. The EOG rejection procedure

rejected EEG signals occurring during rotations of the eyeball

from 0.9 deg inward to 1.5 deg downward of visual angle–the

stimulus spanned 5.36 deg63.7 deg of visual angle on the screen.

Artifact-free trials were sorted using EEProbe (ANT) software,

narrow-band notch filtered at 49–51 Hz and re-referenced to

average reference. For each electrode, EEG was measured every

3.9 ms, from 20.5 to 1 s around stimulus onset.

Computation: Behavioral Classification Images
On each trial, randomly located Gaussian apertures make up a

three-dimensional mask that reveals a sparse facial expression.

Observers will correctly categorize the stimulus when the sampled

Dynamics of Trimming Face Representations
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SF information is diagnostic of the considered expression (e.g.

revealing the wide-opened mouth in ‘‘happy.’’) To identify the

diagnostic SF features, we computed independently for each pixel

the probability of being correct with this pixel by summing the

aperture masks leading to correct categorizations and dividing the

result by the sum of all aperture masks for that expression during

the experiment (i.e. for correct and incorrect categorizations). This

is analogous to performing a least-square multiple regression. We

transformed these probabilities into Z-scores to locate the

statistically significant pixels (p,.05, corrected, Pixel Test [46]).

This procedure was carried out in each one of the five SF bands to

represent the combination of SF bands and image features

diagnostic for each expression (see Panel B of Figure S1 for an

example of a behavioral classification image and its split of

information across the five SF bands).

Computation: Sensor-Based EEG Classification Images
To determine the facial features systematically correlated with

modulations of the EEG signals, we applied Bubbles to EEG

voltages to compute classification images, independently for each

expression, sampled SF band, electrode, every 3.9 ms time point

between 20.5 to 1 s around stimulus onset. Each classification

image represented the subtraction of two sums: the sum of all

bubble masks leading to amplitudes above (vs. below) the mean

voltage, at this time point. We repeated the procedure for each one

of the five spatial frequency bands and for each one of the seven

expressions and each one of the 250 time points. For each

electrode, this produced one classification image per SF band, time

point and expression. Each classification image represents the

significant (p,.05, corrected, [46]) facial information (if any) that

is correlated with modulations of the EEG signal for that SF band,

time point and expression (see [17,23,27,28] for further details).

Panel C of Figure S1 provides examples of EEG classification

images on sensors OTR (in blue), OTL (in red) and POz (in

green), over the time periods of the N170 and P300.

Information maximum. For each face pixel, we summed

across the 5 SF bands the measure described in 5. Computation:

Cycles per Face of Information in SF Bands and computed the

location of the information maximum across the face.

Electrode selection. To reduce the dimensionality of the

analysis, from the initial 58 electrodes, we focused on the subset of

19 equidistant electrodes that provide full coverage of the scalp (an

adapted version of the 10/20 configuration, see Figure S2, Panel

A). We chose to further analyze the electrodes OTR and OTL as

these electrodes showed the typical N170 Event Related Potentials

for the three observers (see Figure S2, Panel B). We chose the

centro-parietal electrode (Pz/POz), as it showed sensitivity to the

P300.

Region of interest analysis in figure 3. The region of

interest analysis divided the face pixel space into three regions

corresponding to the locations of the left eye, right eye, and mouth

and counted when the information maximum of each EEG

classification image fell inside those regions. We show the detailed

results of this analysis in Table S1 and summarized the main

outcomes in Figure 3.

Computation: Comparison of EEG and Behavioral
Classification Images

For each expression and electrode, we filtered the classification

image at each time point, for each expression, and each observer,

with the location map of information required for behavior and

then constructed a cumulative sum of new information that

overlapped with behavior (see Panel B of Figure 1). We examined

the time course of this cumulative function, and found that all the

information about the stimulus on OTR and OTL was added well

before the peak of the N170. The derivative of this function had a

clear maximum for each electrode, early in the course of N170,

after which time little more information was added. The

maximum of the derivative of the cumulative function is plotted

as a triangle in panel A of Figure 1 and Figures S3 and S4.

Computation: Spatial Frequency Coding
To examine the dynamics of spatial frequency usage in the

brain, we examined the thresholded classification images for each

for each time point, electrode, expression, and observer, and

represented the specific combination of SF bands at each time

point with a binary code (corresponding to decimal values

comprised between 1 and 31, we show this code on the axis of

all the binary coding figures). To illustrate, in Figure S1 C we show

examples of broad SF content, representative of processing in the

N170 (in blue and red), coded as 11111, indicating contribution of

all bands. We also show an example of a ‘trimmed’ HSF

classification image (in green), coded as 00001, taken from the

P300. We thus created a binary code axis and represented

transformations of SF composition over time (see Panel C of

Figure 1 for OTR, OTL and POz). For OTR, OTL, and POz, for

each observer and expression, we summarized the trajectory of SF

codes over the time period with a cubic fit (R2 ranging from 0.2 to

0.66). To capture the overall transformation of SF composition

across the scalp, we took all the points that fell into diagnostic

regions of interest in the ROI analysis across 19 electrodes, and

classified the SF composition as either high (codes 1–7) or broad

(8–31), and report the outcome in Figure 3.

Figure 3. Trimming representations of diagnostic facial
features: whole scalp. For each observer and expression, we
computed over a subset of 19 electrodes covering the scalp (including
OTR, OTL and Pz) the number of times an EEG classification image
represented one of three regions of interest (the left eye, color-coded in
cyan; the right eye, in orange and the mouth, in olive). When this
information was diagnostic of the expression we computed its SF code.
We classified each SF code as High SF when it was a combination of
bands 1 to 3, binary codes [1–7], and as Broad SF if it was any other
code. We then summed the relative numbers of High and Broad SF
codes in five time windows [270 to 0 ms; 4–132 ms; 136–200 ms; 204–
304 ms and 308 to 448 ms] and represented the relative frequencies of
High and Broad SF codes with the radii of open and filled circles. For
each region of interest, features initially represented with High and
Broad SF codes over the N170 time course become predominantly
represented with HSF codes over the P300. The expansion of empty
circles together with the contraction of filled circles illustrate that the
trimming process is pervasive in the brain, not restricted to a few
electrodes.
doi:10.1371/journal.pcbi.1000561.g003
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Computation: Cycles per Face of Information in SF Bands
To understand how a combination of spatial frequency bands

represents a feature, we derived a relative distribution of

information (i.e. cycles per face). Specifically, at each time point,

and on each electrode, we computed the total number of cycles per

face represented in the statistically significant regions of the EEG

classification image and summed cycles per face across the five SF

bands. We then normalized the cycles per face measurements, to

obtain for each time point, SF band, electrode, and expression a

measure of information varying between 0 and 1 for each

observer, and averaged across expressions. We then plotted the

distribution of information per band over time, using line thickness

to represent the different bands. Panel D of Figure 2 illustrates this

plot. In addition Figure S5 shows the time course for expressions

Fear and Happy for each observer.

Supporting Information

Figure S1 Bubbles Methods Applied to Behavior and EEG

Signals. Panel A: Bubbles Sampling. We decomposed the original

image into five non-overlapping SF bands of one octave each

(120260, 60230, 30215, 1527.5 and 7.523.8 cycles/face). To

each SF band, we then applied a mask punctured with Gaussian

apertures. These were positioned in random locations, trial by

trial, approximating a uniform sampling of all face regions across

many trials. The size of the apertures was adjusted for each SF

band, so as to reveal 6 cycles per face. Calibration of the sampling

density (i.e. the number of bubbles) was performed online on a

trial-by-trial basis, to maintain observer’s performance at 75%

correct categorization, independently for each expression. The

stimulus presented on each trial comprised the randomly sampled

information from each SF band summed together, as shown. Panel

B: Behavior Classification Image. In each sampled SF band the

observer exploits features (e.g. the eyes and some mouth) to

correctly classify the stimulus. We add this information across the

five SF bands to derive the behavior classification image. This

behavioral information can be used to examine when the EEG

signals becomes sensitive to relevant behavioral information. Panel

C: EEG Classification Images. Every 3.9 ms, we compute an EEG

classification image on each of the 58 electrodes (illustrated

midway through the N170 for OTR and OTL, in blue and red

boxes and during the P300 for POz, in the green box). We assign a

binary code to each EEG classification image (here, color-coded

per electrode), representing the specific combination of SF bands

in that particular image. For example, ‘11111’ indicates that all SF

bands represent the left eye on blue OTR whereas ‘00001’

indicates that only the highest SF band represents the left eye and

some of the mouth on green POz. We report in a plot color-coded

per electrode, the sum of facial information (encoded as a

normalized number of cycles per face) represented in each SF

band–plotted here as different line thicknesses over the time

course.

Found at: doi:10.1371/journal.pcbi.1000561.s001 (8.45 MB TIF)

Figure S2 Average EEG and Spatial Frequency Composition of

Classification Images as Scalp Topographies for Observers LP,

UM and LF. Panel A: Electrode Locations. We show the layout of

all 58 electrodes over the scalp, (black pixel squares), with the

location of the electrodes selected for further analysis named in

white. These 19 equally spaced electrodes cover the scalp in an

adapted 10/20 configuration, including OTR, OTL and POz.

Panel B: Average EEG. EEG signals on OTR, OTL and POz

averaged over all 21 000 trials for each observer. Panel C: Scalp

Topographies. For each observer, we constructed scalp topogra-

phies for the entire time course, representing the spatial frequency

composition most frequently observed across all expressions at

each time point on each electrode. In Panel C, we use a color

code, where pale yellow indicates high spatial frequencies only,

and red indicates full signal. We show the key transition from

Broad to High SF, during the N170, between 133 and 234 ms

following stimulus onset. Although the transition is centered on

OTR (P8, blue circle), and OTL (PO7, red circle), the transition to

HSF, shown as a change in color from red to yellow) is apparent

on all active electrodes, as is the shift to the central-occipital region

(Pz, POz, marked in green), as the N170 ends.

Found at: doi:10.1371/journal.pcbi.1000561.s002 (7.96 MB TIF)

Figure S3 Trimming Representations of Diagnostic Facial

Features (Observer UM, ‘Happy’ and ‘Fear’). Panel A: Average

EEG. Colored curves represent the average EEG over PO7 (OTL,

red), P8 (OTR, blue) and POz (green), while dashed curves

represent the variance of the EEG. The upward triangle represents

the point of maximum of EEG variance. On OTR and OTL this

point is close to the upside-down triangle, (the maximum of the

derivative of information accumulation shown on Panel B) where

most novel, behaviorally relevant information is added to the

classification images. Panel B: Behavior and Brain Feature

Content. The gray-level background faces represent the facial

features required for categorization behavior. Color-coded dots

represent OTL and OTR sensors in red and blue; POz in green.

Their Y coordinates, in correspondence with the behavioral

features, reveal the location of the maximum of information of the

EEG classification image at each time point. The color-coded

curves plot the time course of accumulation of new information

relevant for behaviour on each electrode. Most new information

arrives during the early N170, indicating that most processing after

the N170 is re-organization of inputs already taken up. Panel C:

Spatial Frequency Composition. For each dot of panel B, a

corresponding colored dot represents the binary-coded combina-

tion of SF bands of this particular feature at this time point. The

colored dots trace a systematic upward trajectory over time in the

binary codes, summarized, in yellow, with a cubic fit to those

points containing diagnostic information. The trajectories illustrate

that the same diagnostic features evolve from involving most SF

bands (between 136 and 200 ms) to involving only the highest SF

bands (between 200 and 448 ms).

Found at: doi:10.1371/journal.pcbi.1000561.s003 (8.85 MB TIF)

Figure S4 Trimming Representations of Diagnostic Facial

Features (Observer LF ‘Happy’ and ‘Fear’). Panels A–C as in

Figure S3

Found at: doi:10.1371/journal.pcbi.1000561.s004 (9.29 MB TIF)

Figure S5 Facial Information Content per Spatial Frequency

Band. For each observer, we show example distributions of the

respective contribution of each spatial frequency band (thickest

line represents lowest Spatial Frequency band) over time. Line

height illustrates the quantity of information (expressed in cycles

per face) present in the classification image at this time point. This

panel illustrates that all Spatial Frequency bands initially

contribute information on the OTL and OTR (in red and blue)

classification images. In contrast, only higher SFs contribute

information to the late classification images on POz (in green). The

distribution for each expression is similar to the average, shown in

the main text.

Found at: doi:10.1371/journal.pcbi.1000561.s005 (3.56 MB TIF)

Figure S6 Relative Percentage Distribution of SF codes. Panel

A: Classification of the SF codes. The codes on the binary scale are

classified in three ways. In yellow and labeled HSF, the first seven

codes represent all combinations of the three HSF bands,
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indicating sensitivity to information in the upper three octaves

(above 15 cycles per face). In light orange and labeled LSF, the

next codes represent sensitivity to the two low spatial frequency

bands, information below 15 cycles per face. The remaining codes

labeled Broad, coded in dark orange indicate sensitivity to any

other combination of SFs. Panel B: Trimming is a Shift from both

Broad and Low to High Spatial Frequencies. For each observer,

we classified the codes per region of interest from Table 1 as either

HSF (represented in yellow); LSF (represented in orange) and

Broad (shown as red). The colored vertical bars in Panel B

represent the percentage of each class of code over the N170 time

course. The flanked colored dots represent the proportions of these

codes in the other time bins, relative to the N170 (i.e. represented

as a percentage increase). For example, Observer LP shows a

relative increase in HSF codes after the N170 (up to 157%),

illustrating an increase in sensitivity to this information after the

N170 peak. For each observer Panel B illustrates a substantial

decrease of LSF and an almost complete loss of broad SF

representation after the N170 peak. In contrast, HSF sensitivity is

at least sustained.

Found at: doi:10.1371/journal.pcbi.1000561.s006 (8.94 MB TIF)

Table S1 Region of Interest Analysis for 19 Electrodes. For each

observer, the table reports the absolute (Nr. SF codes, bottom row)

and relative (%ROI, top row) frequencies of SF codes covering the

three region of interest considered. Each SF code corresponds to

the information maximum of a classification image, and we pool

the count over 19 electrodes. The table illustrates that following

stimulus onset, most of the SF codes correspond to the SF

encoding of diagnostic features representing left eye, right eye and

mouth information.

Found at: doi:10.1371/journal.pcbi.1000561.s007 (0.05 MB

DOC)
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