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Abstract

A major goal in post-genome biology is the complete mapping of the gene regulatory networks for every organism.
Identification of regulatory elements is a prerequisite for realizing this ambitious goal. A common problem is finding
regulatory patterns in promoters of a group of co-expressed genes, but contemporary methods are challenged by the size
and diversity of regulatory regions in higher metazoans. Two key issues are the small amount of information contained in a
pattern compared to the large promoter regions and the repetitive characteristics of genomic DNA, which both lead to
‘‘pattern drowning’’. We present a new computational method for identifying transcription factor binding sites in promoters
using a discriminatory approach with a large negative set encompassing a significant sample of the promoters from the
relevant genome. The sequences are described by a probabilistic model and the most discriminatory motifs are identified by
maximizing the probability of the sets given the motif model and prior probabilities of motif occurrences in both sets. Due
to the large number of promoters in the negative set, an enhanced suffix array is used to improve speed and performance.
Using our method, we demonstrate higher accuracy than the best of contemporary methods, high robustness when
extending the length of the input sequences and a strong correlation between our objective function and the correct
solution. Using a large background set of real promoters instead of a simplified model leads to higher discriminatory power
and markedly reduces the need for repeat masking; a common pre-processing step for other pattern finders.
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Introduction

The rapid emergence of experimental techniques that can probe

for functional elements at whole-genome scales[1] necessitates

computational methods to analyze data in these settings. In

particular, methods that locate promoters or measure gene

expression on genome-wide scales (e.g. [2,3]) must be complement-

ed by algorithms that can find the active regulatory elements within

the larger promoters. Ab initio computational search for transcription

factor binding sites (TFBS) in DNA sequences is often termed

‘‘motif discovery’’. ‘‘Motif’’ here refers to a general pattern

describing what DNA sequences the transcription factor binds[4].

Motif discovery is one of the classical problems in computational

sequence analysis and can be briefly stated as: Given a set of

sequences containing one or several short overrepresented sites,

locate these and produce a model describing them.

There are two main avenues used to attack this problem: i)

enumerative algorithms based on word counting, such as [5,6],

and ii) pattern-based approaches often using position specific

weight matrices (WMs), which scores sites based on position

specific weights [4]. Since the binding preferences of transcription

factors (TFs) are not easily captured by a single word or consensus

string, pattern-based approaches can give solutions closer to the

biological reality and it has been argued that the matrix score is

related to the binding energy [7,8]. However, such approaches

correspond to the problem of finding local, optimal multiple

alignments, which is NP-complete [9]. Therefore, almost all

pattern-based motif finders use statistical optimization methods

such as Gibbs sampling or expectation maximization [10,11].

A typical instance of motif discovery starts with a set of upstream

promoter regions of co-expressed genes suspected to be co-regulated

and by extension more likely to be under control by the same

regulatory machinery. This set is called the ‘‘positive set’’ and most

methods proceed from here by locating motifs that are in some

way statistically overrepresented in this set. The most successful

applications of motif discovery have been in organisms whose

regulatory information is densely aggregated around transcription

start sites, such as Saccharomyces cerevisiae (baker’s yeast). In

mammalian genomes, regulatory information is spread out over

wider regions, which makes ‘‘pattern drowning’’ a significant issue;

in other words, the information in the regulatory sites is too small to

stand out in the large genomic region of interest. In this context, the

accuracy of contemporary pattern finders is not sufficient for many

biologically important problems [12].

Most methods operate with some notion of a background model

describing ‘‘generic DNA’’ against which the over-representation

is measured. The model is often a multinomial or a Markov

model. The choice of model is important for obtaining good results

[13,14]. However, most such models have difficulty in capturing

the complexity of the highly heterogeneous mammalian genome
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sequence, which has a multitude of different promoter architec-

tures[15], numerous interspersed repeats, low complexity sequenc-

es, CpG islands, etc. [16]. Instead of simplifying the underlying

DNA sequence by a general model, we take this to its extreme

conclusion and use a very large set of promoters as the actual

background instead of building a model describing the sequences

in the promoters. For simplicity, we use the term ‘‘negative set’’ to

describe the background set; this is strictly speaking not true as

sites could occur in this set at a much lower frequency, since real

promoters are sampled randomly. By contrasting the sets, it is

possible to see what common features make the sequences in the

positive set unique.

Discriminatory motif searching is not a new idea; several

methods have been developed that take advantage of a negative set

[17–24]. However, many of these use word-based models [19–21],

which might not capture the diversity of binding sites. Others

again use PWMs, but have binary hit models that do not

distinguish between hits as long as they are over a threshold [22].

A discriminatory approach similar to ours has been combined with

the use of expression data [18], but depending on the regions that

are being investigated this might often not be available or even

possible. We adopt an approach similar to DEME [23] to identify

the most discriminative set of motifs by modeling the sequence

labels (positive or negative) rather than using the conventional

generative approach[10,11]. However, there are some important

differences to DEME. Firstly, DEME uses a global string-based

search followed by a local gradient refinement, which may miss

patterns that are not well-represented by a consensus string,

whereas we use a global optimization technique (simulated

annealing) for optimizing the model, which does not have this

limitation, although it may have others (see below). Secondly, our

method (Motif Annealer - MoAn) uses and optimizes a threshold,

and uses an enhanced suffix array (ESA) to speed up pattern

searches. Thirdly, in MoAn the length of the motif is also

optimized. DEME is also particularly targeted towards proteins

while our approach is intended for use with DNA.

Specifically, we use conditional maximum likelihood to estimate

the WMs and their thresholds such that the probability of the

positive and negative sets is maximized (see Methods). Thus, the

resulting matrices cannot be derived from the frequency matrix for

the sites found – it is rather the matrices that lead to the best

discrimination. The probability of a sequence is calculated as a

product of the probabilities given by the matrices matching above

a threshold and a simple null model for non-matching regions.

From this and prior probabilities for matches in the positive and

negative sets, the probability of the set label (positive or negative) is

calculated. In this probability the background model cancels. The

total likelihood is a product of the class probabilities for all

sequences (positive and negative).

This conditional likelihood leads to a non-trivial optimization

problem which is handled using simulated annealing (see

Methods), where we iteratively change the WMs and their

thresholds, retaining changes that lead to higher discriminatory

power using the Metropolis-Hastings algorithm [25,26]. Given

sufficient iterations, the method guarantees convergence on the

optimally discriminatory motifs. To cope with the vast size of the

sets we utilize a highly efficient data structure, the ESA, for

searching DNA for pattern instances[27]. With reasonable cutoffs,

this reduces the computation by an order of magnitude[28].

Results

We evaluated our method by comparing its accuracy to a set of

widely used motif discovery methods (MEME[29], DEME[23],

Weeder[5] and NestedMICA[14]) in several different ways. In all

runs, we used the same background set, which consists of 1000

experimentally defined promoters randomly sampled from the

mouse genome (Text S1). The evaluation statistics are the same as

used in [12] (see Methods) and we also pooled the results from all

motifs (grouped by length of the input sequence; see below) and

calculated the compound statistics on this. To reduce the influence

of the optimization method, we ran all non-deterministic methods

five times on each set selecting the best run according to their own

scoring function.

In line with the recommendations of [12] we used synthetic data

sets for the inter-method comparison. These were constructed by

taking experimentally defined promoter regions based on strong

CAGE tag clusters [2] and planting binding sites from various TFs

inside these (Text S1). To decrease possible biases for the methods

towards certain specific motif types, we randomly selected one TF

from each of the 11 JASPAR[30] families as well as an example of

a zinc-finger factor (Table S1). For a given matrix, we randomly

chose sites from experimentally validated binding sequences used

for constructing the JASPAR matrix instead of generating sites

using the matrix. Since the accuracy of motif discovery methods

normally deteriorates when sequence length is increased (‘‘pattern

drowning’’), we evaluated the various methods on sets with

sequence lengths varying between 200 and 1200 nucleotides

(Table S3). This gave a total of 84 sets (12 motifs 67 lengths) with

100 sequences in each. Sequences had a site from a given motif

planted with a probability of 0.5. For those methods that support

it, a background/negative set was provided containing 1000

sequences sampled in the same way and with the same length as

the positive sequences. We used default settings for all methods

except where there were obvious reasons not to (Text S2). Since

DEME requires motif length as input we decided to input the

correct length of the matrix. This provides DEME with an

informational advantage over the other methods.

Fig. 1 (and Figs. S4, S5, S6, S7, S8) shows a significant

performance gain in using MoAn compared to the other methods

as measured by Matthews correlation coefficient on nucleotide

level (nCC) and average site performance (ASP) – an average over

the positive predictive value and the sensitivity on binding site level

(see Methods for details). With both measures, MoAn performs

better than any other method on all sequence lengths. In

particular, the performance is not as affected by increasing the

input sequence length as the other methods; at certain sequence

lengths(800, 1200) MoAn has more than twice as high ASP values

as the second best method. We also evaluated MoAn with the

applicable subset of the evaluation set proposed by [12](Text S3

and Table S4), where the OligoDyad, AnnSpec and MoAn

Author Summary

In the years following the sequencing of the human
genome focus have shifted towards trying to understand
how this blueprint results in the diversity of cells that we
observe. Part of the answer lies in the regulation of
transcription and how the proteins responsible for this
recognize where they should attach to the DNA. This is a
well studied problem, but most methods developed for
this have a hard time dealing with the heterogeneity of the
mammalian genomes. Here we present a method that
greatly improves the efficiency of this search by contrast-
ing the DNA with a large number of background DNA
sequences. This enables us to handle repetitive segments
of the genome that may be functional, but are usually
considered intractable by most methods.

Discriminatory Discovery of Regulatory Elements
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achieve the highest sASP values. We note that this set is

challenging as none of the methods perform well overall, and

the difference in performance between methods might not be

significant due to this fact. In addition, this set does not evaluate

how well the method can deal with increasing lengths of input

sequences, which is highly relevant.

Correlation of score and solution
The relationship between our objective function and the correct

solution was assessed by plotting the MoAn scores against the

sensitivity obtained in all five runs on each of the 84 sets (not just

the best from each run) (Fig. 2). There is a clear correlation

(Pearson CC: 0.90) between these two measures. There is a similar

correlation with other measures, such as the nCC (Fig. S1).

This finding is important, because it indicates that the raw score

is an indication of quality independent of the motif analyzed. It

also shows that choosing the best scoring run of several will often

give the best result.

Repetitive sequences
Aside from the problem with decreasing sensitivity as the length

of the input sequences increase, repetitive sequences represent a

severe problem for motif discovery, as these will often seem to be

over-represented, and therefore it is common to mask these

repeats. However, masking is always arbitrary, and some repeats

are functional [31,32], so indiscriminate repeat masking is not

optimal. When using a large negative set, repeat masking is

unnecessary since repeats, if commonly occurring, will feature in

the negative set and therefore be avoided as potential hits in the

positive. At the same time, we can avoid the reverse problem – if a

type of repeat actually is over-represented in the positive set, it can

still be found. To demonstrate the insensitivity to repeats on a

practical level, we planted repetitive sequences in each of the

positive sets with a slightly higher frequency than the real motifs

and ran our predictor on these sets both with the normal

background and with a background similarly spiked with repeats.

Specifically, we planted 1 to 10 consecutive instances of CACTA

with a probability of 60% in each sequence. Fig. 3 shows, as

expected, that the results do not deviate much from the repeat-less

run when repeats are planted in both the positive and negative

sequences, while the method picks up the repeats instead when

there are no repeats in the negative set. We also performed this test

using decoy motifs instead of repeats with similar results (Text S4,

Fig. S2).

Real data
Evaluation of methods on real data is difficult and often a poor

indication of general performance due to lack of insight into the

Figure 1. Synthetic set evaluation. The average site performance
(lines) and the nucleotide correlation coefficient (bars) of the methods.
doi:10.1371/journal.pcbi.1000562.g001

Figure 2. Correlation of MoAn’s objective function (Sc) and site
sensitivity (sSn). All 5 runs on the 84 synthetic sets are used.
doi:10.1371/journal.pcbi.1000562.g002

Figure 3. Repeat Assessment. The average site performance (lines)
and the nucleotide correlation coefficient (bars) of MoAn with repeats
planted in the two sets.
doi:10.1371/journal.pcbi.1000562.g003

Discriminatory Discovery of Regulatory Elements
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correct solution [12]; on the other hand, it is necessary to show

that the method can be applied to real problems.

MoAn and four other methods were run on a collection of real

data sets consisting of the binding sites of four human and mouse

factors from the PAZAR database[33] and their associated

genomic sequence. The sets were split by organism into 7 sets

and the regions adjacent on the genome were merged resulting in

sets ranging in size from 14 to 118. The merging means that the

base sequences can have a varying number of sites and may be of

different lengths. The sets were then subsequently enlarged by

adding an equal number of randomly selected promoters to

increase the difficulty (Text S6 and Table S5) and also padded

with their cognate upstream and downstream regions of varying

lengths (200–1200, as in the synthetic evaluation) to estimate the

impact of noise.

Fig. 4 shows the performance over the real sets. MoAn’s

performance is clearly superior, but not as spectacular as in the

more controlled environment with synthetic sequences.

We speculate that the reason for this is that the background and

foreground of the synthetic sets are essentially sampled from the

same pool (RefSeq promoters), while we have made no effort to

customize the background for the PAZAR sets. If the genomic

environment of the factors differ from normal promoter sequences

this could lead to a reduced performance. There are also fewer sets

(7 versus 12) in this evaluation leading to a higher variability.

We report additional trials using ChIP-chip data in supplemen-

tary material (Text S7, Fig. S3 and Tables S6, S7). MoAn has also

been used successfully to discriminate between binding regions of

human ESR1 and its paralog ESR2; the results were comparable

with matrix-scanning approaches with pre-defined motifs[34].

Co-occurrence of binding sites
An additional aspect of the motif finding problem is that TFs

often work by forming complex interactions [35]. Examples

include mutually exclusive and cooperative binding. Clusters of

TFBSs are commonly termed cis-regulatory modules, and are

often responsible for tissue-specific expression. We try to capture

these interactions by incorporating co-occurrence of sites from

different motifs into our model, with the goal of further increasing

predictive power. To test whether our objective function is capable

of capturing interactions between factors we constructed a set

where co-occurrence of sites from different motifs occurs. We

randomly chose 5 pairs of new motifs (Table S2) and planted their

corresponding sites in a positive set of 100 promoters with a 40%

chance of co-occurrence and 10% of single occurrence. We then

spiked the background set with sites from each of the motifs (10%

chance each for all sequences) to mimic a situation where it is the

interactions of the two sites rather than single sites that are

responsible for the regulation. MoAn was then run in co-

occurrence mode and compared to two single-occurrence runs

in a series. In the serial runs we masked out the predictions from

the first iteration before running the second iteration. In Fig. 5 the

ASP and nCC is plotted. In our experiment three of the pairs

turned out to be composed of motifs with relatively low

information, leading to poor performance. However, the two

remaining ones show that modeling of co-occurrence can

significantly improve performance. This extended model is

unfortunately computationally taxing and requires more than

twice the number of iterations compared to the single prediction.

Discussion

In this work we have shown the value of using a large negative set

instead of a pre-defined background model in motif discovery.

Using raw sequences more accurately portrays the background than

any general model and therefore higher discriminatory power is

achieved. This method is also much less sensitive to ‘‘pattern

drowning’’ in larger sequences, which is a bottleneck in computa-

tional analysis of mammalian regulatory regions. However, while

our method takes a significant step towards routine motif discovery

on large sequences, the problem cannot be considered fully solved.

In particular, MoAn accuracy may be further improved by

Figure 4. PAZAR set evaluation. The average site performance
(lines) and the nucleotide correlation coefficient (bars) of the methods.
doi:10.1371/journal.pcbi.1000562.g004

Figure 5. Performance of co-occurrence vs. serial runs. The
average site performance (lines) and nucleotide correlation coefficient
(bars) of co-occurrence and serial runs on 5 different sets with co-
occurring motifs.
doi:10.1371/journal.pcbi.1000562.g005

Discriminatory Discovery of Regulatory Elements
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incorporating information on evolutionary constraints (phylogenetic

footprinting)[36] or DNA accessibility[24,37].

In our opinion DEME is the best runner up of the methods. It

often predicts the correct motif and has a high sensitivity, but often

at the cost of a large number of false positives as it predicts also in

those sequences not containing a site. MoAn seems to be better at

balancing the sensitivity and specificity. On the other hand DEME

is also given an artificial advantage by having the correct motif

length as input and it is uncertain how advantageous this is.

Weeder performed surprisingly poorly given its stellar perfor-

mance in a recent evaluation[12]. This might be due to motif

selection which we did according to the most redundant motif, but

was in [12] done in a more complicated manner not part of the

current Weeder package. This procedure led to no predictions on

several of the harder sets which might give Weeder a statistical

advantage (as discussed in [12]).

A concern that might be raised is that optimizing a cutoff might

lead to a conservative estimate of binding sites at the expense of

weaker sites. However, assessing this is hard since experiments

have their own thresholds in the post-analysis and any evaluation

of MoAn’s threshold will be dependant upon those. Investigations

where we artificially forced the cutoff to remain low, lead to a

reduction in performance (data not shown). We address this

potential problem indirectly by providing a matrix that can be

used to search sequences at a lower threshold.

Future improvements of MoAn will focus on the optimization

algorithm, which currently is not robust enough to always produce

reliable results. In our current implementation we avoid this

problem by running the algorithm many times to see that the

solution is stable.

Methods

Evaluation is done on both site and nucleotide levels. The

statistics used are similar to those in the recent large scale

evaluation [12]. To get a compound statistic for all motifs at each

length we used what is there described as the ‘‘combined’’ method

for summarizing. This consists of treating all sets of a given length

as one big set, summing up all the basic statistics below (nTP, nTN

… sFN) before calculating the compound statistics. This removes

the problem of undefined statistics in those cases where a method

does not predict any sites.

Basic statistics
nTP Number of nts part of a site correctly predicted.

nTN Number of background nts correctly predicted.

nFP Number of background nts predicted to be part of a motif.

nFN Number of nts part of a site predicted as background.

sTP Number of real sites that share over 50% of its nts with a

predicted site.

sFP Number of predicted sites that share less than 50% of its nts

with a real site.

sFN Number of real sites that share less than 50% of its nts with

a predicted site.

Note that we are more conservative with respect to the site

prediction than [12] in that we demand at least half of the

nucleotides overlapped to get a single sTP.

Compound statistics
Derived from the basic statistics:

sSn~
sTP

sTPzsFN

sPPV~
sTP

sTPzsFP

sASP~
sSnzsPPV

2

nCC~
nTP � nTN{nFP � nFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nTPznFNð Þ nTNznFPð Þ nTPznFPð Þ nTNznFNð Þ
p

Objective function
A sequence x is assumed to be described by a mixture model

consisting of a background distribution q and a set of WMs W
describing the binding affinities of the TFs. The WMs contain log-

odds scores of the type:

wi,b~ log2

P b ijð Þ
q bð Þ ð1Þ

where i is the position in the WM, b is a letter in the DNA

alphabet and P b ijð Þ is the probability of having letter b at position

i in the motif described by w. The score of a matrix w aligned at a

position a in a sequence x is therefore:

S a,x,wð Þ~
Xjwj
i~1

wi,x azi{1ð Þ ð2Þ

where x ið Þ is the DNA letter at position i in sequence x.

The aim is to discriminate between two sets of sequences

xy~ x
y
0,x

y
1 . . . x

y
Ny

n o
, where label y~1 denotes the positive set

and y~0 the negative. The prior probability of binding site

occurrence in a sequence contained in set y is called vy. We

assume that there is a marked difference in the site occurrence

between the two sets and want to construct a score that captures

how well a set of WMs describe this difference. Using two WMs as

an example, w1 and w2, there are four possible ways for a sequence

x to be generated. With prior probability v
y
0 it contains no sites and

is only generated by the background model q. Or, with prior

probability v
y
1, it contains a single site (one of the two)

corresponding to one WM wk positioned at nucleotide number

ak (k is equal to 1 or 2 corresponding to the two different

matrices). This is written q xð Þ2S ak ,x,wkð Þ, where S ak,x,wk
� �

is the

score of the matrix aligned to the nucleotides at position ak (eq. 2)

and 2 is the base of the log scores contained in the WM. Note that

the log scores in a WM are divided by the background model, so

the background (q) cancels out in sites where the motif occurs. The

final case, with prior probability v
y
1,2, is the co-occurrence of two

sites in a sequence, which is q xð Þ2S a1,x,w1ð Þ2S a2,x,w2ð Þ. However,

this is only correct when the sites are not overlapping since

otherwise the overlapping nucleotides would be included in the

product twice. Therefore we disallow overlaps.

For efficiency reasons, we do not calculate the score in its entirety.

We assume that it is the strong sites that contribute the most to the

equation and introduce a cutoff for each WM on the minimum

score of a site. This enables an efficient search in the ESA. This is

not without biological merit since WM scores and binding energies

for known TFs are correlated, and at some point the binding

energies of a TF and a poor binding sequence must be too small to

Discriminatory Discovery of Regulatory Elements
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matter [4]. It is also a standard method to use when scanning with

known matrices [38]. So we only consider sites that score above a

threshold, which is called ck for matrix k. Then the probability of a

sequence x from the set y being generated by the WMs is

P xjy,W ,cð Þ ~q xð Þ v
y
0,eff zv

y
1r x,w1,c1

� �
zv

y
2r x,w2,c2

� �h

zv
y
1,2r x,w1,w2,c1,c2

� �i ð3Þ

where r x,w,cð Þ is the expectation over a of h S a,x,wð Þ{cð Þ2S over

all predicted sites:

r x,w,cð Þ: 1

N

X
a

h S a,x,wð Þ{cð Þ2S a,x,wð Þ ð4Þ

with h :ð Þ being the step function (1 above 0 and zero otherwise). The

co-occurrence expectation r x,w1,w2,c1,c2

� �
is defined in a similar

way with overlaps disallowed. The effective weight of no sites

v
y
0,eff ~v

y
0z

N{N1

N
v

y
1z

N{N2

N
v

y
2z

N2{N1N2

N2
v

y
12

Ni ~
P

a

h S a,x,wið Þ{cið Þ
ð5Þ

accounts for extra weight given to no sites due to alignments not

meeting the threshold. With this definition, q xð Þr x,wi,cið Þ=Ni is the

probability or generative model of the sequence conditioned on the

WM and threshold, p xjwi,cið Þ.
To find the WMs that best explain the difference in occurrence

between the sets we use a discriminative objective function based

on the probability of the labels Y given the sequences X and

WMs, formally:

L W ,c; X ,Yð Þ~P Y jx,W ,cð Þ : ð6Þ

This is the logistic likelihood function for binary classification,

see e.g. [39]. The discriminative model can thus be viewed as

logistic regression with an adaptive set of basis functions. For

multiple sequences assumed to be independent, the joint

probability is the product of the single sequence probabilities over

all sequences in both the positive and negative set:

log2 L W ,c; X ,Yð Þ~
X

y,xð Þ[ Y ,Xð Þ
log2 P yjW ,xð Þ ð7Þ

We refer to this function as the (log likelihood) score, Sc.

Based on the sequence density P xjy,W ,cð Þ we can use Bayes

theorem to calculate the probability of the label y given the WMs

W , the thresholds c, and the sequence x:

P yjx,W ,cð Þ ~
P x,yjW ,cð Þ
P xjW ,cð Þ

~
P xjy,W ,cð ÞP yð ÞP
y0P xjy’,W ,cð ÞP y’ð Þ :

ð8Þ

We observe that the prior probability of y is proportional to the

number of sequences in the set divided by the total number of

sequences P yð Þ~ jx
yj
jxj .

A very high threshold will give no matches, and the probability

will then be a constant given by the priors and the size of the two

sets. Matches that score above the threshold in the negative set will

lower the score and matches above the threshold in the positive set

will increase the score, so the game is to obtain as many high-

scoring matches in the positive set as possible without introducing

too many matches in the negative set.

The prior is conservative in our runs in that we are strict about

promoting hits in the positive set, but only moderately strict about

disallowing negative hits. For a single matrix the prior on v1
0 is

0.01; v1
1: 0.99; v0

0: 0.80; v0
1: 0.20. For two matrices: v1

0: 0; v1
1j2: 0.1;

v1
1,2: 0.9; v0

0: 0.80; v0
1j2: 0.15; and v0

1,2: 0.05. These priors can be set

by the user if prior knowledge is available about the set (i.e. a high

confidence negative set or an uncertain positive set).

In the evaluation we deliberately chose a probability of having a

site (0.5) in a sequence very different from the model prior (0.99) to

avoid giving our own method a big advantage. It shows that the

method is not very sensitive to the choice of prior.

Optimization
The objective function outlined above is optimized using

simulated annealing [40]. Informally, it proceeds by iteratively

proposing a candidate solution and then accepting or rejecting it

depending on how good it is compared to the current solution. It

sometimes accepts changes for the worse and therefore possesses the

power to escape local maxima. The hope is that it will converge on a

solution that is close to optimal. Formally, this translates to a walk

over the search space E where in the current state Ei, the next state

Eiz1 is either the same or the candidate solution f depending on

their relative scores and a temperature parameter ti.

Eiz1~
fwith probability p~min 1,exp

Sc fð Þ{Sc Eið Þ
ti

� �� �

Eiwith probability 1{p

8<
:

The temperature parameter is lowered for each iteration using as

default an exponential cooling scheme (for details see Text S5), thus

incrementally constraining the neighborhood of accepted changes.

Candidate solutions are proposed by applying one of several steps

outlined in the list below. In the case of multiple matrices, only one is

changed at a time. We perform all steps on a integer ‘‘count’’ matrix

which is then translated into a log-odds WM prior to searching the

ESA, but notice that the ‘‘count’’ matrix does not represent actual

letter frequencies in the selected sites. The steps are:

N Alter the contents of the WM columns by moving counts from

one random cell to another within a column. The number of

counts moved is selected uniformly from 1 to the current count

number for the cell.

N Extend the WM in either direction. A uniformly sampled

number of columns (1 to 5) is added and counts of these are

decided by consulting the sequence locations of hits scoring

above c. The counts are proportional to the counts in the

columns from the extended hits, but normalized so that all

columns have the same counts.

N Decrease the length of the WM by deleting columns. Similarly

to adding columns a uniformly selected number between 1 and

5 columns are deleted.

N Slide the WM across the sequences. Columns are deleted on one

site and extended on the other according to the two steps above.

N Alter the cutoff ck of the matrix k. The cutoff is expressed in

bits per column and a new candidate ck is proposed by

sampling uniformly from 0.6 to 2 bits.
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Note that for the extend and decrease step there is a minimum

and maximum number of columns for a motif. The default for

these are 5 and 15 respectively.

The matrix is initialized with random counts and the cutoff is

also selected uniformly according to the last step in the list above.

Termination of the optimization is only based on the number of

iterations which is by default set to a rather conservative value of

30 million iterations. Time requirements for a single run is variable

depending on the set size, but was for our runs comparable to

NestedMICA (single threaded) and considerably faster than

Weeder’s ‘‘large’’ run and DEME.

Availability
Source code as well as data sets is freely available at the author’s

web site: http://moan.binf.ku.dk

Supporting Information

Figure S1 Correlation of MoAn’s objective function (Sc) and

nucleotide correlation coefficient (nCC)

Found at: doi:10.1371/journal.pcbi.1000562.s001 (0.01 MB EPS)

Figure S2 Evaluation with decoy motifs. Average site perfor-

mance (lines) and the nucleotide correlation coefficient (bars) of

MoAn with decoy motifs planted in the two sets.

Found at: doi:10.1371/journal.pcbi.1000562.s002 (0.01 MB EPS)

Figure S3 Discriminatory power of matrices. ROC curve

showing discriminatory power of matrices produced by MoAn

and NestedMICA on the ESR1 data set. The line extends from the

highest cutoff possible for that matrix (bottom right) to a cutoff of 0

(top left).

Found at: doi:10.1371/journal.pcbi.1000562.s003 (0.03 MB EPS)

Figure S4 Performance on individual sets for MoAn. The

average site performance (lines) and the nucleotide correlation

coefficient (bars) on the sets.

Found at: doi:10.1371/journal.pcbi.1000562.s004 (0.02 MB EPS)

Figure S5 Performance on individual sets for DEME. The

average site performance (lines) and the nucleotide correlation

coefficient (bars) on the sets.

Found at: doi:10.1371/journal.pcbi.1000562.s005 (0.02 MB EPS)

Figure S6 Performance on individual sets for MEME. The

average site performance (lines) and the nucleotide correlation

coefficient (bars) on the sets.

Found at: doi:10.1371/journal.pcbi.1000562.s006 (0.02 MB EPS)

Figure S7 Performance on individual sets for Weeder. The

average site performance (lines) and the nucleotide correlation

coefficient (bars) on the sets.

Found at: doi:10.1371/journal.pcbi.1000562.s007 (0.02 MB EPS)

Figure S8 Performance on individual sets for NestedMICA. The

average site performance (lines) and the nucleotide correlation

coefficient (bars) on the sets.

Found at: doi:10.1371/journal.pcbi.1000562.s008 (0.02 MB EPS)

Text S1 Data set construction

Found at: doi:10.1371/journal.pcbi.1000562.s009 (0.03 MB PDF)

Text S2 Running parameters

Found at: doi:10.1371/journal.pcbi.1000562.s010 (0.03 MB PDF)

Text S3 Tompa assessment

Found at: doi:10.1371/journal.pcbi.1000562.s011 (0.03 MB PDF)

Text S4 Sequences spiked with decoy motifs

Found at: doi:10.1371/journal.pcbi.1000562.s012 (0.02 MB PDF)

Text S5 Annealing schedule

Found at: doi:10.1371/journal.pcbi.1000562.s013 (0.03 MB PDF)

Text S6 PAZAR data sets

Found at: doi:10.1371/journal.pcbi.1000562.s014 (0.03 MB PDF)

Text S7 ChIP-chip data sets

Found at: doi:10.1371/journal.pcbi.1000562.s015 (0.04 MB PDF)

Table S1 Length of upstream and downstream extensions

Found at: doi:10.1371/journal.pcbi.1000562.s016 (0.01 MB PDF)

Table S2 Motifs planted in single occurrence sets

Found at: doi:10.1371/journal.pcbi.1000562.s017 (0.04 MB PDF)

Table S3 Motifs planted in co-occurrence sets

Found at: doi:10.1371/journal.pcbi.1000562.s018 (0.03 MB PDF)

Table S4 Results on the mammalian subset of the Tompa

assessment

Found at: doi:10.1371/journal.pcbi.1000562.s019 (0.01 MB PDF)

Table S5 Sizes of PAZAR data sets

Found at: doi:10.1371/journal.pcbi.1000562.s020 (0.01 MB PDF)

Table S6 Sizes of ENCODE data sets

Found at: doi:10.1371/journal.pcbi.1000562.s021 (0.01 MB PDF)

Table S7 Performance on ENCODE data sets

Found at: doi:10.1371/journal.pcbi.1000562.s022 (0.07 MB PDF)
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