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Abstract

Transcriptional regulation in human cells is a complex process involving a multitude of regulatory elements encoded by the
genome. Recent studies have shown that distinct chromatin signatures mark a variety of functional genomic elements and
that subtle variations of these signatures mark elements with different functions. To identify novel chromatin signatures in
the human genome, we apply a de novo pattern-finding algorithm to genome-wide maps of histone modifications. We
recover previously known chromatin signatures associated with promoters and enhancers. We also observe several
chromatin signatures with strong enrichment of H3K36me3 marking exons. Closer examination reveals that H3K36me3 is
found on well-positioned nucleosomes at exon 59 ends, and that this modification is a global mark of exon expression that
also correlates with alternative splicing. Additionally, we observe strong enrichment of H2BK5me1 and H4K20me1 at highly
expressed exons near the 59 end, in contrast to the opposite distribution of H3K36me3-marked exons. Finally, we also
recover frequently occurring chromatin signatures displaying enrichment of repressive histone modifications. These
signatures mark distinct repeat sequences and are associated with distinct modes of gene repression. Together, these
results highlight the rich information embedded in the human epigenome and underscore its value in studying gene
regulation.
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Introduction

The genome sequence is a static entity defining the possible

transcriptional output of every cell type in the human body [1]. By

contrast, chromatin structure dynamically influences the tran-

scriptional potential of each genomic loci in a particular cell. Over

100 different histone modifications are known to exist, and a single

nucleosome can contain many modifications [2]. However, while

the number of possible combinations of histone modifications far

exceeds the number of nucleosomes in the human body, to date

only a small number of histone modification patterns have been

discovered [2].

Several classes of regulatory elements are marked by different

chromatin signatures [3–5]. Notably, Heintzman et al recently

observed distinct and predictive chromatin signatures at active

promoters and enhancers [6,7]. Numerous studies have also

observed that slight variations in chromatin signatures can

distinguish different states of the same regulatory element [3,5].

For example, active promoters are generally marked by

H3K4me3, repressed promoters by H3K27me3, and poised

promoters by both marks [3]. Similarly, different chromatin

signatures mark enhancers bound by different classes of

transcription factors and co-activators [5]. In more recent

studies, several chromatin signatures were also found at

promoters [4], enhancers [4], and even exons [8–11] using

genome-wide chromatin maps.

These observations prompted us to systematically examine the

chromatin signatures that exist in known and putative regulatory

elements in the human genome. Our goal is to explore whether

other frequently occurring chromatin signatures exist, and

whether specific functions are associated with these signatures.

Focusing on 21 histone modifications mapped in CD4+ T cells

[12], we find only a handful of distinct chromatin signatures at

promoters, and that they correlate with gene expression. We then

examine signatures spanning almost 50,000 regions in the human

genome that are distal to previously annotated regulatory sites. We

recover 7 distinct chromatin signatures, some containing enrich-

ment of H3K36me3 that has been recently linked to marking

exons [8]. Upon further inspection, we observe that H3K36me3 is

most strongly enriched at a well-positioned nucleosomes located at

the 59 ends of exons. We also find that stronger enrichment of

H3K36me3 correlates with increased exon usage in alternatively

spliced genes. Finally, we recover two distinct chromatin

signatures rich in repressive histone modifications marking distinct

regions of the genome, that are associated with different modes of

gene repression.
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Results

Chromatin signatures distinguish different classes of
expressed promoters

We hypothesize that loci sharing common regulatory functions

may share similar chromatin signatures. To systematically identify

chromatin signatures genome-wide, we examine different classes of

regulatory loci in turn. These loci may contain chromatin

signatures, but they may not be aligned or even oriented in the

same direction. We therefore apply an unbiased clustering and

alignment method called ChromaSig [5] (see Methods) to find

over-represented chromatin modification patterns spanning these

loci while simultaneously aligning and orienting their enrichment

profiles, focusing on histone modification maps profiled recently in

CD4+ T cells [12]. As a proof of principle that this approach yields

biologically significant results, we first studied promoters.

While chromatin signatures at promoters have been studied

extensively, we still do not have a complete picture of all the

distinct, commonly occurring chromatin signatures spanning all

promoters. As such, our understanding of how different signatures

relate to gene expression is incomplete. To address this, we apply

ChromaSig to the chromatin modifications near the set of

manually annotated promoters defined in the Refseq database

[13]. We recover 14 clusters spanning 18,533 promoters (Fig. 1,

Table 1, Table S1). Promoters in the same cluster share a

common chromatin signature, and the chromatin signatures of

different clusters are distinct in apparent or subtle ways. For

example, the P4 cluster contains strong enrichment for various

H3K4 methylations while P2 lacks these modifications. On the

other hand, P9 and P12 clusters contain enrichment for the same

chromatin modifications, but the pattern of enrichment is

Author Summary

Recent studies have observed that histone tails can be
modified in a variety of ways. Analyzing a collection of 21
histone modifications, we attempted to determine what
common signatures are associated with different classes of
regulatory elements and whether they mark places of
distinct function. Indeed, at promoters, we identified a
number of distinct signatures, each associated with a
different class of expressed and functional genes. We also
observed several unexpected signatures marking exons
that directly correlate with the expression of exons. Finally,
we recovered many places marked by two distinct
repressive modifications, and showed that they mark
distinct populations of repetitive elements associated with
distinct modes of gene repression. Together, these results
highlight the rich information embedded in the human
epigenome and underscore its value in studying gene
regulation.

Figure 1. Distinct chromatin signatures spanning Refseq promoters. (left) Applying ChromaSig to the histone modifications near 20,389
Refseq promoters recovers 14 frequently-occurring chromatin signatures spanning 18,533 promoters. The heat map represents the enrichment of
H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-kb region surrounding each promoter. To organize these clusters visually, we
performed hierarchical clustering on the average profiles using a Pearson correlation distance metric. (right) Gene expression data for CD4+ T cells
measured from a previous study [14], and re-visualized here for the different classes of promoters. Shown are the distributions of gene expression
level over promoters with different chromatin signatures. Red horizontal lines indicate the median, the box extends to the lower and upper quartiles,
the whiskers extend to 1.5 times the inter-quartile range, and red ‘‘+’’ symbols are outliers.
doi:10.1371/journal.pcbi.1000566.g001
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different, with P12 containing enrichment over a noticeably wider

region. It is also evident that there is a high level of redundancy of

histone modifications at promoters. Notably, H2AZ, H3K4me1,

H3K4me2, H3K4me3, and H3K9me1 are either all found

together or all absent together at promoters, consistent with

recent findings [4].

Previous studies have shown that there are at least three

different classes of chromatin signatures at promoters: actively

transcribed promoters marked by H3K4me3 but not H3K27me3,

inactive promoters marked with H3K27me3 but not H3K4me3,

and bivalent promoters having both these marks [3]. ChromaSig

recovers all three of these previously known chromatin signatures:

P8–14 have the active chromatin signature, P2 contains the

repressed chromatin signature, and P4 has the bivalent signature.

In agreement with a previous study, we observe that 1379 (7.4%)

promoters in human CD4+ T cells are bivalent, compared to

similar numbers in the differentiated mouse embryonic fibroblasts

(8.6%) but lower than that found in undifferentiated mouse

embryonic stem cells (15.2%).

Next, we wondered if different signatures correspond to

different gene expression activities. On the basis of gene expression

[14], we observe essentially three super-classes of promoters: P1–7

are generally inactive in CD4+ T cells, P9,11,13,14 show

intermediate expression, and P8,10,12 are most highly expressed

(Fig. 1). Promoters with repressed and bivalent chromatin

signatures are generally expressed at low levels, while promoters

with active chromatin signatures have intermediate to high levels

of gene expression. Consistent with the high expression levels, P8,

P10, and P12 also display the most enrichment of the elongation

chromatin mark H3K36me3 (Fig. 1) [12,15]. Interestingly, we

observe chromatin signatures of varying widths of H3K4me3

immediately surrounding transcription start sites. We find that

clusters with larger H3K4me3 widths tend to correspond to higher

gene expression. For example, by visual inspection the average

width in P12 is larger than P10, which is in turn larger than P8,

and which is larger than P9. Strikingly, median gene expression

levels also decrease in the same order.

CpG islands often mark the promoters of house-keeping genes

that are ubiquitously expressed [16,17]. Strikingly, we observe that

each distinct chromatin signature contains promoters that are

either significantly enriched or depleted of CpG islands (Table 1).

Nine of the 14 recovered clusters, containing 66% of all

promoters, are significantly enriched in CpG islands (hypergeo-

metric p-value of 1E-3). The majority of these CpG-enriched

promoters (75%) belong to clusters P8, P9, and P12 containing the

strongest enrichment of H3K4me3. As expected from the high

CpG content, these promoters are also significantly enriched in

Gene Ontology (GO) [18,19] terms relating to ubiquitous

processes such as metabolism and the cell cycle. Another 11% of

the CpG-rich promoters are in cluster P4 containing bivalent

promoters marked by H3K4me3 and H3K27me3. Consistent with

previous studies [3,20], these promoters are enriched in GO terms

relating to human development.

In contrast, clusters P2,5,6,7,11 spanning 34% of all promoters

are significantly depleted of CpG islands. Nearly half of these

promoters are marked by H3K27me3 but not H3K4me3 in

cluster P2. Consistent with previous studies suggesting these

promoters are inactive [3,20], many of these associated genes are

enriched in GO terms relating to development and neurological

processes, which are unrelated to T-cell function. Interestingly, P2

and P4 both mark repressed genes involved in development, but

with distinct sequence context and chromatin signatures. P5 and

P6 are the most CpG depleted clusters, and are not enriched in

any histone modifications studied here. The corresponding genes

are lowly expressed, and are enriched in GO terms unrelated to T-

cells such as secretion and sensory perception [19]. Finally, P11 is

the only CpG-poor cluster enriched with activating chromatin

marks. Consistent with the notion that the corresponding genes

are likely involved in cell-type specific processes [20], these genes

are generally more highly expressed than other CpG poor

promoters, and include T-cell specific genes such as cathepsin

W, which regulates T-cell cytolytic activity, the T-cell specific

protease granzyme A, as well as several lymphocyte antigens

including LY86, CD68, and CD79A.

Table 1. Summary of promoter chromatin signatures P1–14.

Cluster Size Chromatin features P (CpG)* Top GO Biological Process**

P1 208 H3K27me3, H4K20me1 ,1E-16 multicellular organismal dev anatomical structure dev

P2 2896 H3K27me3 1 multicellular organismal dev neurological system proc

P3 204 H3K27me3 ,1E-16 multicellular organismal dev anatomical structure dev

P4 1379 H3K4me3, H3K27me3 ,1E-16 multicellular organismal dev anatomical structure dev

P5 2270 none 1 sensory perception neurological system proc

P6 487 none 1 sensory perception neurological system proc

P7 392 none 1 None

P8 5535 H3K4me3, H4K20me1, H2BK5me1, H3K36me3 ,1E-16 primary metabolic proc cellular metabolic proc

P9 3035 H3K4me3 ,1E-16 primary metabolic proc cell cycle

P10 409 H3K4me3, H4K20me1, H2BK5me1, H3K36me3 ,1E-16 regulation of biological proc regulation of cellular proc

P11 219 H3K4me1 1 None

P12 575 H3K4me3, H4K20me1, H2BK5me1, H3K36me3 ,1E-16 primary metabolic proc biopolymer metabolic proc

P13 472 H3K4me3, H4K20me1 ,1E-16 multicellular organismal dev cell differentiation

P14 452 H3K4me3 8.43E-04 None

* P(CpG) is the hypergeometric probability of finding more CpG-marked promoters than observed, as compared to the background distribution of all promoters.
** Selected Gene Ontology terms from the Biological Processes ontology significantly enriched with Benjamini-corrected p-value of 0.001. Abbreviations: dev,
development; proc, process.
doi:10.1371/journal.pcbi.1000566.t001
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Together, these results show that ChromaSig can reliably detect

distinct chromatin signatures at promoters with unique functional

specificities.

Distinct chromatin signatures at known regulatory
elements

While transcriptional regulation occurs at the level of promot-

ers, it is also clear that the action of promoter-distal regulatory

elements is essential to controlling gene expression [1]. Like

promoters, the activity of these regulatory elements is likely

dependent on chromatin structure. To determine what chromatin

signatures exist at distal regulatory elements, we apply ChromaSig

to several classes of regulatory elements in turn: enhancers,

insulators, Refseq 39 ends, and DNase I hypersensitive sites.

Enhancers. When active, enhancers are bound by tran-

scription factors and co-activators to increase gene expression at

promoters [21,22]. Previously, we observed that enhancers are

marked by strong enrichment of H3K4me1 and weak if any

enrichment of H3K4me3, allowing us to develop a computational

strategy to identify enhancers using this chromatin signature [6].

Applying this method to the genome-wide profiles of H3K4me1

and H3K4me3 in CD4+ T cells [12], we predict 32,237 promoter-

distal enhancers (see Methods). To validate these enhancer

predictions, we compare to two hallmarks of enhancers: DNase I

hypersensitivity and sequence conservation. Almost half (44.5%)

of the enhancer predictions are within 1-kb of a DNase I

hypersensitive site [23], and about three-fourths of the predictions

are recovered by some combination of hypersensitivity and

conserved DNA sequence elements from the PhastCons database

[24].

We have previously observed in 1% of the human genome (the

ENCODE regions) that different variations of chromatin modifi-

cations exist at enhancers [25]. To assess if this is true on a global

scale, we apply ChromaSig to align and cluster these predicted

enhancers over the entire panel of chromatin modifications. This

reveals 11 distinct chromatin signatures, all of which contain

stronger enrichment for H3K4me1 than H3K4me3 (Fig. S4,

Table S2). Like promoters, there also appears to be much

redundancy of chromatin modifications at enhancers. For

example, all chromatin signatures generally share enrichment

for H2BK5me1, H3K4me2, H3K9me1, H3K27me1, and

H3K36me1. Interestingly, the chromatin marks H2A.Z and

H4K20me1 appear to be inversely correlated: E1-5 are enriched

in H2A.Z but not H4K20me1, E6 has enrichment of both marks,

and E7–11 are enriched in H4K20me1 but not H2A.Z.

Insulators. CTCF is an insulator binding protein in

mammals, and when bound prevents enhancers from interacting

with promoters, thereby preventing activation [26]. Barski et al

mapped CTCF binding in CD4+ T cells [12], and application of

the Model-based Analysis of ChIP-Seq (MACS) peak finder

reveals 27,110 CTCF binding sites genome-wide (see Methods)

[27]. To focus on novel chromatin signatures, we apply

ChromaSig to the 17,328 CTCF sites distal to (at least 2.5-kb)

Refseq TSSs and predicted enhancers, revealing seven distinct

signatures (Fig. S5, Table S3). The only consistent feature of

CTCF binding sites is enrichment of H2A.Z, consistent with

previous observations [28]. However, unlike the patterns observed

at promoters and enhancers, enrichment for other chromatin

marks at CTCF binding sites is generally weak, suggesting that the

remaining panel of chromatin marks do not functionally

compliment CTCF. The exceptions are C4 and C5, which

contain enrichment of H3K4me3 and RNA Pol II, suggesting that

these CTCF binding sites may fall within promoters not yet

annotated in the Refseq database.

Refseq 39 ends. Transcription of pre-mRNA stops at the 39

end of the gene. To find chromatin signatures at this genomic

feature, we apply ChromaSig to 16,703 Refseq gene 39 ends distal

to Refseq 59 ends [13]. We recover 12 distinct chromatin

signatures. Like CTCF binding sites, enrichment of chromatin

marks at Refseq 39 ends is generally weak. In agreement with

Barski et al [12], the most consistent feature found at the majority

of 39 ends is enrichment of H3K36me3, found in T1–7 (Fig. S6,

Table S4). However, chromatin signatures at 39 ends are not as

well aligned as those at promoters, suggesting that these chromatin

signatures may occur at some other genomic feature near 39 ends,

or that the 39 ends are not as well annotated as promoters.

DNase I hypersensitive sites. Recently, Boyle et al mapped

nearly 100,000 DNase I hypersensitive sites genome-wide in

CD4+ T cells using DNase-Seq [23]. Since DNase I

hypersensitivity is a hallmark for active regulatory loci, we

expect to find chromatin signatures at these sites. Applying

ChromaSig to the 31,824 DNase I hypersensitive sites distal to

Refseq TSSs, predicted enhancers, and CTCF binding sites, we

recover 13 clusters (Fig. S7, Table S5). Clusters D1–D2 are only

enriched in H3K27me1 and H3K36me3, resembling gene 39

ends. Several signatures D3–10 display characteristic enrichment

of H3K4me1/2/3, which we have observed at promoters and

enhancers. These may be novel promoters or enhancers missed by

the enhancer prediction method. For example, D3,6,9,10 are

clusters with the strongest enrichment of H3K4me3, and 31.2% of

these loci are recovered by multiply-occurring CAGE tags [29], an

almost 4-fold enrichment as compared to an expected recovery of

7.9% over random loci. The majority of DNase I sites D11–13

contain no noticeably strong enrichment of any chromatin mark,

suggesting either that there are no other major classes of

epigenetically-marked regulatory elements in the human genome

or that they are marked by modifications not studied here.

Several clusters of enhancers correlate with gene activity
In eukaryotes, control of gene expression is a complex process

involving the coordinated action of a wide assortment of genomic

regulatory elements. Of the five classes of genomic regulatory

elements examined here, the ones least studied and perhaps most

important to controlling gene expression are enhancers and

DNase I hypersensitive sites. To examine the potential regulatory

roles of these genomic loci, we measure the enrichment of these

loci near different classes of expressed genes as defined by the 14

clusters of promoter chromatin signatures (Fig. 1).

When a CTCF-bound insulator falls between a promoter and

enhancer, the enhancer is blocked from activating the promoter

[26]. As this mechanism may also apply to regulatory elements

outside of enhancers, we partition the genome into CTCF-defined

blocks and determine enrichment of chromatin signatures having

promoters in the same CTCF-defined block (Fig. S8). At a large

scale, we observe that inactive promoters P1–6 generally lack

enrichment for all the chromatin signatures cataloged here. In

contrast, CTCF-defined domains containing active promoters

P8–14 are enriched in numerous chromatin signatures. Strikingly,

different classes of promoters are enriched in different classes of

enhancers. For example, the two most highly expressed clusters

P10 and P12 are uniquely enriched in E6–11. These enhancers are

distinguished from other enhancer classes by strong enrichment of

H3K9me1 and H4K20me1, indicating that these chromatin

marks may be an indicator of enhancer activity. Of these

enhancers, the class that most distinguishes highly active

promoters from all other promoters is E9. This cluster may

contain the most active enhancers, and its chromatin signature

may be a general mark for highly active enhancers. In general, we

Functional Chromatin Signatures
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observe weaker enrichment of the DNase I hypersensitive clusters

within CTCF-defined blocks containing highly expressed promot-

ers, with the exception of D6–8 which are likely enriched in novel

promoters and enhancers missed by the enhancer prediction

method.

Distinct chromatin signatures distal to known regulatory
regions

Having observed chromatin signatures at regulatory elements

including promoters and enhancers, we next ask if other

chromatin signatures exist that mark loci distal to known

regulatory elements. By definition, places in the genome with

chromatin signatures contain enrichment of histone modifications.

Therefore, we identify 85,318 loci with strong ChIP enrichment of

histone modifications, of which 50,183 are distal to promoters

[13], gene 39 ends [13], DNase I hypersensitive sites [23], CTCF

binding sites [12], and sites containing an enhancer chromatin

signature [6,7]. Applying ChromaSig to these sites, we recover 7

frequently-occurring chromatin signatures, named U1–7 (for

unannotated clusters 1 to 7), spanning 47,874 loci (Fig. 2,
Table 2, Table S6). The recovered signatures are distinct from

the previously defined H3K4me3-rich promoter and H3K4me1-

rich enhancer signatures [3,6]. Compared to chromatin signatures

from randomly aligned and oriented loci, the chromatin signatures

observed are significantly better aligned than expected by chance

(p-values ranging from 10218 to ,102300) (Table S7).

The most prominent chromatin feature of these clusters is

H3K36me3, known to mark the 39 ends of genes [12] and more

recently exons [8], and it is enriched at U1, U2, and U4 clusters.

The largest clusters recovered, U5 and U6, both contain

enrichment of known repressive chromatin modifications includ-

ing H3K9me2, H3K9me3, H3K27me2, and H3K27me3 [12].

Chromatin signatures mark exon 59 ends
To gain an understanding of potential functions associated with

the above frequently-occurring novel chromatin signatures, we

compare the loci bearing each signature to genomic annotations.

H3K36me3 is known to be enriched within the body of

transcriptionally active genes [30,31], notably towards the 39 ends

[12]. But since all the clustered loci are distal to gene 39 ends, the

H3K36me3-rich clusters must be marking another genomic

feature. Noticing that the vast majority of loci in U1–4 are

intragenic (Fig. S9), we ask if these sites are biased towards exons

or introns. We observe that 57.9% of U1 sites and 63.8% of U2

sites are either inside exons or within 1-kb of exon ends, while at

random only 26% of the genic regions of the genome match these

criteria. To see if H3K36me3 marks exons, we examine the

enrichment of this chromatin mark at exons (Fig. S1). To examine

only those exons unambiguously marked by a chromatin

signature, we only consider an exon if it is the only exon within

1-kb of a cluster locus. We observe a striking enrichment of

H3K36me3 at the 59 ends of exons unambiguously marked by U1,

U2, and U4. This enrichment decreases sharply upstream of the 59

end, but more gradually into the exon body. This observation also

holds for exons larger than 1-kb (Fig. S2), indicating that the

result is not biased by the relatively small exon sizes in the human

genome [32]. These results suggest that the clusters with strong

H3K36me3 enrichment mark exon 59 ends.

H3K36me3 reflects exon expression levels
Having observed H3K36me3 at a handful of exons, we next

ask if this chromatin mark is a global indicator of exon

expression. First, we examine the enrichment of clusters U1–4

within the gene bodies belonging to the promoters in clusters

P1–14. Indeed, we find that clusters U1–4 are enriched within

the gene bodies of highly expressed genes belonging to promoter

classes P8–P14, but are depleted in the gene bodies of inactive

promoters in other classes (Fig. S8). Next, profiling H3K36me3

at a catalog of more than 250,000 distinct exons [33], we observe

that the majority of exons (72.6%) have more than two-fold

enrichment for H3K36me3 tags than neighboring introns

(Fig. 3A). In the direction of transcription, H3K36me3

enrichment increases sharply at the 59 end of the exon, and

decreases more gradually in the body of the exon, in agreement

with our previous observations. In contrast, neighboring introns

show no such chromatin signature (Fig. 3, S10). The presence of

this chromatin mark also correlates strongly with exonic

expression (Fig. 3), as measured previously by exon expression

arrays in CD4+ T cells [34]: highly expressed exons having more

H3K36me3 enrichment than lowly or moderately expressed

exons. Altogether, these results suggest that H3K36me3 is a

general mark of exon expression.

Stable nucleosome structure at exon 59 ends
Recently, it has also been observed that H3K36me3 marks

exons in various eukaryotes, though the modification was found to

be biased toward the 39 ends of exons [8]. To resolve this

discrepancy, we take advantage of a unique feature of ChIP-Seq

technology, which sequences short directional reads directly

upstream and downstream of the genomic DNA bound by the

protein of interest, allowing clear distinction between sense and

anti-sense reads. This information can be used to offer

unprecedented resolution of in vivo binding locations of the

immunoprecipitated protein [27,35]. We can also use this

information to more finely resolve nucleosome structure at exons.

Examining the distribution of H3K36me3 tags near the top 50%

expressed human exons, we observe that reads on the sense strand

peak at the 59 ends of exons, whereas reads on the anti-sense

strand peak about 150 base pairs downstream (Fig. 3B). These

results suggest that a well-positioned nucleosome modified by

H3K36me3 exists at the 59 ends of expressed exons, and consistent

with this conclusion the spacing between sense and anti-sense

peaks is roughly the size of a nucleosome.

In addition to exon 59 ends, it also appears that the 39 ends of

expressed exons have well-positioned nucleosomes (Fig. 3C). But

given that a typical nucleosome wraps between 145 and 147 bp of

DNA [36], which is roughly the same size as the average human

exon at 145 bp [32], it is difficult to conclude from these

observations whether the nucleosomes harboring H3K36me3 are

more fixed towards exon 59 or 39 ends. To resolve this issue, we re-

examine the distribution of H3K36me3 reads, but focus on

expressed exons larger than 500 bp (Fig. 3D–E). Again, we

observe sense and anti-sense peaks at exon 59 ends indicative of

well-positioned modified nucleosomes, followed by a decrease of

H3K36me3 enrichment on both strands in the direction of

transcription. However, we also find similar but weaker peaks on

both strands at exon 39 ends, with the sense strand peaking about a

nucleosomal distance upstream of the anti-sense strand (Fig. 3E).

Thus, we conclude that the nucleosomes harboring H3K36me3

are found at both 59 and 39 ends of exons, but the enrichment is

stronger at the 59 ends. To test this conclusion more globally over

a larger collection of exons, we also examine the enrichment of

H3K36me3 along the exon body as a function of exon length.

Indeed, as exon length increases, we observe enrichment of

H3K36me3 at 59 and weaker enrichment at 39 exon ends,

separated by the exon body lacking enrichment (Fig. S11).

Functional Chromatin Signatures
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H3K36me3 correlates with alternative splicing
As H3K36me3 at the 59 ends of exons is a global mark of exon

expression, we next wondered if the presence of this mark

correlates with alternative splicing. A previous study found that the

density of H3K36me3 at canonical exons is higher than that at

alternative exons in mice [8]. As this observation did not

incorporate expression information but instead relied on static

exon definitions, the question of whether the presence of

H3K36me3 correlates with exonic splicing in humans remains

unanswered. To answer this question, we investigate alternative

splicing on a global scale by focusing on a list of 13,434 exons

known to be alternatively spliced as cassette exons (UCSC

Genome Browser ‘‘knownAlt’’ track) [37]. We examine two sets

of transcripts using exonic expression information. The ‘‘spliced

in’’ set consists of cassette exons expressed at levels similar to

neighboring upstream and downstream exons (|Dexpr| = 0.5),

Figure 2. Distinct chromatin signatures spanning genomic loci distal to known regulatory elements. We identified 50,183 genomic loci
with strong ChIP enrichment of histone modifications but distal to promoters, gene 39 ends, DNase I hypersensitive sites, CTCF binding sites, and
predicted enhancers. Applying ChromaSig to these loci reveals seven clusters U1–7 spanning 47,874 loci. The heat map represents the enrichment of
H2AZ, 20 histone modifications, CTCF, and RNA polymerase II in the 10-kb region surrounding each locus. To organize these clusters visually, we
performed hierarchical clustering on the average profiles of each ChromaSig cluster, using a Pearson correlation distance metric (left).
doi:10.1371/journal.pcbi.1000566.g002
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and thus are likely to be included in a mature transcript. In

contrast, the ‘‘spliced out’’ set consists of cassette exons expressed

at lower levels than both upstream and downstream exons, and are

likely excluded from the mature transcript (exprup,down2

expralt.1). For spliced in exons, we observe that the enrichment

of H3K36me3 increases gradually from upstream to alternatively

spliced to downstream exons (Fig. 4A), consistent with previous

results showing a 39 bias in this chromatin mark [12]. However,

H3K36me3 is noticeably depleted at spliced out exons as

compared to both upstream and downstream exons (Fig. 4B).

These results suggest that, on a global scale, the presence of

H3K36me3 at alternatively spliced exons correlates with inclusion

of the exon in transcripts.

In agreement with these observations, we find that exons marked

by U1 or U2 are preferentially included in mature mRNAs

(pU1 = 1.65E–26, pU2 = 5.94E–43, Wilcoxon rank sum test) (Fig.
S3). U3, which contains no H3K36me3 enrichment (Fig. 2, S1), is

a negative control containing no preference of exon inclusion.

Interestingly, exons marked by U4, which are enriched in the

repressive H3K9me3 modification, are preferentially excluded from

mature mRNAs (pU4 = 6.67E–4, Wilcoxon rank sum test). Taken

together, these results suggest that several distinct chromatin

signatures are found at exon 59 ends, that some signatures mark

exons for preferential inclusion, and others for preferential

exclusion. These different functional specificities may be attributed

to specific differences in chromatin signatures (see Discussion).

H2BK5me1 and H4K20me1 mark highly expressed 59

exons
Our initial scan revealed several classes of chromatin signatures

marking exons, the largest of which are U1 and U2. Both of these

contain enrichment for H3K36me3, but U1 contains stronger

enrichment for H2BK5me1 and H4K20me1. This latter modifi-

cation is known to be localized both at promoters and intragenic

regions downstream of the promoters, with enrichment fading in

the gene body [12]. These observations raise the possibility that

exons marked by U1 are exons closer to promoters (59 exons) while

U2 are exons closer to the 39 ends of genes (39 exons). To test this

hypothesis, we partition the highly expressed exons above into first

and non-first exons. Non-first exons are further subcategorized

into early, middle, and late exons based on distance from the

transcription start site (TSS). We then examine the enrichment of

histone modifications near these different classes of exons (Fig. 5).

As expected, first and early exons, which are closest to TSSs, are

all highly enriched in promoter modifications including

H3K4me1, H3K4me2, and H3K4me3. In addition to

H3K36me3, it is clear that there is also a general peak of

H2BK5me1 and H4K20me1 enrichment at exons. This enrich-

ment is most pronounced in 59 exons compared to first, middle,

and 39 exons. In addition, we also observe that 59 exons, while still

marked by H3K36me3, have weaker enrichment of this mark

compared to mid or 39 exons, but is clearly more enriched than

the first exon. H3K36me3 enrichment increases with increasing

distance from the TSS, consistent with above results (Fig. 4A) and

previous observations [12]. These results provide additional

evidence for various chromatin modifications marking distinct

exons in the human genome.

Distinct classes of repressive chromatin signatures
In addition to chromatin signatures U1–4, ChromaSig also

identifies two new chromatin signatures, U5–6, having strong

enrichment of repressive histone modifications (Fig. 2). Consis-

tently, these signatures are not found near highly expressed genes

but are enriched near repressed genes (Fig. S8). These two

chromatin signatures are distinct, with U5 having stronger

enrichment of repressive modifications H3K9me2 and

H3K9me3. This subtle difference prompted us to ask if these

signatures mark distinct regions of the genome. Indeed, we find

that only 23.3% of U5 loci are intragenic, a notable depletion over

the expected value of about 40% (Fig. S9). In contrast, U6 loci are

closer to the expected value at 36.3% intragenic.

Additional analysis suggests that the sequences underlying U5

and U6 fragments are associated with distinct properties. First, we

compare to the PhastCons database containing over 2 million

conserved elements in the human genome conserved over 28

mammalian genomes [24]. We find that U5 loci are significantly

depleted of conserved elements (p = 7.12E–182) while U6 is

significantly enriched (p = 2.09E–26) (Fig. 6A). Given that

repressive histone modifications have been known to mark

repetitive regions of the genome [38] which are highly lineage-

specific [32], the low conservation of U5 loci may be explained by

enrichment for repetitive sequences. To test this hypothesis, we use

RepeatMasker [39] to define repetitive bases within 61-kb from

each locus in U5–6. Indeed, 49.1% of U5 bases are repetitive, as

compared to 32.1% of U6 bases (Fig. 6B), suggesting that these

two clusters may harbor different classes of sequences. To pursue

this further, we next ask if the classes of repeats found in U5 are

different from those found in U6. Counting the repetitive elements

found within 61-kb of each locus (Fig. 6C,D), we find that U5 is

significantly enriched for long terminal repeats (LTR) (p,1E–300,

Z-score = 39.7), while U6 is neither enriched nor depleted. For the

SINE family of repeats, while both clusters are significantly

depleted in Alu repeats (pU5,1E–300, ZU5 = 81.5; pU6 = 4.76E–

245, ZU6 = 33.4), only U6 is notably enriched in MIR repeats

(p = 2.31E–177). Similarly, L2 LINE repeats and simple repeats

are notably more enriched in U6 loci than U5 loci. These results

suggest that U5 and U6 have different genic distributions and

mark distinct sequences of the genome.

U5 and U6 mark different domains of gene repression
We next examine whether the different genic distributions and

sequence preferences of U5 and U6 relate to gene expression. It is

thought that the genome is organized into different domains of

transcriptional activity, with the insulator binding protein CTCF

defining the boundaries of these domains [26]. Therefore, we

partition the genome into CTCF-defined domains and determine

the enrichment of U5 or U6 loci in these domains as a function

promoter activity. The distributions of U5 and U6 enrichment are

significantly different (p = 5.95E–26, paired Wilcoxon signed rank

test) (Fig. 7A): U5 is more enriched than U6 in domains

containing the most repressed genes (log expression ,4), while

domains containing genes more expressed (log expression between

Table 2. Summary of chromatin signatures U1–7.

Cluster Number Chromatin features Association

U1 2845 H3K36me3, H2BK5me1, H4K20me1 Exons

U2 3742 H3K36me3 Exons

U3 615 H2BK5me1, H4K20me1 ?

U4 961 H3K36me3, H3K9me3 Exons

U5 34368 H3K9me3, H3K27me3 Repressed regions

U6 4394 H3K27me3 Repressed regions

U7 949 H2AZ ?

doi:10.1371/journal.pcbi.1000566.t002
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Figure 3. H3K36me3 marks exon 59 ends and is a global mark of expression. (A) The top panel is a heat map of H3K36me3 enrichment at all
human exons, sorted by exonic expression (right). The bottom panel is the average H3K36me3 enrichment profile of the lowest, middle, and highest
third of expressed exons from the top panel. The distribution of H3K36me3 reads within 6500 bp of exon (B) 59 ends and (C) 39 ends of the top 50%
expressed exons in the human genome. In red are reads on the sense strand in the direction of transcription, and in green are anti-sense reads. A
schematic of a positioned a nucleosome is shown. (D–E) As in (B–C), but focusing on expressed exons longer than 500 bp.
doi:10.1371/journal.pcbi.1000566.g003
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5 and 6) have higher enrichment of U6 loci than U5 loci. For

moderately and highly expressed genes (log expression .6), the

enrichment of both U5 and U6 loci are depleted relative to

random. We next investigate the localization of U5 and U6 with

respect to the distinct promoter classes P1–14. We find that U5–6

are in general depleted near moderately and highly expressed

promoters P8–14. In contrast, U5 and U6 are enriched near

distinct classes of repressed genes. U6 is enriched in CTCF blocks

containing P1 and P3 compared to U5 (Fig. S8). In contrast, U5 is

enriched near promoters in cluster P6, which are depleted of U6

elements (Fig. S8). These results further underscore the notion

that these elements repress the genome in distinct ways.

While it is not surprising that U5 and U6 are enriched near

genes with low expression since they are both enriched in

repressive histone modifications, it is remarkable that these two

chromatin signatures mark distinctly different populations of lowly

expressed genes. One possibility is that U5 and U6 are present in

different compartments of the nucleus. To test this, we examine

the localization of these loci in lamina-associated domains (LADs),

previously mapped in fibroblast cells and known to contain

repressed genes and gene deserts. Indeed, more than 60% of U5

loci are in LADs (penrichment,1E–300), compared to only 37.4%

for U6 loci (pdepletion = 1.57E–10) (Fig. 7B). Taken together, these

results suggest that U5 and U6 mark distinct domains of gene

expression that may be explained by their enrichment in different

nuclear compartments.

Discussion

In this study, we survey the global landscape of commonly

occurring chromatin signatures in the human genome. We recover

known signatures at well-studied elements such as promoters and

lesser-studied elements including enhancers. In addition, we find 7

distinct signatures spanning 47,874 genomic loci distal to known

regulatory elements. We observe chromatin signatures marking

exons and show at a higher resolution that the 59 ends of exons are

specifically modified by H3K36me3. Furthermore, we show that

the enrichment level of this mark directly correlates with exonic

expression, a result that had only been implied before. In addition,

we recover two distinct chromatin modifications U1 and U2

marking exons in our genome-wide scan. While both are enriched

in H3K36me3, U1 is uniquely enriched in H2BK5me1 and

H4K20me1, which directly coincides with U1 marking early exons

and U2 marking late exons.

A previous study by Kolasinska-Zwierz et al also observed that

H3K36me3 marks exons in C. elegans and in mammals [8]. Here,

we find that this histone modification is specifically enriched at the

59 ends of exons and also weakly enriched eat 39 ends of exons.

Our results, together with findings by Kolasinska-Zwierz et al,

implicate chromatin modifications in regulating splicing, a process

until recently thought to be decoupled from transcription both

physically and temporally. In yeast, H3K36me3 is deposited by

the histone methyltransferase Set2, which is associated with the

elongation form of RNA polymerase [40,41]. The observation that

H3K36me3 marks exons, a part of gene structure in the realm of

splicing rather than transcription, implies that H3K36me3 may

directly or indirectly regulate splicing.

A large body of work on splicing regulation has been focused on

how sequence-specific proteins binding directly to pre-mRNAs

affect splicing [42,43]. But the static and highly degenerate natures

of sequence elements associated with splicing leave unanswered

the question of how cell-type specific splicing is achieved.

Figure 4. H3K36me3 enrichment correlates with alternative splicing. The number of H3K36me3 reads per kilobase for exons near
alternatively spliced cassette exons that are (A) spliced in or (B) spliced out. A cassette exon is defined to be spliced in if the difference in expression
between it and its immediate upstream and downstream exons is less than 0.5 on a log2 scale. A cassette exon is defined to be spliced out if both
upstream and downstream exons are at least 2-fold more expressed (1.0 on a log2 scale).
doi:10.1371/journal.pcbi.1000566.g004
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However, recent discoveries physically linking RNA polymerase to

the splicing machinery has shifted attention to the roles of the

transcription machinery in regulating splicing [42,44]. This has led

to two models describing co-transcriptional splicing: a kinetic

model and a recruitment model [42]. While both models

emphasize spliceosome activity during transcription, neither fully

explains how cell-type specific splicing is achieved. Our observa-

tions that distinct chromatin signatures are present at exons, and

that different signatures are associated with either inclusion or

exclusion from mature mRNAs, suggest a role of chromatin state

in splicing regulation. One possibility is that the writing and

reading of dynamic chromatin signatures may direct splicing

events. While this model is attractive, further studies will be

necessary to verify this hypothesis.

Identifying alternatively spliced exons de novo using chromatin

signatures is an exciting possibility. A recent study has used the

enrichment of H3K4me3 in conjunction with proximal enrich-

ment of H3K36me3 to identify novel long non-coding RNAs

[45], though H3K36me3 enrichment was used more as an

indicator of elongation than of exon boundaries. But even if

chromatin signatures can be used to detect alternative exons,

because exons are transcribed it would be as cheaper, more

efficient, and more reliable to employ techniques such as RNA-

Seq to completely enumerate alternative exons de novo [46]. In the

future as we approach completely mapping all histone modifi-

cations of the epigenome, one interesting possibility is that, like

promoters and enhancers [3,7], an exon chromatin signature

marking poised but inactive exons may also exist. This could

Figure 5. H2BK5me1 and H4K20me1 mark early exons. (A) Shown is a heat-map representing the enrichment of various modifications and
factors in a 5-kb region surrounding the top third expressed exons. The exons are separated into (top) first exons and (bottom) non-first exons, and
are then sorted by distance from the transcription start site. Non-first exons are further subcategorized into early, middle, and late exons. (B) The
average profiles for (left) H2BK5me1, (middle) H3K36me3, and (right) H4K20me1 for first, early, middle, and late exons.
doi:10.1371/journal.pcbi.1000566.g005
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Figure 6. U5 and U6 mark distinct sequences of the genome. (A) The percentage of loci in U5 and U6 within 1-kb to an evolutionarily
conserved PhastCons element. (B) The average percentage of bases 61 kb around each locus that are masked by RepeatMasker. (C–D) The number
of repeat elements within 61 kb of each locus in (C) U5 and (D) U6. Black indicates the observed value while grey indicates the expected value over
random sites. The error bars indicate 61 standard deviation. LTR, long terminal repeat; simple, simple repeat.
doi:10.1371/journal.pcbi.1000566.g006
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allow for identification of alternative exons needed for cellular

response to stimuli.

We also recover several chromatin signatures enriched in

repressive histone modifications marking distinct populations of

repetitive elements. Surprisingly, these signatures are associated

with different modes of gene repression. One possible explanation

for this phenomenon is that U5 loci, which contain H3K9me2 and

H3K9me3, are more highly enriched in nuclear lamina-associated

domains than U6 loci. Thus the U5 chromatin signature may be

specifically associated with LADs, while U6 is with other types of

domains. It is possible that these two different types of chromatin

domains correlate with distinct mechanisms of gene silencing, with

H3K9-associated U5 domains being more permanently repressed

than H3K9-free U6 domains.

These results show that studying the human genome on the

basis of chromatin signatures is a useful method to cataloging

regulatory elements in the genome in a global, unbiased, and

systematic way. Future efforts to map chromatin modifications in

the human genome may allow us to define more chromatin

signatures marking novel regulatory elements or different

functional specificities of known regulatory elements.

Methods

Data normalization. Genome-wide distributions of histone

modifications were obtained from Barski et al [12]. As in Hon et al

[5], we filtered reads for uniqueness and redundancy, partitioned

the genome into 100-bp bins, and counted reads in each bin. As the

number of reads for each mark was highly variable, normalization

was necessary to facilitate comparison. For each bin i and mark h,

we normalized the number of reads in this bin xh,i as in [5]:

xnorm
h,i

~
1

1ze{ xh,i{median xhð Þð Þ=std xhð Þ

Genome annotations. Genome annotations were download-

ed from the UCSC Genome Browser [37], human genome Build

36.1 (hg18 assembly). Gene definitions were given by the Refseq

Genes [13] track. CpG island definitions were given by the ‘‘CpG

Islands’’ track. Alternatively spliced exons were defined by entries

in the ‘‘Alt Events’’ track labeled as ‘‘Cassette Exons’’. The list of

human loci conserved in a 28-way alignment with placental

mammals was defined by the phastConsElements28wayPlacMam-

mal table[24]. Repeat definitions were given by the RepeatMasker

track [39], and lamina-associated domains mapped in Tig3 human

lung fibroblasts [47] were defined by the ‘‘NKI LADs’’ track.

Catalogs of regulatory elements. Using previously pub-

lished CTCF ChIP-Seq data [12], we obtained a list of 27,110

CTCF sites by running the Model-based Analysis of ChIP-Seq

[27] software with default parameters and a p-value cutoff of

1E–5. We used normalized H3K4me1 and H3K4me3 profiles (as

above) to predict enhancers as in Heintzman et al [6]. ROC

analysis indicated that using a p-value cutoff of 0.1 gives optimal

recovery (in terms of sensitivity and positive predictive value) of

DNase I hypersensitive sites [23], corresponding to 32,237

predicted enhancers at least 2.5-kb from Refseq TSSs.

Finding ChIP-enriched loci distal to known regulatory
elements. As in Hon et al [5], we identified regions of width 2-kb

containing enrichment for histone modifications. We modeled the

background distribution using 1% of the human genome as

defined by the ENCODE regions and defined enriched regions as

those significantly deviating (p = 0.0001) from the background. To

remove redundancy, we removed any enriched locus closer than

2.5 kb to another enriched locus. We then removed loci within

2.5 kb to regulatory loci at promoters [13], gene 39 ends [13],

CTCF binding sites [12], DNase I hypersensitive sites [23], and

sites having an enhancer chromatin signature [6].

Finding chromatin signatures. We searched for chromatin

signatures of width 4-kb using ChromaSig [5] with a background

prior p2A = 0.01 and a standard deviation factor sanother = 1.75. For

loci with well-defined loci (gene 59 ends, gene 39 ends, CTCF

binding sites, DNase I hypersensitive sites) we searched within a

region 6500-bp around the sites, but for less-defined loci

(predicted enhancers, ChIP-rich regions) we relaxed the search

to a 61-kb region. To focus only on the most frequently-occurring

chromatin signatures, we analyzed only those clusters output

having at least 500 loci and an average normalized enrichment

greater than 0.25 for at least one modification.

Chromatin signature significance. For a given cluster of

size N, we defined the motif mh,i to be the mean normalized

enrichment of the aligned loci at a specified position i for

modification h. Well-aligned motifs have higher values of

enrichment. For each motif, we computed the score:

S~
X

h

max
j

mh,j

� �

Figure 7. U5 and U6 mark distinct expression domains of the
genome. (A) Enrichment of U5 and U6 loci as a function of expression
for genes in the same domain. We counted the number of U5 and U6
loci within the CTCF-defined domains containing human promoters,
assessed enrichment as compared to that expected over random sites,
and averaged over a 1000-promoter sliding window to create each
profile. The signed rank p-value is indicated. (B) The percentage each
cluster within lamina-associated domains, previously mapped in Tig3
human lung fibroblasts (black), as compared to random sites (grey). The
error bars indicate 61 standard deviation.
doi:10.1371/journal.pcbi.1000566.g007
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Higher values of S indicate more significant motifs. To assess

significance of observing a motif spanning N loci with score S or

greater, we randomly sampled 100 sets of clusters with random

alignment offsets (within 61 kb of the aligned sites) and

orientations (positive or negative strand), computed S scores for

each random set, and modeled the random distribution of S scores

as a Guassian distribution to allow for calculation of significance.

We performed this randomization either within loci in the same

cluster as the original motif or over loci from all clusters.

Heatmaps. All heatmaps consist of normalized data over 100-

bp bins (see above), and were visualized using Java TreeView [48].

Expression data. Transcript and exon expression data were

measured in CD4+ T cells by Crawford et al [14] (GEO accession

GSE4406) and Oberdoerffer et al [34] (GEO accession

GSE11834), respectively. Both studies performed duplicate

measurements on microarrays, and the expression data shown

here is the average of the replicates.

Randomization. To determine enrichment for a given

cluster, we compared to 100 random clusters. Each random

cluster contains the same number of loci as the original cluster and

follows the same chromosomal distribution. Random sampling is

limited to bins containing ChIP-Seq reads.

Statistical tests. To assess significance of overlap with known

genome annotations, we assume that the overlap statistics for 100

random clusters follows a Gaussian distribution. To assess

significance of exon inclusion for marked versus unmarked exons,

we use a two-sided Wilcoxon rank sum test to compare the median

exon expression of the two sets. To assess that U5 and U6 are

enriched near different classes of expressed genes, we use the

paired two-sided Wilcoxon signed rank test to compare the

enrichment profiles.

Supporting Information

Figure S1 U1, U2, and U4 mark exon 59 ends. An exon is

unambiguously marked if it is the only exon within 1-kb of a

genomic locus. We profiled chromatin enrichment relative to the

59 ends of unambiguously marked exons for clusters (a) U1, (b) U2,

(c), U3, and (d) U4. The top panels are heat maps representing the

H3K36me3 enrichment in a 10-kb region surrounding the 59 ends

of unambiguously marked exons. The bottom panels represent the

average profiles of the heat maps. U3 is the negative control.

Found at: doi:10.1371/journal.pcbi.1000566.s001 (0.89 MB TIF)

Figure S2 U1 and U2 mark the 59 ends of exons greater than

1-kb in length. An exon is unambiguously marked if it is the only

exon within 1-kb of a genomic locus. We profiled chromatin

enrichment relative to the 59 ends of unambiguously marked exons

of length .1-kb for clusters U1 and U2. The top panels are heat

maps representing the H3K36me3 enrichment in a 10-kb region

surrounding the 59 ends of unambiguously marked exons. The

bottom panels represent the average profiles of the heat maps.

Only a small number of U3- and U4-marked unambiguous exons

are larger than 1-kb, and so are not shown here.

Found at: doi:10.1371/journal.pcbi.1000566.s002 (0.76 MB TIF)

Figure S3 Chromatin signatures associated with preferential

inclusion and exclusion of exons into mature mRNAs. (a)

Schematic of a gene containing an exon marked by a chromatin

signature in pink and an unmarked alternatively spliced exon in

green. After transcription and splicing, mature mRNAs either

have one exon or the other. We compared exonic expression for

marked exons in pink versus unmarked alternatively spliced exons

in green for (b) U1, (c) U2, (d) U3, and (e) U4. The overlap is in

brown. Wilcoxon rank sum p-values are indicated. Red p-values

indicate enrichment of marked over unmarked exons, while green

p-values indicate enrichment of unmarked over marked exons. U3

is the negative control.

Found at: doi:10.1371/journal.pcbi.1000566.s003 (0.85 MB TIF)

Figure S4 Distinct chromatin signatures spanning predicted

enhancers. On the basis of a previously published enhancer

chromatin signature having strong H3K4me1 enrichment but

weak H3K4me3 enrichment, we predicted 32,237 promoter-

distal enhancers. Applying ChromaSig to these loci using the full

panel of chromatin modifications mapped by Barski et al., we

recovered 11 clusters. The heat map represents the enrichment of

H2AZ, 20 histone modifications, CTCF, and RNA polymerase II

in the 10-kb region surrounding each enhancer prediction. To

organize these clusters visually, we performed hierarchical

clustering on the average profiles using a Pearson correlation

distance metric (left).

Found at: doi:10.1371/journal.pcbi.1000566.s004 (3.73 MB TIF)

Figure S5 Distinct chromatin signatures spanning promoter-

distal and enhancer-distal CTCF binding sites. We used MACS

[10] to identify 27,110 CTCF binding sites from the Barski et al

maps [5], 17,328 of which are distal to promoters and predicted

enhancers. Applying ChromaSig to the chromatin modifications

around these loci, we recovered 7 clusters. The heat map

represents the enrichment of H2AZ, 20 histone modifications,

CTCF, and RNA polymerase II in the 10-kb region surrounding

each distal CTCF binding site. To organize these clusters visually,

we performed hierarchical clustering on the average profiles using

a Pearson correlation distance metric (left).

Found at: doi:10.1371/journal.pcbi.1000566.s005 (1.75 MB TIF)

Figure S6 Distinct chromatin signatures spanning Refseq 39

ends distal to Refseq promoters. Applying ChromaSig to the

histone modifications near 16,703 Refseq gene 39 ends that are

distal to Refseq TSSs, we recover 12 clusters. The heat map

represents the enrichment of H2AZ, 20 histone modifications,

CTCF, and RNA polymerase II in the 10-kb region surrounding

each Refseq gene 39 end. To organize these clusters visually, we

performed hierarchical clustering on the average profiles using a

Pearson correlation distance metric (left).

Found at: doi:10.1371/journal.pcbi.1000566.s006 (1.71 MB TIF)

Figure S7 Distinct chromatin signatures spanning DNase I

hypersensitive sites. Previously, Boyle et al mapped 95,709 DNase

I hypersensitive sites in CD4+ T cells, 31,824 of which are distal to

Refseq TSSs, CTCF binding sites, and enhancer predictions. We

applied ChromaSig to the chromatin modifications around these

loci, recovering 13 clusters. The heat map represents the

enrichment of H2AZ, 20 histone modifications, CTCF, and

RNA polymerase II in the 10-kb region surrounding each distal

DNase I hypersensitive site. To organize these clusters visually, we

performed hierarchical clustering on the average profiles using a

Pearson correlation distance metric (left).

Found at: doi:10.1371/journal.pcbi.1000566.s007 (3.28 MB TIF)

Figure S8 Chromatin signatures of distal regulatory elements

correlate with different classes of promoters. We partitioned the

genome into CTCF-defined domains and counted the number of

predicted enhancers and DNase I hypersensitive sites in each

promoter-containing domain. To calculate enrichment, we

compared to distributions of 100 sets of randomly placed loci

(see Methods).

Found at: doi:10.1371/journal.pcbi.1000566.s008 (0.72 MB TIF)

Figure S9 Distinct genomic distributions of chromatin signa-

tures. The percentage each cluster within the 59 and 39 ends of
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genes (black), as compared to random sites (grey). The error bars

indicate 1 standard deviation.

Found at: doi:10.1371/journal.pcbi.1000566.s009 (0.19 MB TIF)

Figure S10 The distribution of H3K36me3 reads within exon

and introns. The number of reads found within introns and exons,

normalized by the total size of each.

Found at: doi:10.1371/journal.pcbi.1000566.s010 (0.04 MB TIF)

Figure S11 The distribution of H3K36me3 reads at long exon

59 and 39 ends. The top panel shows the enrichment of

H3K36me3 within 5-kb from (left) exon 59 ends and (right) 39

ends, for the longest 30,000 exons sorted by length (far right). The

bottom panel is the average H3K36me3 enrichment profile of the

shortest, middle, and longest third of exons from the top panel.

Found at: doi:10.1371/journal.pcbi.1000566.s011 (1.41 MB TIF)

Table S1 Locations of clusters recovered when applying

ChromaSig to Refseq promoters.

Found at: doi:10.1371/journal.pcbi.1000566.s012 (0.31 MB TXT)

Table S2 Locations of clusters recovered when applying

ChromaSig to predicted enhancers.

Found at: doi:10.1371/journal.pcbi.1000566.s013 (0.51 MB TXT)

Table S3 Locations of clusters recovered when applying

ChromaSig to CTCF binding sites.

Found at: doi:10.1371/journal.pcbi.1000566.s014 (0.27 MB TXT)

Table S4 Locations of clusters recovered when applying

ChromaSig to Refseq gene 39 ends.

Found at: doi:10.1371/journal.pcbi.1000566.s015 (0.25 MB TXT)

Table S5 Locations of clusters recovered when applying

ChromaSig to DNase I hypersensitive sites.

Found at: doi:10.1371/journal.pcbi.1000566.s016 (0.48 MB TXT)

Table S6 Locations of clusters recovered when applying

ChromaSig to ChIP-enriched sites distal to Refseq promoters,

Refseq gene 39 ends, predicted enhancers, CTCF binding sites,

and DNase I hypersensitive sites.

Found at: doi:10.1371/journal.pcbi.1000566.s017 (0.80 MB TXT)

Table S7 Statistical significance of observed chromatin signa-

tures. Significance for each cluster is calculated by comparing to

random sets of clusters sampled from within the cluster or over all

clusters.

Found at: doi:10.1371/journal.pcbi.1000566.s018 (0.30 MB PDF)
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