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Abstract

Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed
bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted
parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped
oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and
enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian
clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the
circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this
question, however, by testing the models’ predictions of different phases and amplitudes in response to a periodic
entrainment signal (zeitgeber).
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Introduction

The circadian rhythm of organisms ranging from cyanobacteria

to humans beats at the cellular level; it is a remarkable

manifestation of celestial mechanics mirrored in molecular

biology. The standard view is that the mammalian circadian

clock is a hierarchically organized system, governed by the

suprachiasmatic nuclei (SCN, consisting of about 20,000 neurons)

in the hypothalamus. The SCN neurons are coupled to each other

and are entrained by light to oscillate in synchrony to the 24 h

earth rotation, and in turn entrain cells and organs in the rest of

the body. In studies of dissociated SCN neurons, typically most of

the cells are classified as being self-sustained oscillators [1–4].

However, as also predicted theoretically [5,6], dissociated

individual oscillating SCN neurons can vary greatly in their

precision, and many have been suggested to be damped oscillators

[1,7], especially if synaptic input or Gi-protein mediated signaling

is compromised [8,9]. At the SCN tissue level, mutant neurons

that are arrhythmic when dissociated from each other can interact

to generate a collective coordinated self-sustained rhythm [10].

Peripheral tissues contain independent clocks [11], thought to be

synchronized by the SCN via neural and hormonal pathways, as well

as via more indirect routes such as body temperature and feeding

behavior [12–14]. In the last decade it became clear that the

circadian rhythm of immortalized fibroblast cell lines [15] as well as

peripheral tissues such as liver, lung, and muscle [11], has its origin at

the single cell level. These rhythms are damped at the cell population

level, but recent studies employing single-cell techniques suggested

that the rhythms in peripheral tissues actually are self-sustained at the

single-cell level [16–17]. It is not clear how the peripheral rhythms

may differ from the SCN rhythm at the single-cell level.

Rapid progress has been made during the last decade in

unraveling the molecular components of the clock, although the

picture is not yet complete. The consensus view is that the core

clockwork consists of several interlocked negative and positive

feedback loops [18]. There are numerous theoretical models for

how these combine into a ticking molecular clock, all of which

assume a self-sustained oscillator that essentially relies on the

negative feedback loop consisting of the Period (PER1, PER2) and

Cryptochrome (CRY1, CRY2) proteins inhibiting their own

production once translocated into the nucleus, by attenuating

the action of their transcriptional activators CLOCK and BMAL1

[19–22]. Corresponding knockout mutants have been studied at

the cellular level [10], although a quantitative characterization of

these mutants is lacking.

Using two simple canonical oscillator models and time-series

analysis, we have extracted general parameters, such as oscillator

damping rates and biochemical noise levels, from previously

published single-cell bioluminescence measurements in SCN

neurons and fibroblasts [9–10]. Considerable progress has recently

been made in the understanding of the origin of noise in gene

expression and protein concentrations [23], and such noise was

considered in our analysis since it is readily noticeable and

quantifiable from the data at hand. We report here that the

circadian clock in both wild-type single dissociated SCN neurons

and in fibroblasts is well approximated as a damped (non-self-

sustained) oscillator driven by biochemical noise. This model

assumes that the underlying dynamics of the oscillator are those of

a damped system, but that the damped oscillator via the filtering

and molding of biochemical noise exhibits a circadian rhythm. An

alternative minimal self-sustained (limit-cycle) oscillator model

described SCN neurons as noisy small-amplitude oscillators with
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noise levels comparable to the oscillator amplitudes. Similar low-

dimensional self-sustained models have previously been applied

successfully to analysis of circadian single-cell fluorescence and

bioluminescence time series [24–26], as well as to measurements of

circadian body temperature cycles [27,28].

We were also able to characterize Cry1{={, Cry2{={, and

Per1{={ mutants, to each of which we could confer a unique

quantitative signature. This paves the way for a characterization of

mutants that goes beyond the mere classification as ‘‘rhythmic’’ or

‘‘arrhythmic’’. Finally, based on a comparison with biolumines-

cence recordings of single neurons within cultured SCN tissue

slices, we show how to use the fitted models to understand

entrainment properties of single cells. Importantly, the entrain-

ment properties differ markedly, depending on whether the noise-

driven damped model or the self-sustained model is assumed,

pointing to future experimental tests that would discriminate

between the two concepts.

Results

Single cell circadian rhythms are well described by a
linear damped oscillator model driven by biochemical
noise

We used raw data from a recent investigation [10], where

bioluminescence imaging was employed to track the relative

amount of functional mPer2-luciferase fusion protein in single

dissociated mouse SCN neurons and fibroblasts, for wild-type

(WT, fibroblasts: n~20, SCN neurons: n~165) and for Cry1{={

(fibroblasts: n~20, SCN neurons: n~118), Cry2{={ (fibroblasts:

n~20, SCN neurons: n~162), and Per1{={ (fibroblasts: n~20,

SCN neurons: n~125) mutants. Example WT time-series

(detrended and mean-centered) are shown in Figures 1A (fibro-

blast) and 1D (SCN neuron). From the bioluminescence time-

series, we calculated empirical autocovariances and fitted these to

the theoretical autocovariance formula of a linear damped

oscillator with additive noise (Methods). This model is comprised

of two variables that oscillate, with a given period, towards a stable

equilibrium point. However, the additive noise keeps the variables

from settling at the equilibrium point, continuously offsetting

them, which makes the oscillator appear to be self-sustained. In

effect, the biochemical noise is filtered by the damped oscillator so

that the circadian frequency components are amplified, while

other frequency components are suppressed. This principle is

illustrated in Figure 2.

Author Summary

Earth’s 24-h-rotation around its axis is mirrored in the
circadian clock that resides within each of our cells,
controlling expression of ,10% of all genes. The circadian
clock is constructed as a negative feedback loop, in which
clock proteins inhibit their own synthesis. During the last
decade, a picture has emerged in which each cell is a self-
sustained circadian oscillator that runs even without
synchronizing cues. Here, we investigated state-of-the-art
single-cell bioluminescence recordings of clock gene
expression. It turns out that these time series are very
well described by low-dimensional models, enabling us to
extract descriptive parameters that characterize each cell.
We find that different cell types do not differ much in their
dynamics. However, different mutations in core clock
genes yield different dynamic characteristics. Furthermore,
we could not statistically reject the idea that the cells are in
fact damped oscillators driven by noise. We thus declare
the question of whether the circadian clock is a damped or
self-sustained oscillator still unresolved. Further, we
propose a way to resolve this question by examining the
frequency-dependent response of single cells to periodic
stimuli. We will then be in a better position to understand
how cells coordinate and synchronize their circadian
rhythms.

Figure 1. Detrended, mean-centered experimental data, simulations of damped and self-sustained models, and estimated and
fitted autocovariance functions. (A and D). Representative time-series of a WT fibroblast (A) and SCN neuron (D). Raw data were detrended by
subtracting a least-squares fit of a second-degree polynomial and then mean-centered. The unit for the bioluminescence is photons per minute. (B
and E). Simulations of the damped model (Equation 3) with parameters extracted from the autocovariance estimations of the time-series in panels A
and D, respectively. (C and F). Simulations of the self-sustained model (Equation 5) with parameters extracted from the autocovariance estimations of
the time-series in panels (A) and (D), respectively. (G and H). Autocovariances were estimated from the time-series in panels (A) and (D), respectively,
using an unbiased estimator (black solid curves). Fits to the estimated autocovariances of the theoretical autocovariance functions for the damped
model (Equation 4) are shown as dark gray dashed curves. Fits for the self-sustained model (Equation 6) are shown as light gray dashed curves. The
fitting procedure is described in Text S1.
doi:10.1371/journal.pcbi.1000580.g001
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The model is specified by three parameters only: the frequency,

the damping rate, and the noise intensity. A representative

example of the fitting of the autocovariances is given in Figures 1G

and 1H, where the experimental data autocovariances (black lines)

were calculated from the time-series in Figures 1A and 1D,

respectively. In general, excellent fits were obtained with the linear

damped oscillator model. With the fitted parameters, the model

can be used to simulate time-courses (see Methods and Text S1 for

details about the model and simulations), as shown in Figures 1B

(fibroblast) and 1E (SCN neuron). The simulations illustrate that

the noisy damped linear oscillator model indeed produces time

courses qualitatively similar to the experimental ones (Figures 1A

and 1D). Note that the seemingly lower simulated noise level in

Figure 1B compared to the experimental data in Figure 1A is due

to the fitting procedure being able to selectively filter out and reject

measurement noise (see Text S1). In order to test whether we

could reject the damped oscillator model we adopted a boot-

strapping approach related to the method proposed by Hall and

Wilson [29]: we made 1000 simulations of the model (Methods) for

each cell, using the parameters extracted from the data. For each

simulated time-series, we calculated autocovariances and again

fitted these to the analytical autocovariance function (Methods) as

outlined above. Thus, for each cell, we have one autocovariance

function calculated from experimental data, and 1000 autocovar-

iance functions calculated from simulations. We then calculated

the fraction of the 1000 simulations that produced better fits (in the

least-squares sense) than the experimental data. We took this

fraction as a measure of how reasonable the model is: if the

simulations give better fits than experimental data in more than

95% of the cases, we consider the experimental data to be different

enough from the simulated time series to reject the damped model.

We could reject the damped model in this way for only 5.1% of

the SCN neurons. For fibroblasts, the percentage was higher,

17%. The full results are given in Table S1.

To summarize and visualize the data fits for all cells in the Liu et

al. [10] study, the fitted damping rates are plotted against the

average noise-driven relative oscillation amplitudes in Figure 3A.

Relative amplitudes are the oscillation amplitude divided by the

overall mean. Key results of this parameterization are: (1) We can

characterize WT, Cry1{={, Cry2{={, and Per1{={ mutants,

i.e. separate them in parameter space. Cry2{={ mutants were

more weakly damped than WT cells and the other two null

mutants. Cry1{={ mutants have a more disrupted circadian

rhythm than Per1{={ mutants, since their average relative

oscillation amplitude is distinctly lower. This difference was not

noted earlier [10]. (2) SCN neurons and fibroblasts cluster

together, both for WT and mutant cells. Thus, given this model,

we can find no significant difference between the circadian

rhythms of these two cell types at the uncoupled single-cell level.

Although fibroblasts generally give rise to dimmer biolumines-

cence due to lower PER2 expression level, cf. panels 1A and D,

this peculiarity is not reflected in our analysis, since we measure

amplitudes in relative units. (3) According to this model and data

fit, WT cells constitute a more heterogeneous population than any

of the mutants, in that the parameters of the model exhibit a larger

spread. We could quantify this, cf. Table S2. Ordered according to

heterogeneity, Cry2{={ were less heterogeneous, Per1{={

mutants even less heterogeneous, while the Cry1{={ mutants

were the most homogeneous. (4) The damping time of the cells, i.e.

the time it would take a given perturbation to decay to half its

magnitude, lies on the order of 5 to 100 hours with a median of

21 hours. As discussed below, this has implications for the

synchronization and entrainment of the cells.

To probe the generalizability of the method and the results, we

further analyzed hitherto unpublished bioluminescence data from

an earlier study by Yamaguchi et al. [9], where transgenic mice

with a luciferase reporter gene driven by the mPer1 promoter were

used. The data we analyzed come from the smaller ventral part of

two mouse SCN slices each cut in two. The cells in the smaller

parts were not synchronized, and we hence infer that they may

have been in a state similar to the dissociated SCN neurons from

the Liu et al. [10] study. Again, we calculated the autocovariance

for each cell (n~53), and fitted these to the theoretical

autocovariance function for the linear damped oscillator (Meth-

ods). The results are summarized in Figure 3B, where we have

Figure 2. Noise can generate well-defined oscillations in a
damped oscillator. White noise (upper panel) has a constant spectral
density for all frequencies. It enters the damped oscillator and becomes
filtered by it. The resulting amplitude spectral density of the variable y,
as calculated from Equation S2 in Text S1, is drawn in the lower panel.
The shape of the spectral density of y is entirely determined by the
parameters of the damped oscillator, here chosen as l~0:03 hours{1

and v~0:26 hours{1 which are typical values of the fits of the damped
model to the bioluminescence data. Insets show input white noise
(upper panel, D~1 hours{1), and a corresponding simulated time
series for the y variable (lower panel, D~1 hours{1, l~0:03 hours{1 ,
v~0:26 hours{1).
doi:10.1371/journal.pcbi.1000580.g002
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plotted the results of these fits together with those of the earlier fits

to the WT cells of the Liu et al. [10] study. It is most reasonable to

consider relative amplitudes when comparing data from different

studies, since relative units are insensitive to differences in

expression level of reporter genes, laboratory equipment, and

other systematic factors. In general, although different reporter

genes were used in the two studies, the cells occupy the same

region in the parameter space of our model. We also performed

the statistical test outlined above for these cells; in this case, we

could reject the damped model for 1.9% of the cells.

An alternative, self-sustained oscillator model describes
the single-cell circadian rhythm as noise-dominated

We sought to use the same methodology as above to evaluate

the consensus picture of the circadian clock as a self-sustained

oscillator at the single-cell level. This can be modeled most simply

as a two-variable oscillator with a given amplitude, a given noise

intensity, and a given amplitude relaxation rate to the stable

oscillation (limit-cycle, Methods). Also in this case, one obtains a

theoretical autocovariance formula from the model, which was

fitted to the autocovariances estimated from the experimental

time-series, as in the representative example in Figure 1G and H,

light gray dashed line. The autocovariance formula for the self-

sustained oscillator model has two degrees of freedom more than

that of the linear damped oscillator (Methods), which is why we

always expect a slightly better fit in the self-sustained case. Again,

this model can be simulated (see Text S1), and typical simulated

time-courses are shown in Figures 1C and F (fibroblast and SCN

neuron, respectively), which show that the self-sustained model

also generates realistic time-courses. As for the damped model, we

took the bootstrapping approach described above and made 1000

simulations for each cell and tested for how many cells we could

reject the self-sustained model. This we could do for 4.2% of the

SCN neurons and for 18% of the fibroblasts. The full results can

be found in Table S1.

We summarize the results from these data fits in Figure 4. On

the abscissa are the coefficients of variation (CV) for the

amplitudes, which are the standard deviations (SDs) of the

fluctuations in the oscillator amplitudes, divided by the amplitudes

themselves. On the ordinate are the oscillator amplitudes divided

by the means of the time-series, as for the fits to the damped

model. Of special note is that if the CV is greater than 1, the

stationary probability density (see Text S1) of the two variables of

the oscillator is qualitatively the same as for a damped oscillator–it

is unimodal, i.e. has one single maximum. However, if the CV is

less than 1, the probability density forms a ‘‘crater ridge’’ around a

local minimum. This ‘‘crater ridge’’ represents the self-sustained

oscillation. The key results for the data fit to the self-sustained

oscillator model are: (1) In this model, as in the damped model, the

WT cells and mutants are also clearly separable. The Cry2{={

mutant cells generally have clear oscillator characteristics (CV less

than 1), while the majority of the WT (58%) and other mutant cells

have a CV greater than 1, meaning that the amplitude fluctuation

SDs are greater than the oscillator amplitudes. Thus the stationary

probability densities are unimodal just like for damped oscillators.

Again, Cry1{={ mutants generally had a weaker rhythm than

Per1{={ mutants. (2) As above, the fits to the self-sustained model

cluster the fibroblasts together with the SCN neurons. (3) For the

parametrization chosen in Figure 4, WT cells are again the most

heterogeneous. Ordered according to heterogeneity, Per1{={

mutants were less heterogeneous, Cry1{={ neurons were even

less heterogeneous, while Cry2{={ mutants were the most

homogeneous (see Table S2). (4) The damping time for relaxation

to the oscillation cycle is on the order of 1 to 10 hours with a

median of 3.2 hours.

We repeated the same fitting procedure for the neurons of the

Yamaguchi et al. [9] study. The results, overlayed by the results of

the fit to the WT cells of Liu et al. [10], are shown in Figure 4B.

Just as for the damped model, the cells from the two different

studies occupy the same region in parameter space, although we

see here that the neurons of the Yamaguchi et al. [9] study

Figure 3. Summary of parameter estimations for the damped
model. The quantitative signature of each cell according to the
damped model is visualized in two dimensions. On the abscissas are the
estimated damping rates l; the smaller this value, the higher the fidelity
of the damped oscillator. For a given value of l, the average oscillation
amplitude is proportional to the square root of the noise intensity D,
since the oscillations of the damped model are driven by noise. On the
ordinates are the relative oscillation amplitudes, i.e. oscillation
amplitudes divided by overall means of the respective bioluminescence
signals. Relative (dimensionless) units are given, since these make the
comparison between different experimental settings possible. (A). Data
for cells studied by Liu et al. [10]. The cells cluster according to mutants
(WT, Cry1{={, Cry2{={, and Per1{={), rather than type (SCN neurons
or fibroblasts). It is furthermore clearly visible that Cry1{={ and
Per1{={ mutant cells occupy different parts of parameter space, which
was not noted before. (B). The WT SCN neurons in the study of Liu et al.
[10] together with the WT SCN neurons of the smaller, nonsynchronized
ventral parts of two different SCN slices cut in two, from the study of
Yamaguchi et al. [9] (brown and red points, respectively). These
different data were recorded in different experimental settings in
different laboratories. Nevertheless, these different neurons occupy the
same region in parameter space, although the cells from the cut SCN
slices are seen to have generally smaller amplitudes and smaller
damping rates.
doi:10.1371/journal.pcbi.1000580.g003
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generally are less noisy; most of them have a CV less than one.

Also, there is a trend towards lower relative amplitudes, which at

least partially could be due to a higher background glow from non-

synchronized neighboring neurons of the intact slice. Statistically,

we could reject the self-sustained model (using the method outlined

above) for 26% of these neurons.

The models explain entrainment phases and predict
different frequency response curves

Resonance. For the linear damped oscillator model,

elementary theory can be used to calculate the amplitude of a

given oscillator when driven by an incoming sinusoidal oscillatory

signal. In the present case, this conceptually corresponds to, for

example, an SCN neuron in vivo or in slice cultures being

synchronized by other SCN neurons. The linear damped oscillator

amplifies (or attenuates) the absolute amplitude of the incoming

signal with a factor–a gain G–that depends on the frequency of the

signal. Plotting G as a function of the frequency V of the incoming

signal results in a frequency response curve (Methods). If lvv,

where v is the natural (non-entrained) oscillator frequency and l is

the damping rate, this curve has a maximum at the resonance

frequency Vres, at which

G~1= 2lð Þ: ð1Þ

The smaller the damping rate, the higher and also sharper the

resonance peak becomes. A standard characteristic of a frequency

response curve is the Q factor, which is the gain at the resonance

frequency (if there is one) divided by the gain at zero frequency

(static signal):

Q~
G Vresð Þ

G 0ð Þ ~
l2zv2

2lv
: ð2Þ

Often, it is preferable to study relative amplitudes, which are

defined as the oscillation amplitude divided by the overall mean of

a signal. The Q factor is in fact the gain of the relative amplitude at

the resonance frequency, i.e. the relative amplitude of the

entrained oscillator divided by the relative amplitude of the

entrainment signal. Q is therefore particularly suitable as an

experimental measure.

Also the self-sustained model may be approximated as a linear

damped oscillator, if subject to an input signal in such a way that

the amplitude is significantly greater than in the non-driven case.

We then consider the oscillator to be in a regime where the

damping towards the non-driven self-sustained oscillation (limit

cycle) can be approximated as the damping towards a stable

equilibrium point. In this approximation, we treat the low-

amplitude self-sustained oscillator as being essentially damped. This

makes particular sense when the amplitude fluctuation SD is

greater than the oscillator amplitude (CVw1). As discussed below

and in Text S1, we performed simulations to test the validity of

this approximation.

Since the estimated damping rates l for the two different models

lie in different regimes, we anticipate, according to Equations 1

and 2, the entrainment behavior of the two models to be different.

This is investigated in detail below.

Additionally, this view of the oscillators allows the calculation of

entrainment phases of each cell. The entrainment phase is defined

as the phase difference between an entrained oscillator and an

entrainment signal. This calculation requires only the frequency v

Figure 4. Summary of parameter estimations for the self-
sustained model. Here, the quantitative signature of each cell
according to the self-sustained model is given in two dimensions. On
the abscissas, the amplitude CVs, i.e. the amplitude fluctuation SDs
divided by the estimated amplitudes A (which is a parameter of the
self-sustained model, see Methods), are given. If this quantity exceeds 1
(solid vertical lines in the panels), we consider the oscillator to be noise
dominated, since its stationary probability density has a single
maximum (schematically drawn below panel A). If the quantity is less
than 1, however, the stationary probability density forms a ‘‘crater
ridge’’ (also schematically drawn below panel A) representing the stable
oscillation (limit cycle). On the ordinates are the relative oscillation
amplitudes, i.e. amplitudes A divided by overall means of the respective
bioluminescence signals. (A). Here, the cells in the study of Liu et al. [10]
are visualized. Again, the cells cluster according to mutants (WT,
Cry1{={, Cry2{={, and Per1{={), rather than type (SCN neurons or
fibroblasts). Further, Cry1{={ and Per1{={ mutant cells are markedly
noisier than the other genotypes, with the vast majority of cells being
noise dominated oscillators. On the other hand, Cry2{={ mutants are
in general not noise dominated, but have stationary probability
densities exhibiting oscillator crater ridges. WT cells occupy the middle
ground, with 59% of the cells being noise dominated. (B). The WT SCN
neurons in the study of Liu et al. [10] (grey points) together with the WT
SCN neurons of the nonsynchronized SCN neurons from the study of
Yamaguchi et al. [9] (brown and red points). The neurons from the two
different studies occupy the same region in parameter space, although
the neurons from the Yamaguchi et al. [9] study have lower relative
amplitudes and are less noisy. The majority of these neurons are not
noise dominated.
doi:10.1371/journal.pcbi.1000580.g004
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of the oscillator, its damping rate l and the frequency V of the

entrainment signal (Equation 9, Methods).

Estimating entrainment phases. We calculated the

entrainment phase of each neuron, assuming a sinusoidal

entrainment signal of arbitrary amplitude, using Equation 9 in

Methods together with the fitted parameters. This can be done

exactly for the damped model, and with the approximation

outlined above for the self-sustained model. In the original study

Liu et al. [10], the phases in an intact Cry2{={ slice were given in

their Figure 6E. We present the phases that the dissociated

Cry2{={ neurons would exhibit when entrained to the slice

period (about 28 h), in Figure 5, upper part. One may note that

the spread of phases is bigger when assuming the damped model

(180 degrees, corresponding to 14 h since the period of the slice is

about 28 h) than when assuming the self-sustained model (almost

all phases are within a pie slice of 90 degrees, corresponding to

7 h). The entrained phase spread observed by Liu et al. [10] is

smaller than 180 degrees but larger than 90 degrees. A phase

spread of about 180 degrees in an intact SCN slice (WT) was

found by Yamaguchi et al. [9], which can be compared to the

phase spreads calculated for the WT neurons of Liu et al. [10]

(Figure 5, lower part). Although all neurons of the SCN are

unlikely to experience a universal synchronization signal [30], the

calculations demonstrate that part of the observed phase spread

can be explained by cellular heterogeneity.

Peripheral tissues are thought to be entrained by signals

emanating from the SCN, and are known to lag behind the

SCN by about 3–9 hours [31]. It follows already from our model

definition that the lags must be between 0 and 12 hours (see

Methods). When calculating the entrainment phase of each WT

fibroblast in the Liu et al. [10] study given our two model

alternatives, we obtained fairly even spreads between 0 and

Figure 5. The models explain observed entrainment phases.
The predicted phases of entrainment for the Liu et al. [10] WT SCN
neurons (compare with Figures 2B and 3E in the article by Yamaguchi et
al. [9] and Cry2{={ mutant neurons (compare with Figure 6E in the
article by Liu et al. [10])), calculated according to Equation 9, Methods,
translated into a polar plot (90 degrees corresponds to 6 hours CT). The
phases exhibit a somewhat larger spread for the damped model
compared with the self-sustained model, while the difference between
WT and Cry2{={ mutants is small.
doi:10.1371/journal.pcbi.1000580.g005

Figure 6. Predictions of the entrained amplitude amplifications of the cells studied. (A). Histogram of the Q factors for the WT SCN
neurons from the study of Liu et al. [10]), as calculated from the fitted parameters of the damped and self-sustained models, respectively. The Q
factors are a measure of the shape of the frequency response curves; the higher the value, the sharper the resonance peak is. The Q factor can be
experimentally measured as the relative gain of the oscillator with respect to an entrainment signal as described in the main text. For resonant cells,
i.e. cells where the frequency response curve has a maximum for a frequency other than zero, Qw1. We assigned a value Q~0 to non-resonant cells.
The histogram shows that, if assuming the damped model, far fewer neurons would be non-resonant (6.0% of the neurons), than if we assume the
self-sustained model (47%). Also, if assuming the damped model, we often find Q to be over 2 (58%), while this is very rare when assuming the self-
sustained model (3.3%). (B). Predicted frequency response curves showing the gains G, i.e. the amplitude of the driven oscillator divided by that of
the forcing amplitude, for one representative Cry2{={ mutant SCN neuron. The damped model predicts a quite high, sharp frequency response
curve (Q~10:5), while the self-sustained model predicts a frequency response curve almost without any resonance peak (Q~1:003). The latter
frequency response curve was calculated under the approximation that the self-sustained model under forcing can be approximated as a damped
oscillator with the relaxation rate to the self-sustained oscillation acting as the damping rate. The gray squares are the gains calculated from
numerical simulations of the self-sustained model with a forcing term conservatively estimated from experimental data. The gains from the
simulations agree reasonably well with the gains calculated from the analytical approximation. Parameter values, damped model: v~0:21 hours{1 ,
l~0:010 hours{1 . Parameter values, self-sustained model: v~0:21 hours{1 , l~0:19 hours{1 , A~16. Noise intensities were set to zero.
doi:10.1371/journal.pcbi.1000580.g006
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12 hours (not shown). An exact prediction of the phase that would

be exhibited by a population of cells is not reasonable to make,

however, based on the limited study material here.

Predicting frequency response curves. Given the models

assumed and the parameters we have fitted, frequency response

curves can be calculated (as described above, and in the Methods

section) along with their Q factors (Equation 2). We give in

Figure 6A a histogram of the Q factors obtained from the 165 WT

neurons in the Liu et al. [10] study. These Q factors allow us to

predict the behavior when entraining WT cells. For the cases

where there is no resonance (i.e. the gain monotonically decreases

with increasing frequency), we assign a Q factor of zero. The

histogram suggests that one may expect resonant behavior in

almost all cases when assuming the damped model, and that one

should observe values of Q up to 10. Assuming the self-sustained

model, one would expect resonant behavior in only about half of

the cases, and very rarely find Q factors exceeding 2. Since the Q
factor is the relative gain, i.e. the relative output amplitude divided

by the relative input amplitude, these predictions are amenable to

straightforward experimental testing.

As an example, predicted frequency response curves based on

the parameters extracted from a dissociated Cry2{={ neuron, are

shown in Figure 6B (solid curves). The frequency response curve

for the self-sustained model was calculated assuming that it

behaves as an ‘‘essentially damped’’ oscillator, as discussed above.

To validate this approximation, we numerically simulated time

courses of the entrained self-sustained model (Methods and Text

S1) and calculated gains (Figure 6B, gray squares).

The striking difference between the frequency response curves

estimated from the damped and the self-sustained models

exemplified in Figure 6B and demonstrated statistically for all WT

SCN neurons of the study in Figure 6A serves as a robust prediction

that can be exploited experimentally to probe whether the circadian

oscillator is damped or self-sustained at the single-cell level.

Discussion

We have made an in-depth analysis of bioluminescence time-

series data of the circadian rhythm in mouse SCN neurons and

fibroblasts. The main conclusions are, first, that it is possible to

estimate fundamental parameters of the oscillators, such as

damping rate and noise intensity. Second, we show that the

question of whether the circadian clock is self-sustained or damped

is not settled, since we could reject neither hypothesis. Third, we

predict frequency response curves, experimentally obtainable via

e.g. temperature entrainment, that will look quite different

depending on whether the rhythm is self-sustained or damped.

The parameters extracted in this study (damping rate, noise

level, etc.) typically span an order of magnitude for the cell

populations we study. We find it remarkable that fibroblasts and

SCN neurons cluster similarly in parameter space even for the

different mutants studied, which hint at a universality of the

clockwork behavior. Even SCN neurons from an earlier,

independent investigation [9] where a different reporter gene

was used, clustered together with the WT neurons of the Liu et al.

[10] study. This suggests that the parameters reflect general

properties of the circadian oscillator, and that the extraction

procedure we employed is robust. Another interesting property of

the distributions of the estimated parameters (except for the

period) is that they appear far less skewed (or even Gaussian) when

viewed in logarithmic coordinates rather than linear coordinates.

This is a more or less universal property of diverse biological data,

such as species abundance, gene expression, and mRNA and

protein copy numbers [32–35].

Biophysically detailed models are helpful for the conceptual

understanding of how molecular properties influence the dynamics

of larger integrated systems, the circadian clock being no exception

[20,21,36]. Our modeling approach here, however, is comple-

mentary in the sense that it is top-down: it takes as starting point

the dynamical features observed in single cell time-series, rather

than precise knowledge of the molecular species of the system.

This allows unambiguous fitting of the few parameters to data,

whereas it has been shown that already moderately more complex

circadian models do not allow this [37]. It is noteworthy that

although the circadian clock is a very complex system, the time-

series analyzed here exhibit only a few degrees of freedom and are

well described by very sparse models with five or fewer

parameters. On the other hand, the parameters we estimate are

observational. This means that they describe the characteristics

that can be observed from time-series of merely one component

(PER protein), but in reality are compound parameters of a system

that is much larger. A challenging problem to be solved is how the

few parameters quantified here relate to kinetic and thermody-

namic quantities that biophysically detailed models typically are

based upon. Such quantities include transcription and translation

rate constants, mRNA and protein degradation rates, protein

phosphorylation rates, and equilibrium constants. It is necessary to

find such relations in order to systematically observe or manipulate

molecules, which will allow us to understand or alter systems level

properties like circadian phase and jet-lag response, rather than

relying on serendipitous discovery. On a general level, Indic et al.

[38] have already shown that it indeed is possible and reasonable

to reduce two different detailed biophysical circadian clock models

[20,21] to two-dimensional limit cycle models of the type

considered in this study. Therefore, the results obtained in the

present study should serve as constraints for biophysically detailed

models. Previously, a few experimental and theoretical studies

have mapped transcription rates and PER degradation rates to

oscillation frequency [39–42].

In order for a negative feedback oscillator to be self-sustained,

either strong nonlinearities or a great number of intermediate

reaction steps are required. The celebrated Goodwin model [43],

for instance, is never a self-sustained oscillator if the Hill coefficient

is smaller than 8, independent of other parameters of the system

[44]. An increased number of intermediate reaction steps lowers

this Hill coefficient threshold [45]. More recently, Morelli and

Jülicher [46] related the fidelity of a noisy negative feedback

oscillator to the number of its constituent elementary reaction

steps. In effect, the presence of noise relaxes such conditions,

making the system oscillate for a broader range of parameters, i.e.

also when it is damped in the absence of noise, thus enhancing

robustness in this respect. Turning to our data, it is quite possible

that what we observe is actually a mixture of self-sustained and

damped cellular oscillators that take advantage of this principle. A

consequence of this design is that noisy oscillators can have large

amplitude fluctuations and peak-to-peak time variations (phase

diffusion). However, it has been shown that coupling a large

population of less precise SCN neurons results in a markedly more

precise synchronized rhythm [7].

Virtually all theoretical descriptions of the single-cell circadian

clock so far have postulated that it is a self-sustained rhythm.

However, the present study suggests there is no particular reason

to prefer a limit-cycle model to a damped model. Rather, neither

the damped nor the self-sustained model could be rejected.

Furthermore, in more than half of the WT cells, the fitted self-

sustained model described an oscillation with such small amplitude

in relation to the magnitude of fluctuations (CVw1 in Figure 4),

that the distinction between damped and self-sustained oscillators
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becomes blurred. The original estimate of 66% rhythmic WT cells

by Liu et al. [10] would, using our method, imply classifying cells

with CVw1:5 as arrhythmic, although it may be more reasonable

simply to characterize cells using a continuous parameter like CV

than to impose a binary classification (rhythmic or arrhythmic). In

any case, a distinct difference between the predictions of the

scenarios remains: the different time-scales of the amplitude

relaxation rates. This is the prediction that we propose to test by

measuring the frequency responses to different entrainment

frequencies. In light of the fact that the observed phase spreads

of intact SCN slices seems to lie in between the ones predicted by

the damped model and the self-sustained model respectively, a

conservative conclusion of the present study would be that the

SCN is composed of a mixture of damped and self-sustained

oscillators, as suggested by Aton et al. [1] in a study of the

electrical activity of SCN neurons. That such a heterogeneous

mixture of oscillators indeed can synchronize and entrain to an

external circadian forcing has been demonstrated in a modeling

study [47].

Biochemical oscillators that are damped in the deterministic

sense, but driven by biochemical noise to appear self-sustained,

have for a long time been hypothesized to exist [48,49]. It is only

very recently that experimental support for such ideas has begun

to emerge [50]. Here, we show that time series data on the cellular

circadian clock are consistent with this principle. Both the damped

and the self-sustained model predict frequency response curves for

the oscillation amplitude when entrained to a periodic forcing, a

zeitgeber. Experiments should be able to settle the question as to

whether these frequency response curves are actually exhibited by

the circadian clock, and give further clues favoring either the

damped or the self-sustained model. Such experiments will have to

combine high-resolution imaging with entrainment, which can be

achieved by temperature cycles [12] or light pulses [51]. We would

then have a solid explanation for the phase spread of single

circadian oscillators in the intact SCN [9,10]. Together with

recent advances in the theoretical understanding of the synchro-

nization of noisy oscillators [52], one has a basis for the theoretical

understanding of the SCN and the entrainment of the circadian

oscillators at the organism level.

Methods

A generic linear damped oscillator with additive white noise can

be described by the following linear system of stochastic (or

Langevin) differential equations:

dx

dt
~{lx{vyzjx

dy

dt
~vx{lyzjy, ð3Þ

where Sj tð ÞT~0, and Sj tztð Þj tð ÞT~2Dd tð Þ. Here, the noise

terms j are white noise sources; S:T denotes time average d tð Þ is

Dirac’s delta function, and the parameter D is the noise intensity.

Without noise terms, this system is a damped oscillator with

damping rate l and angular frequency v. With noise terms, the

system is continuously perturbed and exhibits the behavior seen in

Figure 1B and E. Formally, this system could be interpreted as a

negative feedback loop, where x positively influences y, while the

latter negatively influences x. The variables x and y clearly must

not be interpreted as absolute concentrations of chemical species,

but can be interpreted as differences or distances to reference

steady state concentrations. This Langevin approach belongs to

the standard methods for models of stochastic gene expression, see

e.g. [53]. We cannot, given our data, separate intrinsic and

extrinsic noise, and hence put no specific constraints on the noise

intensity D, which we instead estimate from the experimental data.

Our approach to fit Equations 3 to the data is to fit the

autocovariance function C tð Þ, i.e. the expected values

Sx tztð Þx tð ÞT~Sy tztð Þy tð ÞT, of the model to autocovariances

estimated from the data. From Equations 3 one obtains (see Text

S1):

C tð Þ~ D

l
e{lt cosvt: ð4Þ

This lets us extract the damping rate l, the frequency v, and the

noise intensity D from the fit.

A generic self-sustained oscillator with linear relaxation to a

limit cycle can be described in polar coordinates, i.e. radius r and

angle Q, by the following system of stochastic differential

equations:

dr

dt
~{l r{Að Þzjr

dQ

dt
~vzjQ, ð5Þ

where Sjr tð ÞT~SjQ tð ÞT~0, Sjr tztð Þjr tð ÞT~2Drd tð Þ, and

SjQ tztð ÞjQ tð ÞT~2DQd tð Þ. This model has two noise intensities,

one for perturbations perpendicular to the limit cycle (Dr), which

decay with a rate l, and one for perturbations along the limit cycle

(DQ). The self-sustained oscillation has an amplitude A, and cycles

with frequency v. Any perturbation away from this cycle of

amplitude A will relax back to it with a damping rate l. This

model is a Taylor expansion to the first order around a symmetric

limit cycle, and thus the parameter l is equivalent to a Floquet

exponent. The symmetry of the model is reflected by radial

isochrones [54] and constant angular speed. This model class has

been extensively studied by, among others, Winfree [54], also in

the context of circadian rhythms. It is important to note, that

without noise and with A~0, Equations 5 are just Equations 3 in

radial coordinates.

Again, we calculate the autocovariance function in order to

perform data fits. Transforming to Cartesian coordinates, the

following autocovariance function is obtained (see Text S1):

C tð Þ~ 1

2
A2z

Dr

l
e{lt

� �
e{DQt cosvt: ð6Þ

This is a cosine function multiplied by the sum of two

exponential functions, which implies that in addition to a slowly

relaxing term with exponent {DQt, we also have a faster relaxing

term with exponent { lzDQ

� �
t.

Our approach to a distinction between self-sustained and

damped oscillators rests upon the difference between one time

scale of autocovariance decay, as in Equation 4, or two time scales,

as in Equation 6. Crucial for this distinction is the absence of

additional time scales in a damped scenario, which requires a

symmetric dynamical system, as defined above. Evidence for this is
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the close-to-sinusoidal shape of oscillations, as validated by the

good fits of the models’ autocovariances to the data autocovar-

iances. Further evidence is the fairly symmetric type 1 phase

response curves [54,55] of moderate magnitudes that are typically

found in SCN neurons [56–60] Thus, the dynamical system is

relatively symmetric, and there is probably no fixed point in the

close vicinity of a limit cycle. Such a fixed point would be

indicative of a highly asymmetric dynamical system (cf. e.g. [49]),

which potentially could invalidate our models. Also in mammalian

fibroblasts, symmetric type 1 phase response curves have been

measured [51,61,62], although also a type 0 phase response curve

was observed by Nagoshi et al. [16], perhaps reflecting the smaller

absolute amplitudes of the fibroblast circadian oscillator [61].

However, this type 0 phase response curve also appeared

symmetric.

When looking at entrainment properties of the cells, we consider

the damped linear oscillator driven by a periodic forcing term

F cosVt, i.e.

dx

dt
~{lx{vyzF cosVt

dy

dt
~vx{ly: ð7Þ

For simplicity, we here neglect noise, and we consider only the

driving force acting directly on one of the variables (x). The

analysis would be similar if we considered driving of both

variables. A convenient framework for deriving properties of this

system is provided by control theory (see Text S1 for some further

details). One can thus show that the system will oscillate with the

frequency V of the driving force, and that the y-variable of the

entrained oscillator is described by the equation

y~Aent cos Vtzyð Þ,

where y is the phase of entrainment, and Aent is the entrained

amplitude of the variable y. The amplitude Aent depends on the

forcing frequency V according to:

Aent~
Fv

v2zl2{V2
� �2

z4l2V2
� �1=2

: ð8Þ

For lvv, Aent has a maximum at the resonance frequency

Vres~ v2{l2
� �1=2

. The phase of entrainment y is given by:

y~ tan{1 {
2lV

v2zl2{V2

� �
, ð9Þ

where tan{1 is the four-quadrant inverse tangent function, so that

y will lie in the interval {p,0½ �. This means that the y-coordinate

of the entrained oscillator lags behind the entrainment signal.

When studying the forced self-sustained oscillator, we apply the

forcing to the Cartesian x-direction, in order to be able to compare

to Equation 7. Thus, we consider the system

dr

dt
~{l r{Að Þzcos Q:F cosVt

dQ

dt
~v{

1

r
sinQ:F cosVt, ð10Þ

when studying the entrainment of the self-sustained model.

Supporting Information

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000580.s001 (0.76 MB PDF)

Table S1 Statistics of data fits. For each cell type, the percentage

of successful fits, as well as the fraction of cells for which the

damped and self-sustained model, respectively, was rejected with

P,0.05. The data is from the study of Liu et al. [5], except for (*),

which are the neurons from the study of Yamaguchi et al. [6].

Found at: doi:10.1371/journal.pcbi.1000580.s002 (0.02 MB PDF)

Table S2 Heterogeneity of the cell populations. Heterogeneity

was quantified as the generalized standard deviation (GSD), i.e.

the square root of the determinant of the covariance matrix of l,

v, and the normalized amplitude for the damped model, and for

l, v, the normalized amplitude, and amplitude CV (sr/A) for the

self-sustained model.

Found at: doi:10.1371/journal.pcbi.1000580.s003 (0.02 MB PDF)
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