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Abstract

The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not
all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to
define the global features of a protein. Characterisation of this ‘‘structural essence’’ has remained elusive so far: no
algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction
accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to
identify the number and nature of essential native contacts—such a subset of spatial constraints is very useful in a number
of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate
three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry.
We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction
analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each
protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed
‘‘cone-peeling’’ that combines sequence features and network descriptors to select minimal subsets that outperform the
reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and
provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the
tertiary structure at approximately 4.8 Å Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same
time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy.
This ‘‘structural essence’’ opens new avenues in the fields of structure prediction, empirical potentials and docking.
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Introduction

The native structure of a protein is held intact by the complex

and cooperative interplay of residue interactions. While a network

of amino acid contacts is well defined given a native structure, it

remains an open question if all the contacts are equivalent in terms

of their contribution to the structural integrity. In part, this

question has been addressed by studies where a partial contact

network of a native structure is embedded into the three-

dimensional space [1,2]. The resultant root mean square deviation

(RMSD) of the embedding from the native structure quantifies the

information content of the selected subset (Figure 1).

Such a line of investigation also represents a logical extension to

the current trends in structural biology. While most of the three-

dimensional structures of proteins in the PDB are identified by X-

ray crystallography and NMR, new experimental methods like EPR

aim to broaden the horizon of structural proteomics and cover the

protein universe [3–5]. In spirit, these techniques are similar to

established NMR spectroscopic methods as they yield information

about inter-residue proximity constraints. From a sufficient number

of such experimentally derived constraints, the tertiary structure of

the protein can be identified [6]. Identifying a minimal set of

structure determining distance constraints a-priori from the

sequence would not only minimize the experimental efforts, but

would in fact imply a solution to the protein folding problem. As an

intermediate step in this direction, analysing minimal subsets of

structure determining contacts in known structures promises to

provide preliminary insights into the question what the features of

such an essential subset of contacts might be.

For several years, the distance constraints and other stereo

chemical and biophysical restraints have been employed in

computational restraint-based protein modelling [7–13]. Specif-

ically, a selected subset of native contacts is considered as

distance constraints that efficiently define the fold and recon-

struct the tertiary structure of the protein [14]. In order to obtain

coordinates consistent with a given set of distance constraints, we

implemented a contact map reconstruction method based on

distance geometry [15]. Using the complete set of native contacts

of a known protein structure as input, the reconstruction provides

models that are within 2.0 Å Ca RMSD from the native structure

(Jose M Duarte et al. unpublished data). The other existing

implementations of 3D reconstruction from contact maps are

based on methods such as Discrete Molecular Dynamics (DMD)

[16], singular value decomposition [2,17]. The reconstruction

accuracies of the alternate reconstruction methods vary and

different contact definitions and datasets make a direct

comparison difficult. Despite the quantitative differences in

reconstruction accuracy, we reproduce qualitatively the same

non-linear relationship of Ca RMSD with fraction of native

contacts. In all such studies, below a certain fraction of the native
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contacts, the reconstruction accuracy deteriorates rapidly. With

our reconstruction pipeline we could go as low as 20–30% of the

native contacts (Ca-Ca, Cb-Cb) and still obtain an average

reconstruction accuracy of ,4 Å Ca RMSD. In summary, we

confirmed that a contact map is highly redundant and a subset of

native contacts is sufficient to determine the structure up to

experimental accuracy.

Together with an accurate 3D reconstruction method and the

knowledge that a complete contact map is not required for

recognizing the protein fold, the central question is to predeter-

mine the nature and the number of ‘minimal distance constraints’

required to efficiently identify the tertiary structure of the protein

(Figure 1). The current paper focuses on the methods used to

derive a minimal set of contacts, the necessary and sufficient

determinants to reconstruct any given protein fold, namely the

‘structural essence of a protein’. An independent study by Chen et

al showed that randomly picked subset of contacts could be used to

successfully reconstruct the three-dimensional structure of the

protein [16]. They further claimed that subsets selected with a

rational strategy could only reconstruct as good as the random

subsets and not better. Here, for the first time we demonstrate that

a structural essence exists and provide a constructive algorithm for

its calculation. We also characterize the structural essence from

different folds. The results of this study facilitate the choice of

contacts to obtain better models from experimental and

computational restrain-based protein modelling.

Results

Less is more in 3D reconstruction of protein structures
To verify that a subset of native contacts is sufficient to

reconstruct the native structure, we chose increasing fractions

(from 10%–90%) randomly from native contacts and measured

their reconstruction accuracy (as Ca RMSD compared to the

native structure). The reconstruction accuracies obtained are

provided in Figure 2A. The dataset chosen for the study is given in

Table 1. We find that in all the proteins from the dataset, the

reconstruction with a fraction of native contacts yields structures

close to the native structure. Specifically, the 30%–50% random

subsets show reconstruction accuracies comparable to those

obtained from the complete contact map. The negligible increase

in Ca RMSD between the 20% and 30% subsets provides a direct

estimate of the size of the minimal subset (Figure 2A).

The existence of the structural essence is observed as a common

feature across different folds. However, the size of the subset varied

with different SCOP classes as shown in Figure 2A. For proteins

from the all a, all b and the a/b SCOP classes, as low as 20% of

the native contacts are sufficient to obtain a structure within Ca

Figure 1. The concept of structural essence. The concept of a minimal set of contacts essential for the reconstruction of the three-dimensional
structure is elucidated with an example of CheY (1e6k). A The native structure of 1e6k is shown in ribbon representation (pink). B The Ca contacts are
visualized in a contact map. The inset highlights all the Ca contacts (red) on the cartoon representation. C A subset selected from the native contact
map is highlighted (black). The inset shows the selected subset mapped onto the structure. D The structure reconstructed from the selected subset is
shown in ribbon representation (blue). E The superposition of the native and the reconstructed structures. The reconstruction accuracy is measured
as the Ca RMSD of the superposition of the native structure and the reconstructed model.
doi:10.1371/journal.pcbi.1000584.g001

Author Summary

A protein structure can be visualized as a network of non-
covalent contacts existing between amino acids. But not
all such contacts are important structural determinants of
a protein. We have attempted to identify a subset of amino
acid contacts that are essential for reconstructing protein
structures. Initially, we followed random sampling of
contacts and tested their efficacy to successfully represent
the three-dimensional structure. Further, we also devel-
oped an algorithm that selects a subset of amino acid
contacts from proteins based on the sequence and
network properties. The subsets picked by our algorithm
represent protein three-dimensional structure better than
random subsets, thereby offering direct evidence for the
existence of a structural essence in protein structures. The
identification of such structure-defining subsets finds
application in experimental and computational protein
structure determination.

Essential Contacts for Structure Reconstruction
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Figure 2. Subsets from random selection. A Increasing fractions of contacts (from 10% to 100%) are selected at random and reconstructed. Two
independent random selections are performed for every fraction and the average Ca RMSD is reported for every protein in a SCOP class. Each class
consists of three structures. In each class ‘*’ denotes proteins that are thrice as large as the other two proteins. B The reconstruction accuracies of the
random subsets are compared between our method and Chen and co-workers. Five proteins (1dd3, 1nxb, 1igd, 1bxy, 1d0d) are selected from the
Chen dataset and the random subsets are generated with (i) our contact definitions Ca 9.0 Å, Cb 8.0 Å (red) (ii) contact definition from Chen et al (Cb
7.5 Å) (black). Subsets from (i) and (ii) are reconstructed with Tinker (iii) The reconstruction accuracy from Chen et al (blue).
doi:10.1371/journal.pcbi.1000584.g002

Essential Contacts for Structure Reconstruction
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RMSD of #4 Å to the native structure. However in the a+b class

more contacts (30%) are required for acquiring the same

reconstruction accuracy (Figure 2A) highlighting its higher

topological complexity. Furthermore, it is worthwhile to note that

20% of contacts are sufficient for reconstruction across a range of

protein sizes between 100 and 300 amino acids. Thus, there is a

negligible effect of protein size on the reconstruction accuracy with

our reconstruction method.

The performance comparison of our contact definition and our

reconstruction pipeline with other existing methods of contact map

reconstruction namely FT-COMAR [1], DMD [16] reveals

differences in the reconstruction accuracies and the size of the

minimal subsets. In order to systematically compare the

differences, we have taken the dataset from Chen et al (henceforth

called Chen-set) and repeated the reconstructions with our method

and contact definition (for details see methods). The results are

shown in the Figure 2B. We find that the overall profile of the

reconstruction accuracy of different random subsets from the

Chen-set did not vary considerably between our method and

DMD. However, there are differences observed in the size of the

minimal subset. In contrast to the 70% contacts required by DMD

to reconstruct to ,3.5 Å of the native structure, our method

required just 20%–30% contacts to achieve a similar accuracy.

Further, the reconstructions with our contact definitions (Ca

9.0 Å, Cb 8.0 Å) for a 30% subset yielded RMSD of 3.25 Å;

whereas using Cb 7.5 Å, we get a RMSD of 5.03 Å showing the

improved performance of our contact definition.

In case of FT-COMAR, 25% of native distance restraints were

required for reconstructing up to ,4 Å of the native structure [1].

However, a large Ca distance threshold (.15 Å) was used to

define the contacts. In comparison, we used a four-fold sparser

contact map (20% contacts) and achieved better accuracy

(,3.4 Å). Thus, in the trade-off between the reconstruction

accuracy and the size of the subset required for achieving a given

accuracy, we observe that our reconstruction method along with

our contact definition outperform FT-COMAR and DMD.

A rational selection of the structural essence
An algorithm capable of picking the structurally important

contacts should be able to generate sets with significantly better

reconstruction accuracy than by random selection. On the same

token, such an algorithm should also require fewer distance

restraints as input. To measure the improvement we define a

relative performance index (PI) as

PI~SCa RMSDT random subset=SCa RMSDT rational subset ð1Þ

where the size of the random subset equals the rational subset. An

algorithm capable of picking a minimal subset that reconstructs

better than a random subset scores a PI.1.

The sequence based information in combination with graph-

based properties can be used as parameters in devising a rational

strategy that identifies the structural essence.

Long sequence-range distils the structural essence better
than short-range

The sequence-range of a contact is defined as the separation in

sequence between the amino acids i and j which are in contact (for

details see methods). While contacts from the lower sequence-

range are determinants of the secondary structure, the long-range

contacts determine the intricacies of the fold and the packing of

the tertiary structure. Further, the number of long-range contacts

and the long-range contact order influence the folding rate of

proteins [18–21]. To evaluate the significance of contacts from

different sequence-ranges, we selected predefined short and long

sequence-range contacts (see methods). The reconstruction

accuracies of the chosen subsets compared to similar sized random

subset are shown in Figure 3. While the short-range subsets failed

to produce a model anywhere near the native structure, the long

sequence-range subsets reconstructed significantly better. Howev-

er, in comparison to the random subsets, these results are not

significant and the long-range contacts alone did not achieve a

Table 1. Dataset.

PDB SCOP id #Nodes #Edges (Ca-Ca, Cb-Cb) Size (% Ca-Ca, Cb-Cb contacts) PI*

All a

1bkr a.40.1.1 109 553, 339 5.6, 9.3 2.14

1odd a.4.6.1 118 508, 341 5.3, 8.8 1.84

1cem a.102.1.2 363 2273, 1627 6.2, 11.6 1.53

All b

1pzc b.6.1.1 123 679, 481 5.4, 13.7 1.61

1onl b.84.1.1 128 690, 510 5.7, 11.0 1.85

1eur b.68.1.1 365 2244, 1567 6.7, 14.1 1.74

a/b

1e6k c.23.1.1 130 669, 503 4.3, 8.9 1.74

1o8w c.47.1.10 146 722, 524 6.8, 12.8 3.13

1ede c.69.1.8 310 1764, 1315 5.5, 11.8 1.69

a + b

1r9h d.26.1.1 135 629, 446 5.9, 9.9 1.26

1ugm d.15.1.3 125 519, 379 5.6, 10.0 2.06

1iu4 d.3.1.8 331 1935, 1316 6.2, 11.6 1.51

*PI for the cone-peeled subsets are calculated using Eq. (1). For the sake of comparison, the GDT_TS is given in Figure S4 for the cone-peeled and the random subsets.
doi:10.1371/journal.pcbi.1000584.t001

Essential Contacts for Structure Reconstruction
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PI.1. Although there is an effect of long-range contacts being

more important, a set of long-range contacts alone is not sufficient

to capture all the structural information.

Common neighbourhoods of contacts
The concept of common neighbourhoods is used to analyze the

significance of an edge and its local neighbourhood to the overall

structure and stability of the network. For instance, common

neighbourhoods are used in determining packing effects of atoms

in crystals [22,23]. The common neighbourhood (CNb) of a

contact is defined in methods and the concept illustrated in

Figure 4. For an edge Eij (red) between nodes i (pink) and j (green),

the edges formed by i and j with nodes k1, k2 and k3 (yellow)

constitute the neighbourhood of Eij. The triangle formed by Eij

and its neighbours (Eik and Ekj (black)) forms the CNb triangle. A

contact (red) embedded in its CNb is viewed as a representative of

its neighbourhoods (black).

A contact map typically contains many contacts that have few

common neighbours and few with many common neighbours.

Thus, it is possible to rank contacts based on their CNb sizes. We

hypothesize here that contacts that possess more common

neighbours are structurally more significant compared to the

small neighbourhood counterparts. By stripping the neighbour-

hoods from the contacts, the ability of contacts to represent their

neighbourhood efficiently is tested.

Can rank based selection outperform a random selection
of contacts?

A simple rank-ordered selection of contacts was the initial

strategy we employed in selecting structurally important contacts.

Native contacts were ranked in the ascending order according to

the sequence-range, CNb sizes and increasing fractions (10% to

90%) were selected and reconstructed. The PIs of the rank-

ordered subsets are given in Table 2 (the reconstruction accuracies

are shown in Figure S1). Even with structurally important

parameters like the sequence-range and the CNb sizes, a direct

Figure 3. Sequence-range based subset selection. The reconstruction accuracy of the short-range (left) and the long-range subsets (right) are
shown (blue). The entire short (SR) and long-range (LR) contacts subsets are used in reconstruction. The comparison is against a random subset of
similar size (red). The class average is the average Ca RMSDs from the ensembles (1/4th best models) of every protein. The sizes of the SR and the LR
subsets vary slightly in each SCOP class; however the trend was the preserved for both the Ca and the Cb graphs. (The average sizes of Ca graphs:- All
a: SR = 62.2%, LR = 37.8%; All b: SR = 51.1%, LR = 49.9%; a/b: SR = 55.5%, LR = 44.5%; a+b: SR = 51.1%, LR = 48.9%).
doi:10.1371/journal.pcbi.1000584.g003

Figure 4. Common Neighbourhood of an edge (Cn(Eij)). A
contact Eij (red) between nodes i (pink) and j (green) is shown. Let (Ni)
be the neighbours of the i and (Nj) be neighbours of the j (grey). The
CNb of edge (Eij) is defined as

Cn Eij

� �
~ kjEik,Ekj[E
� ��� ��

The nodes k1, k2 and k3 (yellow) share edges with nodes i and j. The
triangles k1, k2 and k3 make with Eij constitute the CNb triangles of Eij.
doi:10.1371/journal.pcbi.1000584.g004

Essential Contacts for Structure Reconstruction
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rank-ordered selection failed to distinguish the structurally

essential from the non-essential contacts of the protein structure.

This is evident when the rank-ordered subsets are visualized in a

contact map. The rank-ordering samples only discrete regions of

the contact map, while a random selection samples uniformly from

different regions of the contact map ensuring better reconstruc-

tion. For instance, in the case of the sequence-range ordering,

contacts are selected diagonally and clearly carry insufficient

information about the protein’s tertiary structure (Figure S2). This

provides a possible explanation of why contact order ranked

selection did not yield a better reconstructing subset for Chen and

co-workers [16]. Thus, it is clear that even with a choice of

parameters like sequence-range and CNbs that carry significant

structural information, the method employed in selecting the best

reconstructing subset can be considered as the biggest bottle-neck.

Such a method should show better performance when the two

parameters are combined in a most efficient way.

Cone-peeling: a rational contact selection algorithm
The CNb sizes of contacts and the sequence-range are

effectively combined with other network descriptors like degree

in formulating the cone-peeling algorithm. The cone-peeling

algorithm is based on the concept of common neighbourhood of

edges. The CNb of an edge is defined in Eq. 3 and the concept

explained in Figure 4. For any given edge Eij, a CNb triangle can

be defined with edges Eik1 and Ek1j. Here, we hypothesize that in

every neighbourhood triangle if the edges Eik1 and Ek1j are

redundant then every triangle can be reduced to just the edge Eij

on some conditions. For instance, if Eik1 or Ek1j are low sequence-

range edges, then Eij can successfully represent Eik1 and Ek1j and a

single edge successfully represents the triangle. Thus, Eij is called

the representative edge in its CNb triangle. This is meaningful

when visualized in the context of the three-dimensional structure

of proteins. Assuming Eij is present in a regular secondary

structure such as an alpha-helix, the low sequence-range edges Eik1

or Ek1j would also be part of the same helix. Thus the presence of

the representative edge Eij is sufficient and the edges Eik1 and Ek1j

can be safely deleted.

For the sake of illustration, the CNb triangles in contact maps

can be visualized in 3D as occupying the base of a cone while the

representative edges occupying the summit (Figure 5A). The

height of the cone is defined by the CNb size of the representative

edge. In such a scenario, the algorithm peels the cone by deleting

local contacts retaining only the summits. This is performed

iteratively and every CNbs is replaced with its representative edge

in the decreasing order of their degree and the common neighbour

sizes of contacts. Thus, the strategy of retaining only higher

neighbourhood long-range edges and deleting the low sequence-

range neighbours has been implemented in the cone-peeling

algorithm. A step-by-step implementation of the cone-peeling

algorithm can be obtained from the pseudo code in the methods

section.

The long sequence-range and high CNb edges which emerge

after cone-peeling is subjected to reconstruction and the accuracies

compared with the random subsets in Figure 5B. Our ‘cone-

peeled’ subsets from all the SCOP classes exhibit a PI of .1.5

(Table 1). Thus, our ‘cone-peeling’ of local contacts has filtered out

the non-essential contacts, while retaining only the essential or

structure-determining contacts. It is surprising to note that the

minimal subsets of contacts selected from our approach are

significantly sparse, on an average comprising about ,5.8% of Ca

and 11.1% of Cb contacts. The cone-peeled subset of contacts for

CheY protein (1e6k) is highlighted in Figure 5C. It can be seen

that the structural essence as characterized by our algorithm has

picked mostly the inter-secondary structural contacts and the

contacts from loop regions that are crucial for packing in the

protein core, while the ignoring intra-secondary structural contacts

and the contacts on the surface. The overlay of five best

reconstructed models of CheY (1e6k) onto the native structure is

shown in Figure 5D. It can be seen that the secondary structures

and the inter-secondary structural regions are distinguished even

with a sparse set of Ca and Cb contacts.

With as little as 8% of native contacts (Ca-Ca and Cb-Cb), our

algorithm along with our reconstruction pipeline determines the

structure of a protein at 4.8 Å (Ca RMSD). At the same time, from

a random selection of contacts, roughly twice the number of

contacts is necessary to achieve such reconstruction accuracy.

Thus, for the first time we report a method that successfully selects

native contacts that determine the structure better than a random

selection.

Table 2. PIs* of common neighbourhood (CNb) and sequence-range rank ordered subsets.

PDB Id CNb Ranked Subsets Sequence-range Ranked Subsets

10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

1bkr 0.52 0.67 0.69 0.81 0.94 0.46 0.79 1.07 1.01 1.01

1odd 0.37 0.39 0.47 0.75 0.92 0.41 0.70 0.92 1.05 1.08

1cem 0.31 0.63 0.71 0.73 0.88 0.28 0.66 0.81 1.05 1.05

1pzc 0.41 0.55 0.64 0.75 0.90 0.32 0.50 0.62 0.75 0.67

1onl 0.77 0.56 0.60 0.68 0.94 0.38 0.55 0.92 1.19 1.07

1eur 0.64 0.53 0.72 0.77 0.89 0.48 0.86 1.07 1.31 1.18

1e6k 0.54 0.36 0.54 0.62 0.87 0.54 0.72 1.03 1.15 1.01

1o8w 0.31 0.58 0.71 0.80 0.92 0.24 0.47 0.85 1.05 0.94

1ede 0.79 1.04 0.92 0.95 1.09 0.65 1.21 1.19 1.34 1.16

1r9h 0.37 0.38 0.78 0.88 0.94 0.31 0.53 0.91 1.07 0.98

1ugm 0.94 0.77 0.75 0.82 0.92 0.55 0.65 0.87 1.17 0.92

1iu4 0.69 0.57 0.69 0.53 0.98 0.28 0.53 0.79 1.05 1.07

*PIs are calculated for every fraction (10% to 90%) of rank-ordered contacts using Eq. (1).
doi:10.1371/journal.pcbi.1000584.t002

Essential Contacts for Structure Reconstruction
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Figure 5. Deriving the structural essence from cone-peeling strategy. A The contact map visualization of the common neighbourhoods. The
cone shaped landscape of the CNbs is resultant of low CNb edges occupying the base of the cone, while the high CNb edges occupying the summits.
The colour-bar shows the range of the CNb sizes. B The cone-peeling strategy characterizes the structural essence better than random selection. The
algorithm selects a subset of native contacts that have high CNb and are also in the long sequence-range and removes all the local contacts. It can be

Essential Contacts for Structure Reconstruction
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Discussion

We have shown that a structural essence exists among the

network of non-covalent contacts of a protein structure. For every

protein in our dataset, a subset of 20%–30% native contacts

picked at random successfully specifies the global structural

features. Further, even by random selection we achieved

improvements in the reconstruction accuracy as well as in the

size of the subsets over existing methods. This is attributed to the

combination of the contact definitions and the reconstruction

potential of our method. Thus, up to 70%–80% of the native

contact map can be considered dispensable for reconstruction with

our method. Hence, the essence affirms the presence of redundant

information content in the native contact maps. Redundancy in

native contact maps could be envisaged as buffers that would

neutralize perturbation effects, which might otherwise destroy the

protein fold. This redundancy can be generally compared to the

structural effects of mutations in proteins where a comparable

trend of greater tolerance to the mutational load exists [24–26]. In

a broader perspective, this could also be visualized in analogy to

genetic knockdown experiments which in many instances does not

mediate drastic consequences.

By demonstrating the existence of a rational strategy that

outperforms a random contact selection, we disprove of the

previous notions, that a random contact selection is sufficient for

characterizing the structural essence of a protein. Specifically, we

have formulated a rational strategy (cone-peeling) that combines

sequence properties and network descriptors to identify essential

contacts better than a random subset. Further, we did not

discriminate between the contacts based on their secondary or the

tertiary structural content. Instead, the structural importance of

the selected subset emerged naturally from the choice of the

contact properties and the network descriptors and the way in

which we have combined the parameters into the algorithm. Even

the same parameters used in slightly different ways by other groups

did not yield the desired results, emphasizing the success of our

algorithm.

The fact that a structural essence of contacts can be described

from the native contact network raises further questions about the

uniqueness of the essence and its biophysical and the biochemical

significance. Do all the essential contacts carry important

biological significance? Would mutations to the structural essence

have more severe effects? By addressing these issues in future, one

can understand of the significance of the essence in the context of

protein stability and function.

The filtering of essential contacts from the non-essential ones

can be considered as a first step in contact prediction and

constraint selection studies. The knowledge gained from the

present study that a fraction of native Ca and Cb contacts (8% to

10%) from long sequence-range and high common neighbour-

hood are sufficient for reconstruction could serve as preliminary

guidelines in selecting distance constraints for experimental

structure determination problems. However, in its present form,

prediction of such contacts from sequence is not easy as the

algorithm works by characterizing an essential subset of proteins

from the structure. In future, when the essential contacts are

analyzed from a large non-redundant set of proteins, the

biophysical and structural information obtained from these

contacts could be employed as features in machine learning

methods to predict essential contacts directly from the sequence.

The present paper thus focuses only on the first step in

characterizing the essential subsets of contacts from contact maps

and further studies are necessary to address the feature selection

and the contact prediction issues.

Conclusions
We have identified a structural essence from the non-covalent

contacts of protein, which successfully determines structural

features. The essence could be identified as a 20%–30% fraction

of native contacts by random selection. We have proposed a

rational strategy (cone-peeling) that outperforms a random contact

selection and it successfully distilled the structural essence of a

protein from the bulk of non-covalent contacts. The cone-peeling

combines the sequence and network descriptors to select the

essential contacts. The structural essence is only 8% of the native

contacts that reconstructs to 4.8 Å (Ca RMSD) to the native

structure. However, to attain a similar reconstruction accuracy

with random selection about twice the number of contacts is

required. Thus, our cone-peeling algorithm is the first rational

strategy that characterizes the structural essence in protein

structures. The concept of essential contacts in proteins can find

further applications in the design of empirical contact potentials, in

experimental and theoretical protein structure determination and

also in constraint-based comparative sequence design.

Methods

Dataset
A non-redundant dataset of proteins is selected from SCOP

release 1.73 [27]. Only monomeric, monodomain proteins from

the four main SCOP classes and from high populated folds are

chosen such that all possible interactions that stabilize the native

fold are taken into account. All proteins have resolutions better

than 3.0 Å, R-factor lower than 0.3 as well as no missing or

ambiguous conformational data (Filippis, personal communica-

tion). A subset of 12 proteins, three per SCOP class, is selected

from the dataset such that two fall in the size range of 100–120

amino acids and the third is thrice bigger. The PDB codes of the

selected proteins are given in Table 1.

Contact Maps and selection of constraints
The protein structures are represented as graphs with amino

acids as nodes and the interactions between the amino acids as

edges. Specifically, the contacts between the Ca or Cb atoms are

considered as edges. The distance thresholds of 9.0 Å and 8.0 Å

are used respectively to define contacts between Ca and Cb atoms

(Ca for Gly). The contacts are visualized in a contact map with

CMView [CMView: Interactive Contact Map Visualization and

Analysis. http://www.molgen.mpg.de/,lappe/cmview/]. All co-

valent contacts are ignored.

seen that in all the proteins, the subsets selected from cone-peeling (blue) reconstruct better than a similar sized random subset (red) achieving a
PI.1 consistently in all the cases. For every protein, the ensemble average Ca RMSD is reported. The sizes of the final subsets and the PIs of the
individual proteins are given in Table 1. C The essential contacts (blue) obtained from cone-peeling are highlighted in the native structure of 1e6k
(red) using Pymol [29]. With 4.3% of Ca-Ca and 9% of Cb-Cb contacts, the subsets achieve a PI of 1.74. D The overlay of the best reconstructed models
onto native structure (1e6k). The models reconstructed from the essential subsets obtained from the cone-peeling algorithm are superposed to the
native structure for comparison. The best models selected (in terms of Ca RMSD) are shown in ribbon representation (orange). The native structure is
shown in cartoon (blue). The overlaid models show an average Ca RMSD of 4.5 Å to the native structure. In the reconstructed models, only with the
essential subsets of contacts, the secondary structural regions are well distinguished from the inter-secondary structural regions.
doi:10.1371/journal.pcbi.1000584.g005
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Model building from distance restraints
The Ca and the Cb contacts are passed as restraints to the distance

geometry program (distgeom) of the Tinker molecular dynamics

package [28]. The distgeom uses a variation of the EMBED

algorithm [15] to find three-dimensional coordinates in agreement

with a sparse set of distance restraints. It proceeds by calculating

bounds for all pairs of atoms (bounds smoothing), choosing particular

distance values from within the bounds (metrization) and then

embedding the resulting metric matrix. A final regularization step is

performed by which the coordinates obtained are transformed so that

their geometry, with respect to bond lengths and angles, is improved.

For this purpose, we used the simulated annealing protocol offered by

the distgeom program that minimizes an error function that measures

the violations to the restraints.

An ensemble of 50 models is generated for every protein in the

dataset. Even after enforcing individual amino acids to the L-

enantiomer in the refinement from simulated annealing, a solution

to the given contact map can still be found such that the fold is

‘mirrored’. These solutions are termed as ‘topological mirrors’

where the global fold possesses the wrong chirality in spite of

individual amino acids being in the L-form. The conformations

obtained from the distance geometry protocol cannot distinguish

such topological mirrors and we overcome this problem by

comparing the models with their native structure through Ca

RMSD. The Ca RMSD values for the conformation ensemble are

found to be distributed bimodally, by simply choosing the lowest

fourth of models as ranked by RMSD we are sure to be selecting

the correct models (Figure S3). The ensemble average is obtained

from the fourth of models with the lowest Ca RMSD.

Comparison of 3D Reconstruction between Tinker and
DMD

We have considered the dataset of 5 proteins (1dd3, 1nxb, 1igd,

1bxy, 1d0d) from Chen and co-workers [12]. For every protein,

contacts maps (Ca 9.0 Å, Cb 8.0 Å) were generated and reconstruct-

ed with Tinker. However, contact maps were also generated with Cb

7.5 Å, to compare the differences in reconstruction between Tinker

and DMD. The covalent contacts are ignored and the ensemble

average Ca RMSD is obtained as mentioned earlier.

Features employed in the selection of contacts
The properties of the contacts employed in selecting a minimal

subset of a given contact map are discussed below.

Sequence-range. The sequence-range of an edge Eij, (S_(Eij)),

is defined as the separation in sequence between the amino acids i

and j which are in contact.

S Eij

� �
~ Ni{Nj

�� �� ð2Þ

Ni, Nj are the residue numbers of amino acids i and j. The short

and the long-ranges are defined as S_(Eij) #9 and S_(Eij) $10

respectively. Subsets were selected with the defined sequence-

ranges and reconstructed.
Common neighbourhoods. The CNb of an edge (Eij) is

defined as the set of nearest neighbour edges (ik1, jk1, ik2, jk2, ik3,

jk3) common to the amino acids i and j in contact,

Cn Eij

� �
~ kjEik,Ekj[E
� ��� �� ð3Þ

The CNb of an edge is illustrated in Figure 4. The number of the

common neighbourhood triangles of an edge constitutes the CNb

size of the edge.

Cone-peeling algorithm: pseudo code
The algorithm employed in selecting subsets based on peeling of

CNbs of contacts is shown in Figure 6.

Supporting Information

Figure S1 Rank-ordered selection of contacts Increasing frac-

tions (10%–90%) of native contacts are selected by a rank-ordering

contacts based on the sequence-range (circle), common neighbour-

hood (square) properties. In every instance, a similar sized random

subset (*) is used to compare the reconstruction accuracies.

Found at: doi:10.1371/journal.pcbi.1000584.s001 (0.27 MB

DOC)

Figure S2 Sequence-range based contact selection The contacts

selected in a given sequence range is selected across a diagonal in

the contact map. Shown are the contacts selected for the sequence-

ranges 5 (lower diagonal) and 25 (upper diagonal). The rank-

ordered selection based on sequence-range samples contacts along

the diagonals and is insufficient for determining the three-

dimensional structure.

Found at: doi:10.1371/journal.pcbi.1000584.s002 (0.07 MB

DOC)

Figure S3 The distribution of the Ca RMSD for all the models is

shown for the cone-peeled subsets. The correct folds were

distinguished from the mirrors mainly by filtering using Ca

RMSD as it mostly followed a bi modal distribution. For every

protein, the lowest fourth of models as ranked by RMSD were

selected and the ensemble average was obtained.

Found at: doi:10.1371/journal.pcbi.1000584.s003 (0.25 MB

DOC)

Figure S4 GDT-TS Scores of the Cone-Peeled Subsets - GDT-

TS Scores of the cone-peeled subsets are shown (blue). The scores

of the corresponding random subsets are shown in red

Found at: doi:10.1371/journal.pcbi.1000584.s004 (0.27 MB

DOC)

Figure 6. The cone-peeling algorithm.
doi:10.1371/journal.pcbi.1000584.g006
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