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1 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain, 2 Computational Neuroscience Group, DTIC, Universitat Pompeu Fabra, Barcelona, Spain,
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Abstract

We introduce in this paper a new method for reducing neurodynamical data to an effective diffusion equation, either
experimentally or using simulations of biophysically detailed models. The dimensionality of the data is first reduced to the
first principal component, and then fitted by the stationary solution of a mean-field-like one-dimensional Langevin
equation, which describes the motion of a Brownian particle in a potential. The advantage of such description is that the
stationary probability density of the dynamical variable can be easily derived. We applied this method to the analysis of
cortical network dynamics during up and down states in an anesthetized animal. During deep anesthesia, intracellularly
recorded up and down states transitions occurred with high regularity and could not be adequately described by a one-
dimensional diffusion equation. Under lighter anesthesia, however, the distributions of the times spent in the up and down
states were better fitted by such a model, suggesting a role for noise in determining the time spent in a particular state.
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Introduction

Deciphering the fundamental mechanisms that underlie brain

function requires an explicit description of the dynamics of the

neuronal and synaptic substrate. Explicit neurodynamical models

can describe the complex dynamics arising from the involved

neuronal networks [1,2]. Traditionally, theoretical neuroscience

follows an ab initio approach consisting of two main steps: 1)

construction and simulation of models based on detailed

descriptions of the neuronal and synaptic operations with a large

number of neurons in a specified (hypothesized) network

architecture, and 2) reduction of the hypothesized models such

that an in-depth analytical study is feasible, and a systematic

relation between structure (parameters), dynamics, and functional

behavior can be solidly established. Models of neurons such as

integrate-and-fire [3] are frequently used. The advantage of this

type of models is that the simulation of biologically realistic

networks allows the study of the neural correlates of brain

function, for comparison with experimental data. On the other

hand, the model is simple enough so that it is possible to obtain a

reduced description based on mean-field techniques [4,5]. The

mean-field reduction simplifies the analysis of networks of spiking

neurons, by partitioning the network into populations of neurons

that share the same statistical properties. Using some plausible

approximations, the stationary firing rate of each population can

be expressed as a function of the firing rates of all the populations

in the network. The set of stationary, self-reproducing rates for the

different populations in the network can then be found solving a

set of coupled self-consistency equations (see e.g. [4]). The method

allows to characterize the activity of the network as a function of

the neuronal and synaptic parameters.

For this ab initio approach to be applicable, however, one needs

an explicit representation of the dynamics at the microscopic level.

Even when such representation is actually available, it may not be

possible or easy to come up with a low-dimensional description of

the original system. Here we introduce an alternative methodology

that allows for an effective reduction of dimensionality. The

method is data-driven, in the sense that it does not require any

knowledge of the dynamics at the microscopic level. The basic idea

is is to fit the underlying dynamics of the data using a stochastic,

nonlinear differential equation. In general, fitting a model to data

from a nonlinear stochastic system is a difficult problem because of

the high dimensionality of the space of available models. Without

some prior knowledge to guide model selection, the likelihood of

picking the ‘‘correct’’ model for some data set is slim. Here we

describe a method that can be applied to data from systems that

are (a) stationary, (b) driven by additive white noise, and (c) whose

deterministic motion is governed by an effective one-dimensional

energy function. In such type of systems, the stationary distribution

of the variable can be straightforwardly related with the

underlying energy function. When neurodynamical data is high-

dimensional, the dimensionality of the system can be first reduced

using principal curves or principal components analysis.

To model data from such systems we proceed in two steps. We

estimate first the energy function and then the intensity of the

noise. The energy function is uniquely determined by the

stationary distribution, so to accomplish the first step we estimate

this distribution from data. In particular we assume that we have

access to samples from this distribution and that the underlying

potential can be fit by a piecewise quadratic polynomial. To fit

the intensity of the noise we need a measure that is dependent

on this parameter in a known way. In this work we use the mean
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first-passage time through a particular boundary, for which there

are closed-form expressions. That is, given samples of the first-

passage times of the system under study, we find the noise intensity

that yields the same mean first-passage time in the system

described by the fitted energy function.

We first apply the method to simulated data from a one-

dimensional rate equation. In this case, the assumptions of the

method are fulfilled and we can recover the original model with

high accuracy if the number of data points is sufficiently high. Next

we show that the method is applicable also to data from high-

dimensional neuronal models. In particular, we use the method to

obtain the effective dynamics of a network of spiking neurons

operating near a bifurcation. Finally, we apply the method to real

data from intracellular recordings from cortical neurons in vivo.

Results

We next show the effectiveness of the method by applying it to

three different systems of different complexity: (1) a one-dimensional

stochastic rate model; (2) a network of spiking neurons showing

bistability; and (3) experimental data from slow oscillatory activity in

the cerebral cortex in vivo.

One-dimensional rate model
Here we show how the method works for a one-dimensional

rate model described by a Langevin equation,

_xx~f (x)zsg(t), ð1Þ

where f (x) is a nonlinear function and sg(t) is Gaussian white noise

with standard deviation s. The method described in this article

provides an effective description of the system of exactly the same

type as Equation (1), given a sample of states S~fx(1), . . . ,x(N)g.
Since the system is one-dimensional, an energy function U(x)
satisfying f (x)~{dU(x)=dx can be trivially defined without

resorting to any approximation method. Thus, we do not gain

much insight in applying this method to such a simple system. Our

aim in this section is rather to check that the piecewise

approximation of the probability density described in Methods

recovers correctly the energy of the system, which is well-defined

in this particular example. We also study the sensitivity of the

estimation to the number of subintervals used in the piecewise

quadratic approximation.

Fixed points and stability of the noiseless system. For

the sake of concreteness, we choose f (x) to be of the form:

f (x)~{xzW(x), ð2Þ

where W is a sigmoidal activation function

W(x)~1=(1z exp½{a(x{h)�): ð3Þ

The parameter h sets the location of the sigmoid’s soft threshold,

and a is a scale parameter. This specific choice of f (x) is motivated

by the form of the rate models used to describe the firing activity of

neuronal assemblies [6–8], although any other system satisfying the

condition limx?+? f (x)~+?, which ensures the existence of at

least one stable fixed point, would be equally valid (see Methods).

We first consider the deterministic system that results from

switching noise off by setting s~0 in Equation (1). The fixed points

of the noiseless system satisfy the condition f (x)~0 or, equivalently,

x~W(x). Depending on the values of the parameters a and h, there

may be either one or three solutions to this equation. In the former

case, the only intersection point will always correspond to a stable

fixed point by construction, and the system will be monostable.

When instead three solutions coexist, the system is bistable, with two

of the solutions corresponding to stable fixed points and the

remaining one corresponding to an unstable fixed point. We

illustrate in Figures 1A–C the presence and number of fixed points

as a function of the parameters. Note that bistability is only possible

for high enough values of a, which dictates the degree of

nonlinearity in the system. Also, in order for the system to be

bistable, the value of h should lie in some interval centered at

h~0:5. The endpoints of the interval can be actually derived from

the fixed point condition, f (x)~0, and the condition f ’(x)~0 that

determines where pairs of fixed points appear or disappear (see

Text S1). The region of bistability shown in Figure 1D.

Figure 1. Bistability in a one-dimensional rate model. The rate
model described by Equations (1)–(3) has two stable fixed points for
some values of the parameters a and h. A, B, and C: Location of the fixed
points as a function of a, for h~0:5 (A) and h~0:49 (C), and as a
function of h, with a~8 (B). Solid curves correspond to stable fixed
points, and the dotted curves to unstable fixed points. D: Regions of
monostability (white) and bistability (gray) in the parameter space (h,a).
Blue lines show the sections of the parameter space represented in the
bifurcation diagrams A–C.
doi:10.1371/journal.pcbi.1000587.g001

Author Summary

We introduce a novel methodology that allows for an
effective description of a neurodynamical system in a data-
driven fashion. In particular, no knowledge of the
dynamics operating at the neuronal or synaptic level is
required. The idea is to fit the underlying dynamics of the
data using a stochastic differential equation. We use a
Langevin equation that describes the stochastic dynamics
of the system with the assumption that there exists an
underlying potential, or energy function. The advantage of
this description is the fact that, for one-dimensional
systems, the stationary distribution of the variable can be
straightforwardly related to the underlying energy func-
tion. In cases where the dataset is high-dimensional we
reduce the dimensionality with techniques like principal
curves or principal components analysis. The methodology
we propose is particularly relevant for cases where an ab
initio approach cannot be applied like, for example, when
an explicit description of the dynamics at the neuronal and
synaptic levels is not available.

Effective Reduced Rate-Models
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It is straightforward to compute the energy function of the system:

U(x) ~{

ðx

f (s)ds~fs{W(s)gds

~
x2

2
{x{

1

a
lnf1z exp½a(x{h)�g:

ð4Þ

By construction, the local minima of the energy function U(x) are at

the stable fixed points of the system (1), while the local maxima are

at the unstable fixed points.

Stochastic system: extraction of the effective parameters.

A bistable deterministic system like the one described in the previous

section will always decay to either one of the two available stable

states depending on the initial conditions. Once reached

equilibrium, the system will remain there indefinitely. The picture

changes dramatically when noise is added to the system: the variable

x spends most of the time wandering around either one of the two

fixed points until some rare and large fluctuation drives it to the

neighborhood of the other fixed point, where the process starts over.

Therefore, rather than a pair of stable states, we have two metastable

states that are long-lived in terms of the characteristic time scales of

the system, but that are not truly stable at much longer time scales.

Each of these two metastable states are better regarded as a unimodal

distribution centered at one of the stable fixed points of the noiseless

system. We loosely refer to each of these distributions as an attractor.

Since the system spends most of the time in either one of the

attractors, and there are quick, random, and rare switches between

the two, the stationary distribution of x is bimodal.

As an example, we choose the parameter values a~5 and

h~0:5, which lie within region of bistability depicted in Figure 1D.

The analysis of stability of the deterministic limit of Equations (1)–(3)

shows that for h~0:5 and a~5 the stable fixed points are located at

x&0:145 and x&0:885. By adding a moderate amount of noise,

the two stable fixed points become metastable and alternate with

each other (Figure 2A). The stationary distribution of the state

variable x, when the stochastic system described by Equations

(1)–(3) is simulated long enough, is shown in Figure 2B. Note that we

are implicitly assuming that the sampling of the system over a long

enough time can be identified with the sampling of independent

realizations of the same process —i.e., we are assuming ergodicity.

Figure 2B also shows the maximum likelihood estimate of the

stationary distribution Pst(x) using a piecewise quadratic approx-

imation, as well as the associated energy function. The two peaks of

the distribution are centered at the stable fixed points of the noiseless

system. With the estimated probability density we can easily extract

the underlying energy, w(x), following the procedure described in

Methods. For a comparison with the estimated energy function, we

also include in Figure 2B the true energy function of the original

system (Equation (4)). Note the good agreement between the two.

The noise intensity was estimated from the mean escape time from a

metastable state, Equation (13). In our example, we estimated the

average time needed for the system initialized at the fixed point at

x0&0:145 (left attractor) to cross a boundary at some x~l. The

location l of the boundary was chosen somewhere between the

separatrix at x~0:5 to the fixed point at x&0:885 (right attractor), to

make sure that the mean first-passage time corresponded to a real

escape from one attractor to the other. The analytical form for the

mean escape time from an interval ½L,R�, when the system is initialized

at x0[½L,R�, is given by Equation (13) in Methods. The expression (13)

can be further simplified using the property that w(x) goes to infinity in

the limit L?{?, which ensures the system can escape only through

the right endpoint of the interval. Thus identifying L with {? and R

with l, the mean escape time through l reads

t(x0,{?,l) ~
2

D

ðl

x0

½
ðv

{?
expfw(v){w(u)gdu�dv

:
1

D
I(x0,{?,l)

ð5Þ

Figure 2. Statistical properties of the one-dimensional, bistable rate model in the presence of noise. A: Stationary distribution of the
rate variable x(t) of the system (1)–(3) with parameter values a~5, h~0:5, s~0:06. Blue: normalized histogram of the simulated data. Black:
maximum likelihood fit of the stationary distribution, using a piecewise quadratic approximation. Red: estimated energy function. Black dashed:
original energy function. B: Distribution of the residence times in each of the attractors. Due to the symmetry of the system when h~0:5, the two
attractor states share the same statistical properties; here we show only the distribution of residence times in the left attractor, x0&0:145. Red and
black curves are, respectively, the distributions estimated from the original stochastic Equation (1) and from the reconstructed system. C: Error in the
estimation of the true energy function, as a function of the number of data points. Error bars are mean squared errors.
doi:10.1371/journal.pcbi.1000587.g002

Effective Reduced Rate-Models
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The noise intensity can then be estimated as D~

ÎI(x0,{?,l)=t̂t(x0,{?,l), where ÎI is the numerical evaluation

of I(x0,{?,l) using the piecewise-quadratic approximation of the

potential, and t̂t is the sample mean of first-passage times. We

obtained an estimated value for the noise intensity of D&3:8:10{3,

which is close to the value D~s2~3:6:103, used in the simulations.

The value of the error in estimating the true energy function, as a

function of the number of data points, is shown in Figure 2D. Good

fits are already obtained with 300 data points.

Network of spiking neurons
As a second example of our reduction method, we consider a

large-scale network of spiking neurons exhibiting bistability. The

network we use is the binary decision network introduced by

Wang [9], with identical architecture and parameters (see Figure 3

and Text S1 for the details).

In short, the model consists of a fully connected network of

integrate-and-fire neurons with synaptic dynamics mediated by

excitatory AMPA and NMDA receptors, and by inhibitory GABA

receptors [4]. Excitatory neurons are structured into two

subpopulations. Due to the strong recurrent connections between

cells within each population and to the shared inhibitory feedback,

the two subpopulations compete with each other for higher

activity. This competition eventually culminates with the network

settling into an attractor where the activation of one population

suppresses the activity of the other. There are two such attractors,

called asymmetric attractors, associated with the two possible

outcomes of the competition. Apart from recurrent currents, all

cells receive AMPA-mediated synaptic currents from external

neurons that emit spikes following Poisson statistics.

For a wide range of external inputs and connection weights, the

network operates as a winner-take-all, and is therefore able to

sustain either one of the two asymmetric stable states. As in the

rate model analyzed in the previous section, noise induces

transitions between states that are simultaneously stable, giving

rise to a bimodal distribution in the rate variables when the system

is observed long enough. This bimodality can be seen in Figure 4A,

which shows the two-dimensional histograms of the population-

averaged activities of both populations, for different levels of

external input.

Note that the strength of the method is not in reducing the

dimensionality of the system, but in extracting effectively the

underlying stochastic dynamics in the form of a diffusion equation.

Thus a prerequisite for applying the method is to select a range of

parameters where the dynamics of the system can be reduced to

one-dimensional dynamics. In this type of system, this is the case in

the neighborhood of a bifurcation (see, e.g., [10]).

Given the reduced first principal component x(t) of the original

data, we apply the procedure detailed in Methods to extract the

effective energy function associated with a one-dimensional

Langevin equation (see Equations (6) and (9)). We show in

Figures 4B and 4D the effective energy function for the symmetric

and asymmetric case, respectively. The figures also show the

stationary distribution of the reduced variable x(t) capturing the

essential part of the dynamics, as well as the maximum likelihood

fit of Pst(x), Equation (10). By using Equation (10) we can easily

extract the effective energy function w(x).

We then estimated the noise intensity along the same lines of the

previous section. In brief, we generated a large set of sample paths,

starting out at one the attractors, and computed the first-passage

time through some prescribed boundary. In our case, the

boundary was halfway to the main barrier separating the two

attractors. Choosing the boundary this way, the first-passage times

were considerably shorter than the transition times between

attractors, allowing for larger samples and thus better numerical

estimation. We could then estimate from Eq.(13) the noise

intensity, using the sample mean of the first-passage times and

the effective potential. For the symmetric case (Figures 4B,C), we

initialized the system at x0~11:4 and set the boundary at

x~18:58. For the asymmetric case (Figure 4D–F), the system was

initialized at x0~12:85 and the barrier was at x~22:48.

Using the estimates of the noise intensity D and the effective

energy function w(x), we checked the approximation by

comparing the residence times in each of the attractors

(Figures 4C and 4E,F for the symmetric and asymmetric case,

respectively). The agreement between the distribution of residence

times for the one-dimensional Langevin and for the original data is

remarkable.

Note that with this method we can easily estimate the transition

times between attractors, using just the one-dimensional reduced

system. This is particularly useful when the transition times are

long, of the order of seconds, for which a reliable estimation

requires simulations of the high-dimensional system, defined in our

case by a system of several thousands of nonlinear differential

equations. The reduction can be done without such computational

effort, since it requires only a good estimate of the stationary

distribution, to extract the underlying energy, as well as an

estimate of the escape times, in order to get the estimate of the

noise intensity. The effective data-driven reduction allows us to

extract explicitly the underlying form of the energy function

associated with the bistable behavior, the level of fluctuations, and

consequently allow us to calculate the characteristic escape times

Figure 3. Architecture of the winner-take-all spiking network.
The network is fully connected and structured in different subpopu-
lations of cells sharing the same connectivity and input statistics. All
neurons receive background noise input modeled as independent
Poisson trains. Cells in neural populations A and B receive in addition a
Poisson train of rate lA and lB, respectively, to account for selective
input. These two so-called selective populations are composed of
excitatory cells strongly interconnected.
doi:10.1371/journal.pcbi.1000587.g003

Effective Reduced Rate-Models
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in a much more efficient way, due to the fact that with the reduced

system they can be calculated semi-analytically.

Up and Down State Dynamics in the Cerebral Cortex in
vivo

We next analyzed experimental data from intracellular

recordings in the auditory cortex of anesthetized rats. During

anesthesia with ketamine-xylazine, the cerebral cortex exhibits

robust slow oscillatory activity, as it has been previously described

in the cat [11,12], ferret [13], and rat [14,15]. Up and down states

were recorded both by means of local field potential (not shown)

and intracellularly (Figure 5) during periods of lighter and deeper

anesthesia. Anesthesia levels were deeper after the injection of

supplemental doses (see Methods).

During periods of light anesthesia, without reaching the

transition to the awake state (for a complete transition from sleep

to awake, see [16]), cortical activity still shows up and down states,

but their distribution appears to be more random (Figure 5A).

Given the normalized and centered membrane potential V (t) of

the recorded data, we applied the procedure detailed in Methods

to extract the effective energy function associated with a reduced

Langevin equation, (Figure 5B). Using Equation (10) we can easily

extract the underlying energy or potential function w(x). In both

cases we shifted the variable V to be in the positive range, and

scaled the energy function by a factor 1/100 to facilitate its

visualization. We then estimated the underlying noise by using

Equation (13) and the estimate of the escape time from a meta-

stable state. In our case, we took the escape time that the system

initialized in the down state (V~4) need to cross a barrier at

V~7. We found that the time spent in the down-state could be

well fitted with our model, whereas the time spent in the up-state

was less well described (Figure 5C and D).

As a quantitative measure of how well the reduced model can

describe the distribution of transition times we used the

Kolmogorov-Smirnov test. This is a non-parametric test of the

hypothesis that two sets of observations are sampled from the same

Figure 4. Extraction of the effective parameters from data generated by a winner-take-all network of spiking neurons. A: Estimated
probability density functions of the population rates (nA,nB). (Ai): symmetric network with balanced external inputs (lA~lB~l) for different
values of input intensity l, indicated at the top of each plot. Aii: unbalanced inputs, lA~54:5 Hz, lB~55:5 Hz. Probability densities are shown as
2-dimensional histograms of 15|15 bins and Gaussian interpolation. B, and D: Blue: stationary distribution of the projection on the principal
component x(t) of the firing rate n~(nA,nB) of a network with symmetric (B) and asymmetric (D) inputs. Black: maximum likelihood fit using a
piecewise quadratic approximation. Red: energy function. C, E, F: Distribution of the residence times in the attractor states, for the symmetric (C) and
asymmetric cases (E,F). For the asymmetric case, the deep attractor corresponds to the network state where the active population firing at highest
rate is the population receiving strongest inputs. Conversely, in the shallow attractor the active population is that receiving weakest inputs. The
dashed red curves are the distributions estimated directly from the data, while the solid black curves are the distributions derived from the effective
one-dimensional Langevin system.
doi:10.1371/journal.pcbi.1000587.g004

Effective Reduced Rate-Models
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probability distribution. We applied this test to the dwell times in

the down and up-states respectively (e.g. the data shown in

Figure 5C and D). We can not reject the hypothesis that the dwell

times in the data have the same distribution as those in the

reduced model (pw0:3). However, the distributions of the dwell-

times in the upstate are significantly different (pv0:001). The

Kolmogorov-Smirnov test hence reinforce the conclusions drawn

by looking at Figure 5C and D.

During periods of deep anesthesia, up and down states

generated in the cortex were quite regular, both in their amplitude

and time intervals between up states (Figure 5E). Next, we will see

how well this data can be described by our reduction. In this case,

to estimate the noise intensity we considered the mean escape time

needed for the system initialized in the down state (V~4:5) to

cross a barrier at V~19. In this case, the stationary distribution

can be of course fitted, but the distributions of the residence time

Figure 5. Up and down alternations recorded in vivo in the auditory cortex of a rat under light and deep anesthesia. A, and E: Trace of
the subthreshold membrane potential, measured intracellularly for light (A) and deep (E) anesthesia. B, F: Stationary distribution of the membrane
potential V (t) for light and deep anesthesia. Red: energy function derived from the distribution. Black: maximum likelihood estimate. C, D, G, H:
Distribution of up-state and down-state durations, for light (C,D) and deep (G,H) anesthesia. Dashed red: experimental data. Solid black: data from
simulations.
doi:10.1371/journal.pcbi.1000587.g005

Effective Reduced Rate-Models
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in the down and up states cannot be captured by our model

(Figures 5G and H). An application of the Kolmogorov-Smirnov

test in this case confirms that dwell-times in both the up- and

down-state were significantly different between the data and the

reduced model (pv0:001 for both). In summary, when the same

procedure is carried out, we no longer get a good fit of the

distribution of dwell times. Note the strong regularity in the data as

evidenced by the peak in the probability distribution of the life

time of the experimental data. This result is nevertheless relevant

because tells us that the data is not purely noise driven. In fact,

previous studies have shown that these data evidenced a strong

adaptation effect [17–20], which plays a crucial role in the

transitions. The method is therefore also useful to reject the

hypothesis of a pure noise driven transition.

Discussion

We have introduced a novel methodology for extracting, in a

data-driven fashion, the stochastic dynamics underlying experi-

mental or simulated neuronal data. The main idea of the method

is to test the hypothesis that the underlying dynamics is consistent

with a Langevin equation, which describes the motion of a

Brownian particle in a potential. This is done by extracting an

effective potential consistent with the asymptotic stationary

distribution of the data and subsequently estimating the intensity

of the underlying fluctuations from the average escape time from a

specific region. The initial hypothesis can then be tested by

checking how well the escape-time distribution of the data can be

fitted by the reduced model. If this fit is reasonably good then we

can affirm that the observed dynamics are consistent with an

underlying stochastic process of the Langevin type. Note that the

test could be extended to all possible escape times, i.e., considering

different escape boundaries, allowing for a sharper test of the

original hypothesis. If the distribution of escape times is not well

fitted by the reduced model, we can reject the hypothesis that the

system is described by a one-dimensional Langevin equation.

We applied the method to data from models of simulated

neuronal activity as well as recordings from real cortical neurons.

The method is however applicable to data from any system that

obeys the assumptions of the dynamics and the noise. Indeed, our

method generalizes a similar approach suggested in the context of

laser dynamics [21]. In this work we propose an efficient and semi-

analytical way of estimating the noise through the estimation of Â

transition times. After extracting a parametric form of the underlying

energy function, we can express the transition times by a closed form

expression (Equation (13)), which can be used to estimate the noise

intensity. Furthermore, we use a more robust maximum-likelihood-

based method for the estimation of the underlying effective energy by

decomposing the stationary distribution of the main variable as a

mixture of Gaussians. The method is directly applicable to data from

one-dimensional systems but we also demonstrated how it could be

applied to data originating from a higher dimensional system. This

implied first reducing the dimensionality by projecting the data onto

the first principal component, and then provide an effective model

for the reduced one-dimensional data. This approach will work

whenever the dynamics of the original system is confined to a one-

dimensional manifold which is approximately the case for the spiking

network that we studied [10,22]. We have applied the method to

data from bistable systems but it is equally straightforward to apply

the method to multistable systems. As long as the dynamics can be

described approximately as a diffusion in an energy landscape our

method is applicable.

The fact of transitions between up and down states in the cerebral

cortex is a neural network phenomenon that has aroused great

interest, since the mechanisms involved may be critical for persistent

activity, memory or attention. However, the cellular and network

mechanisms involved in the initiation, maintenance and termina-

tion of up states are still a matter of debate. Different mechanisms of

initiation of up states have been proposed, either appealing to

stochastic or alternatively deterministic processes. The cortical

network in vivo generates slow rhythmic activity in complex

interaction with other rhythms in the thalamocortical network

rhythmic activity [11,12]. A role for thalamic inputs has been

proposed [11,23], and both intracortical or thalamocortical synaptic

inputs can eventually start up states [15,23,24]. However, it is

known that the thalamus is not required for the rhythm to occur,

since it persists after thalamic lesions and it can be recorded in

isolated cortical slabs in vivo [25] and in cortical slices in vitro [18]. In

the isolated cortex, it has been proposed that up states start by

spontaneous spikes that activate the recurrent cortical circuitry,

bringing the network to an up state where activity reverberates [19].

This model relies on strong cortical recurrence plus activity-

dependent hyperpolarizing currents that terminate the up states and

maintain down states. Alternative proposed mechanisms are the

initiation of up states by summation of spike-independent stochastic

releases of neurotransmitters or noise producing random transition

between up and down states [26]. Those mechanisms would

determine the initiation of up states given that they overcome the

ones believed to start, and to maintain, down states such as

potassium currents [17–19], metabolically modulated currents [20],

or cortical disfacilitation [27].

The study presented here suggests that some of those seemingly

mutually exclusive mechanisms regulating up and down states

could indeed coexist. The analysis of intracellularly recorded up

and down transitions by means of a reduced Langevin equation

reveals that the stochasticity of up state occurrence varies with the

dynamic state of the in vivo network. While in deep anesthesia, the

occurrence of up states is not well fitted by the Langevin equation.

Given that the Langevin equation describes the stochastic

dynamics of a network, the bad fit to the data in deep anesthesia

suggests that the process is not stochastic but deterministic and

therefore controlled by non-random processes. However, in vivo

during lighter anesthesia the time spent in the up and down states

was better described by a one-dimensional model. In particular,

the time spent in the down state was reasonably described by the

model. This could indicate a role for random fluctuations in

shaping the transitions from the down to the up-state. It is

important to notice however that there are several aspects of the

intracellular data that are not well described by the model (nor

intended to be well described). There are for example high

frequency oscillations in the upstate not captured by the model.

Our findings suggest that different network mechanisms inducing

up states that have been proposed by different authors and

appeared to be incompatible, could indeed be simultaneously

participating but in different functional states of the network.

Thus, transitional states between sleep and awake (or light

anesthesia) would be dominated by mechanisms involving

stochasticity while deep sleep would be dominated by deterministic

mechanisms. Another possible scenario is that in which the same

mechanisms of initiation of up states would trigger more or less

regular waves. This possibility has been achieved in a computer

model by varying the cortical synaptic strength [28].

Methods

Ethics statements
Rats were cared for and treated in accordance with the EU

guidelines on protection of vertebrates used for experimentation
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(Strasbourg 3/18/1986) as well as local ethical guidelines and

regulations.

Fokker-Planck description
In this section, we describe how to extract the effective energy

function from a data set like, for example, the temporal sequence of

firing activity in a network of spiking neurons. We also show how to

estimate the intensity of the concomitant noise. By doing this, we will

able to write the stochastic neurodynamical equation describing the

generation of the data set. We assume that the system is stationary.

One-dimensional Langevin equation. To keep the analysis

as simple as possible, we focus on cases where the description of

the neural system can be captured by one single dimension. In

those cases, it suffices to project the original dynamical variables

on the first principal component, that is, on the direction where

the variables show highest variability. We denote this projection by

x(t). To derive the effective energy function underlying the

stochastic evolution of x(t), we assume that the trajectory x(t) can

be described by a one-dimensional Langevin equation generating

a Brownian motion of a highly damped particle in a one-

dimensional potential U(x) [29]

_xx~{
dU(x)

dx
z

ffiffiffiffiffiffiffi
2D
p

g(t), ð6Þ

where g(t) is a Gaussian fluctuation term with

Sg(t)T~0, ð7Þ

Sg(t)g(t’)T~d(t{t’): ð8Þ

The parameter D is the noise intensity. The time coordinate we use

is dimensionless and normalized to the time constant, so that time

derivatives are of order unity and noise intensities have dimensions

of a variance. The probability density of the stochastic process

described by Equations (6)–(8) satisfies the Fokker-Planck equation:

LP(x,t)

Lt
~

L
Lx

dU(x)

dx
P(x,t)

� �
zD

L2

Lx2
P(x,t), ð9Þ

where P(x,t) is the probability density of the random variable x.

Equation (9) admits a nontrivial stationary solution given by

lim
t??

P(x,t):Pst(x)~
exp½{w(x)�Ðz?

{? exp½{w(x)�dx
: ð10Þ

where w(x):U(x)=D is the normalized potential. This solution is

well-defined as long as the integral in the denominator converges,

which is the case when the potential U(x) grows to infinity as x goes

to +?. This limit is satisfied if we impose the condition that

limx?+? f (x)~+?.

Estimation of the one-dimensional potential. The effective

potential w(x) is obtained by fitting the estimated probability density

of the reduced empirical data with the stationary solution, Equation

(10). We perform this estimation assuming a continuous piecewise

quadratic potential. First, we partition the range of x into M

subintervals ½ai{1,ai), i~1, . . . ,M. In each interval the potential is

given by a quadratic polynomial

w(x)~ai(x{ci)
2zbi, for i{1ƒxvai, ð11Þ

where the 3M parameters fai,bi,cigi~1,...,M are to be determined.

To ensure continuity and differentiability of the potential at the

boundaries the subintervals, the parameters ai and bi must obey the

recurrent relation

aiz1~ai
(ai{ci)

(ai{ciz1)
, a1~c0,

biz1~bizai(ai{ci)(ciz1{ci), b1~0,

for i~1, . . . ,M{1. We are then left with M free parameters,

which we denote by h:(c1, . . . ,cM ). Given the experimental data

x~fx1, . . . ,xNg, the values of the free parameters h are set

maximizing the logarithm of the likelihood function

log L(h) ~ log Pst(xjh)~ log P
N

k~1
Pst(xkjh)

~
PN

k~1

w(xk)zN log
Ðz?
{? e{w(x)dx

� �
,

ð12Þ

where we assume in the second equality that the data is drawn

independently and identically from the distribution Pst(x), given by

Equation (10). The maximization over h is computed using a

downhill simplex method [30,31].

Estimation of the noise intensity. In addition to the

potential U(x) the effective stochastic dynamical equation (6)

and the Fokker-Planck counterpart, Equation (9), involve the noise

intensity D. This parameter has to be specified in order to describe

the full stochastic system. We estimate D through the mean escape

time of the system from a metastable state. The analytical form of

the mean escape time from an interval ½L,R� for the stochastic

process described by Equation (6) starting at x0[½L,R� is [29]

(an alternative procedure was derived in [32] for this case using

piecewise parabolic potential profiles):

t(x0,L,R) ~ 2
D
f
ÐR

x0
½
Ð v

L
expfw(v){w(u)gdu�dv

{d(x0)
ÐR

L
½
Ð v

L
expfw(v){w(u)gdu �dvg

: 1
D

I(x0,L,R),

ð13Þ

where in the first equality we have defined

d(x):

ÐR

x
expfw(v)gdvÐR

L
expfw(v)gdv

:

The mean escape time t(x0,L,R) can be estimated from empirical

data, while I(x0,L,R) can be evaluated numerically once the

potential has been approximated maximizing Equation (12). If we

denote by ÎI and t̂t the estimated values of I(x0,L,R) and t(x0,L,R),
the noise intensity can be inferred from the relation (13),

D&ÎI=t̂t: ð14Þ

Once the energy function w(x) and the noise intensity D are

determined, the effective description given by Equations (6)–(8), or,

equivalently, by the associated Fokker-Planck Equation (9), is

complete. Note that D fixes also the time scale of the problem.

The stationary distribution of the data determines uniquely the

normalized potential w but it does not specify the time scale of
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dynamical evolution. Only after fixing D can we also fit the time

scale of the data. In fact, the estimation of the residence time

distributions shown in Results was carried out by explicit

simulations of the Langevin Equation (6), using the maximum-

likelihood value of the noise intensity D that fits best the mean

escape time t(x0,L,R) from a particular interval ½L,R�, given the

initial condition x~x0.

Large-scale spiking network
Population rates. The firing rate of population a~1, . . . ,M

is defined as na(t)~na(t,tzDt)=(NDt), where na(t,tzDt) is the

total number of spikes emitted in population a between t and

tzDt, being Dt a small time interval, and N is the number of

neurons in the population.
Probability densities. The 2-dimensional probability

density function for the population rates nA and nB, p(nA,nB),
shown in Figure 4, was estimated from m~2 trials of T~2000 s
simulated time each, and using a timestep of Dt~5 ms. This gives

a total of N~mT=Dt~4:105 data points per trial. The duration of

the trial was long enough for the network to to alternate between

the two decision states a few tens of times. Such transitions were

due to finite-size effects in the network, and allowed the system to

explore most of the state space within the whole duration of the

trial. We then invoked ergodicity, by which time averages are

identified with state space averages, and estimate the probability

density from the sample S formed by all the visited states

n:(nA,nB) across all trials

S~f n(t0)trial1, . . . ,n(tN )trial1, . . . ,

n(t0)trialm, . . . ,n(tN )trialmg:

Reduction to one dimension. The dimensionality of the

system can be further reduced by projecting the multidimensional

data ni(t) on the direction with the maximum variance, using

principal component analysis (see, e.g., [33]). For all the cases

considered, this direction coincided with the direction of the line

connecting the two peaks of the estimated two-dimensional

probability density. The one-dimensional histograms shown in

Figures 4B,D result from projecting the original two-dimensional

data points in S onto the principal component. Specifically, if the

principal component is represented by the unit vector n̂n, the sample

of scalar values used in those histograms is S1D~fni
:n̂ngi~1 ...,Nm).

The histogram was clearly bimodal, with a trough at rmin.
Escape boundaries. We considered that a good estimate of

the separatrix between two attractor basins was given, in the two-

dimensional phase space, by the line passing through the origin

and the point SnTzrminbnn, where SnT denotes the sample average.

The inner escape boundaries used to estimate the noise intensity

were also straight lines parallel to the separatrix and located at

0.75 the distance between the separatrix and the peaks. Thus, the

inner boundary for peak 1 was a line parallel to the separatrix

and passing through the point SrTzn̂n½rminz0:75(r1,max{rmin)�,
where r1,max is the value of r at which the one-dimensional

histogram showed the local maximum corresponding to peak 1.

The inner boundary for peak 2 was found analogously.

Intracellular recordings in auditory cortex of the
anesthetized rat

Recordings from primary auditory cortex A1 were obtained

from adult wistar rats (230–350 g). Anesthesia was induced by

intraperitoneal injection of ketamine (100 mg/kg) and xylacine

(8–10 mg/kg). The animals were not paralyzed. Supplemental

doses by intramuscular injection of ketamine were 75 mg/(kg h)

and were given with intervals of 30–60 min. The depth of

anesthesia was monitored by the recording of low-frequency

electroencephalogram (EEG) and the absence of reflexes. The

anesthesia level was deeper after a new dose and would progressive

lightened during the interval (see Results). Rectal temperature

was maintained at 37, heart rate (250–300 bpm) and blood O2

concentration (95%). Once in the stereotaxic apparatus, a craniotomy

(2|2 mm) was made at coordinates AP 23.5 to 5.5 mm from

bregma, L 7 mm. After opening the dura, intracellular recordings

were obtained with borosilicate glass capillaries 1 mm O.D. | 0.5

I.D. (Harvard Apparatus) filled with potassium acetate (resistances

50–80 MV). For stability, and to avoid desiccation, agar (4%) was

used to cover the area. Data was acquired with a CED commercial

acquisition board (Cambridge Electronic Design, UK) and its

commercial software Spike 2. Further details of the procedure can

be found in [15].

Supporting Information

Text S1 Description of the network of spiking neurons used to

generate synthetic data.

Found at: doi:10.1371/journal.pcbi.1000587.s001 (0.09 MB PDF)
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