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Abstract

Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human
pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation
of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes.
Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There
has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better
success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship
(QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis
focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as
templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best
success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after
leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-
crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently
predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5a-androstan-3b-
ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study
emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling
approaches.
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Introduction

Promiscuous proteins generally bind a large array of diverse

ligand structures. These proteins include enzymes like cytochrome

P450s (e.g. CYP3A4, EC 14.13.97), transporters such as P-

glycoprotein (ABCB1), the human ether-a-go-go related gene

(hERG, Kv11.1) potassium channel and nuclear hormone receptors

(NHRs) such as the pregnane X receptor (PXR; NR1I2; also known

as SXR or PAR) [1]. This promiscuous binding may be facilitated

by a very large binding site, multiple (overlapping) binding sites, or a

flexible binding site that can adjust to the size of the ligand. Intrinsic

disorder in the protein may also have a role [2,3]. These proteins

described above are also particularly important as xenobiotic

sensors and represent key mechanisms to respond to toxic stress.

The human PXR [4–6] transcriptionally regulates genes

involved in xenobiotic metabolism and excretion, as well as other

cellular processes such as apoptosis [7–11]. Human PXR has a

very broad specificity for ligands as exemplified by the structurally

diverse array of activators including endogenous (bile acids, steroid

hormones, fat-soluble vitamins) and exogenous (prescription and

herbal drugs, and environmental chemicals) compounds. Activa-

tion of human PXR can cause drug-drug interactions [4,5] or

result in physiological effects ranging from ameliorating cholestatic

injury to the liver, altering bone homeostasis, and causing cell

proliferation [12]. As PXR represents a potential target for

pharmacologic modulation in disease, it is therefore becoming

even more important to develop methods that can identify

whether a molecule is likely to be a PXR agonist [13]. Currently

there are five high-resolution crystal structures of human PXR

[14–18] available in the Protein Data Bank (PDB) (and another

structure to be deposited [19]). The structures have provided

atomic level details that have led to a greater understanding of the
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ligand binding domain (LBD) and the structural features involved

in ligand-receptor interactions [9,10,12–15]. The co-crystallized

ligands include the natural products hyperforin (active component

of the herbal anti-depressant St. John’s wort) and colupulone (from

hops), the steroid 17b-estradiol, the synthetic compounds

SR12813, T1317 and the antibiotic rifampicin. These ligands

span a range of molecular sizes (M.Wt range 272.38 – 713.81Da,

mean 487.586147.25Da, Table S1) and are predicted as generally

hydrophobic (calculated ALogP [20] 3.54–10.11, mean

5.5462.41). The cavernous ligand binding pocket (LBP) with a

volume .1350 Å3 accepts molecules of these widely varying

dimensions and chemical properties, and is likely capable of

binding small molecules in multiple orientations [21]. This

complicates overall prediction of whether a small molecule is

likely to be classified as a PXR agonist using traditional structure-

based virtual screening methods like docking [13,22]. With regard

to this, we have previously shown that the widely used structure-

based docking methods FlexX and GOLD performed relatively

poorly in predicting human PXR agonists [7,16] and this is

perhaps not surprising based on the observations described above.

An alternative method, which has been found to be valuable

elsewhere in drug discovery, particularly when there may not be

an available crystal structure of the target protein, uses a ligand-

based approach. In this case a series of small molecule structures

with PXR agonist activity data can be used to facilitate a structure

activity relationship (SAR). When the biological activity data is

continuous this will enable a quantitative structure activity

relationship (QSAR) [23–25]. One widely used computational

technology produces pharmacophores [20–23], which represent

models that encode the key chemical features important for

biological activity. Human PXR agonist pharmacophore models

have been shown to possess hydrophobic, hydrogen bond acceptor

and hydrogen bond donor features, consistent with the crystallo-

graphic structures of human PXR ligand-receptor complexes

[26–29]. These pharmacophore models have predominantly used

structurally diverse ligands in the training set and have the

limitation in most cases of compiling data from multiple

laboratories using different experimental protocols, ultimately

forcing binary classifications of ligands for the training sets (i.e.,

activating versus non-activating). Most of the models so far use

EC50 data, a measure of receptor transactivation. Although

binding assays have been done with human PXR, they are

problematic given the low affinity of most PXR activators. As a

result, there is little radioligand binding data in the literature other

than competition experiments with radiolabeled SR12813.

To date there have been few attempts to build ligand-based

models around a large structurally narrow set of PXR activators.

The absence of large sets of quantitative data for PXR agonists has

restricted QSAR models to a relatively small universe of molecules

compared to the known drugs, drug-like molecules, endobiotics

and xenobiotics in general [30]. The PXR data limitation has

resulted in the use of various machine learning methods (e.g

support vector machine, recursive partitioning etc.) when the

biological data is binary in nature (e.g. activating or binding versus

non-activating / non-binding) [13,22,25,30].

As part of an ongoing analysis of NHRs [25–28], we have

generated a large cadre of experimental data for classes of steroidal

compounds, namely androstanes, estratrienes, pregnanes and bile

acids/salts [31]. The advantages of using steroidal compounds for

QSAR are that they are amenable to common alignments based on

the steroidal backbone. For, example steroids represented the first

datasets used for comparative molecular fields analysis (CoMFA)

[32] and have been widely used as a benchmark for other methods

such as comparative molecular similarity analysis (CoMSIA)[33].

Pharmacophore methods, in contrast, generally do not require the

rigid alignment methods and have found use with more diverse

structure sets [28,31]. Using this large quantitative data set of PXR

activators, we applied various ligand-based computational methods

including Bayesian modeling with 2D fingerprints. We also

compared the results from QSAR approaches to molecular docking

into the six available human PXR crystal structures.

Modeling of a broad specificity receptor such as PXR represents

a challenge for in silico modeling and it is invaluable to know what

approaches prove successful, if any. Ideally, these methods will also

translate to modeling approaches for other broad specificity

enzymes, transporters and ion channels [1], or other promiscuous

proteins [34]. We are not aware of any similar studies using a

comparative approach to predicting ligand-protein interactions for

promiscuous proteins. This study also provides further insights into

PXR-steroid interactions which have not been well studied [19]

and is clinically relevant due to the widespread use of steroidal

compounds and steroid mimics (e.g. oral contraceptives [35], for

inflammation and as cancer treatments etc.) in clinical medicine

[36], as well as the increasing problem of environmental

contamination by endocrine disruptors [24].

Results

Docking
All compounds shown in Table S2 were docked to the six

human PXR crystal structures using GOLD which we have used

previously for docking diverse compounds into the human PXR

structure [22]. All six crystal structures superimposed with a

backbone root mean squared deviation of 0.5 Å suggesting that

they had very similar structures and their co-crystallized ligands

bound to the same binding pocket (Figure S1). The docking scores

for all the compounds (Table S2) were in the range of 36 to 77 for

all the crystal structures and their corresponding Tanimoto

similarity scores to 5a-androstan-3b-ol and the crystal ligand

17b-estradiol using MDL public keys were between 0.4 and 1.

To evaluate docking results, we compared docking scores for

classifying compounds as activators or non-activators of PXR.

Author Summary

Promiscuous proteins generally bind a large array of
diverse ligand structures. This may be facilitated by a very
large binding site, multiple binding sites, or a flexible
binding site that can adjust to the size of the ligand. These
aspects also increase the complexity of predicting whether
a molecule will bind or not to such proteins which
frequently function as exogenous compound sensors to
respond to toxic stress. For example, transporters may
prevent absorption of some molecules, and enzymes may
convert them to more readily excretable compounds (or
alternatively activate them prior to further clearance by
other detoxification enzymes). Nuclear hormone receptors
may respond to ligands and then affect downstream gene
expression to upregulate both enzymes and transporters
to increase the clearance for the same or different
molecules. We have assessed the ability of many different
ligand-based and structure-based computational ap-
proaches to model and predict the activation of human
PXR by steroidal compounds. We find the most effective
computational approach to identify potential steroidal PXR
agonists which are clinically relevant due to their
widespread use in clinical medicine and the presence of
mimics in the environment.

Predicting Interactions with Promiscuous Proteins
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Using an EC50 value of 10 mM as a cutoff the compounds listed in

Table S2 were classified as activators (30 compounds) and non-

activators (89 compounds). These results were compared to the

classification obtained from the docking studies. The overall

accuracy (Q values) were in the range of 35 to 55 % for models

that used 5a-androstan-3b-ol based similarity scores as weights to

the goldscore, while the Q values were in the range of 47 to 58%

for models that were generated with goldscores weighted with 17b-

estradiol based similarity scores (Table 1). The Matthews

coefficient C showed a modest prediction rate with the best score

for docking of compounds to PXR crystal structure 1M13. Further

changing the cutoff values to either 100 mM or 40 mM did not

improve the prediction rates. The Q value for a model computed

by averaging all the models with 5a-androstan-3b-ol weighted

goldscore was 46% and for the average model with 17b-estradiol

the weighted goldscore was 51%.

Although the overall performance of docking produced rather

modest results for classification the results for individual classes of

compounds was better than average. In the best classification

model (compounds docked to crystal structure 1M13 and weighted

with 17b-estradiol based similarity scores), 20 out of 30 PXR

activators and 49 out of 89 non-activators were predicted

correctly. Among the androstanes, 6 out of 11 compounds were

predicted correctly as activators and 9 out of 14 compounds were

classified as non-activators (Table S2). Among the bile salts, all 4

activators and 22 out of 46 non-activators were predicted

correctly. Among the estratrienes, 5 out of 7 activators were

predicted correctly, while the 4 non-activators were predicted as

activators (Table S2). The reason for this mis-classification was due

to the high similarity scores of the estrogens with 17b-estradiol. In

the pregnane class, 4 out of 7 activators and 16 out of 20 non-

activators were correctly classified (Table S2). Some examples of

molecules in their binding modes with PXR structure 1M13 are

shown in Figure 1.

2D-Classification: Bayesian Models
All 115 compounds shown in Table S2 were used to generate a

Bayesian classification model [37], using a definition of active as a

compound having an EC50 for PXR activation of less than

10 mM. Using molecular function class fingerprints of maximum

diameter 6 (FCFP_6) and 8 interpretable descriptors (AlogP,

molecular weight, rotatable bonds, number of rings, number of

aromatic rings, hydrogen bond acceptor, hydrogen bond donor

and polar surface area) a model was developed with a receiver

operator curve (ROC) statistic for leave one out cross validation

of 0.84. In addition to the leave one out cross validation, further

validation methods were undertaken. After leaving 20% of the

compounds out 100 times the ROC is 0.8460.08, concordance

73.2 %68.94, specificity 69.14%612.12, and sensitivity

84.11%618.04. The Bayesian method appears to have good

model statistics for internal cross validation of steroids. These

statistics suggest the model is stable and not over-trained as the

ROC values are essentially identical to that obtained with leave

one out cross validation.

We have additionally used this model to classify a previously

used diverse molecule test set [13,22]. After removing the steroids

from the test set, the Bayesian PXR model was used to rank 123

molecules (65 activators and 58 non activators). Out of the top 30

molecules scored and ranked with this model 20 (75%) were

classified as activators (EC50 ,100 mM) (Table S3). Even though

the cutoff for activity for the Bayesian model is more stringent it

still appears to be able to predominantly pick out the key

molecular features that contribute to activity in non-steroidal

compounds.

The Bayesian model with FCFP_6 descriptors also enabled the

visualization of substructure fingerprints (Figure 2) that either

contributed positively or negatively to the activity classification. It

appears that all positive contributing substructures are essentially

hydrophobic, while negatively contributing features possess

hydroxyl or other substitutions which are likely not optimally

placed to facilitate interactions with hydrogen bonding features in

PXR. Therefore possession of these hydrogen bond acceptor and

donor features indicated in the steroidal substructures appears to

be related to loss of PXR activation. The method does not readily

identify where these groups should be added in contrast to

methods like docking [13,38].

3D-QSAR and 4D-QSAR
A major challenge in CoMFA and CoMSIA modeling is

alignment of molecules, which must be defined by the user. As

described in Text S1, multiple alignment approaches were

attempted. Despite the use of multiple alignments, the best

CoMFA and CoMSIA models consistently showed a large

difference between the correlation R2 and cross-validated (XV-

R2), whether modeling the entire set of steroidal compounds or the

various subsets (androstanes, bile salts, pregnanes). This suggests

that the CoMFA and CoMSIA models do not generalize beyond

the molecules in the training set, even for a subset of steroidal

compounds (Text S1, Tables S4, S5, S6, S7 and Figures S2, S3,

S4, S5, S6, S7).

Using the pharmacophore approach for the individual steroids, the

training set r values were quite low but increased upon inclusion of

excluded volumes with variable weight and tolerances (0.81–0.93)

(Table S8). All PXR pharmacophores (Figure S8) had at least 2

hydrophobes and a hydrogen bond acceptor in common (Text S1).

Using the pharmacophores derived from training sets based on subsets

of steroidal compounds (e.g., androstanes only) to predict the other

respective subsets did not result in reliable correlations (data not

shown), suggesting that highly specific pharmacophores were generated

or this may be due to the addition of the excluded volumes which limits

the chemical space of molecules mapping to the features. These class-

specific pharmacophores may therefore only be useful for making

predictions of very closely related molecules and even crossing steroidal

classes may be extrapolating too far beyond the training sets.

Table 1. Docking results for all of the 119 molecules to the six
hPXR crystal structures and the combined model in terms of
statistical parameters namely sensitivity (SE), specificity (SP),
overall prediction accuracy (Q) and matthews correlation
coefficient (C) are listed for models predicted with 17b-
estradiol similarity weighted goldscores and the values in
parenthesis are for models predicted with 5a-androstan-3b-ol
similarity weighted goldscores.

Structure SE (%) SP (%) Q (%) C (%)

1M13 (hyperforin ) 66.67(56.7) 55.06(53.9) 57.98(54.6) 0.19(0.09)

1NRL (SR12813) 46.67(60) 47.19(41.6) 47.06(46.2) 20.05(0.01)

1SKX (rifampicin) 53.33(70) 50.56(39.3) 51.26(47.1) 0.03(0.08)

2O9I (T0901317) 53.33(40) 50.56(40.4) 51.26(40.3) 0.03(20.17)

2QNV (colupulone) 53.33(46.7) 52.81(31.5) 52.94(35.3) 0.05(20.19)

EST (estradiol) 53.33(56.67) 50.56(49.44) 51.26(51.26) 0.02(0.05)

AVG 52 (55) 50.34 (42.69) 50.76(45.79) 0.02(20.02)

The values in AVG represent the average prediction rates.
doi:10.1371/journal.pcbi.1000594.t001

Predicting Interactions with Promiscuous Proteins
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4D-QSAR performed somewhat better than CoMSIA and

CoMFA in modeling the compounds in the training sets using

three atom alignments (Table S9). One potential advantage of 4D-

QSAR relative to standard 3D-QSAR methods is the ability to

consider an ensemble of different ligand conformations, theoret-

ically increasing the chances of defining the active conformation.

The best 4D-QSAR models are found in Table S10 and Figure

S9, and generally predict steric/non-polar interactions between

ligand and receptor. Although the XV-R2 for the best 4D-QSAR

models are better than for CoMFA and CoMSIA models of the

same training sets, the 4D-QSAR were poorly predictive of the

activity of compounds in the test set (Table S10).

5D - QSAR
4D- and 5D-QSAR have the advantage of being able to select

the bioactive conformation from a pool of possible binding modes

in parallel to the QSAR modeling stage. We have tested three

different alignment protocols in conjunction with the 5D-QSAR

technique Raptor.

(1) The top-1, top-2, top-5, top-10 and top-20 docking poses for

each ligand from our docking studies on 2QNV were

superimposed producing an alignment containing 115 –

2300 conformations for the 115 compounds in our dataset.

(2) All 115 compounds were automatically aligned onto 17b-

estradiol extracted from the complex structure with PXR.

Already aligned compounds were automatically added as

templates for aligning subsequent compounds. The order of

compounds in the alignment was determined based on their

experimental affinity towards PXR.

(3) As in (2) but each of the four substrate classes was aligned

separately on a template of the class selected by the lowest

Figure 1. Schematic representation of the binding mode of A. 5a-Androstan-3b-ol B epitestosterone sulfate C lithocholic acid
acetate and D levonorgestrol in the binding site of crystal structure of human PXR protein (PDB code: 1M13). The binding site residues
are colored by their nature, with hydrophobic residues in green and charged residues in purple. Blue spheres and contours indicate matching regions
between ligand and receptors. The schematic representations were generated using the LIGX option in MOE.
doi:10.1371/journal.pcbi.1000594.g001

Predicting Interactions with Promiscuous Proteins
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Figure 2. Good and bad molecular features identified in the Bayesian model using FCFP__6 fingerprints. A. Good features from FCFP_6
Bayesian model, B. Bad features from FCFP_6 Bayesian model. Asterisks can represent any atom. Numbers represent how many molecules out of the
total number possessing the fingerprint are active (good) or inactive (bad).
doi:10.1371/journal.pcbi.1000594.g002

Predicting Interactions with Promiscuous Proteins
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binding affinity. The individual templates are first aligned

onto 17b-estradiol. The four individual alignments are then

combined into a 4D set for all 115 compounds.

In the alignment protocols (2) and (3) the protein crystal

structure was used as a forbidden (excluded) region. A penalty was

added to the similarity score for alignment solutions that

overlapped with the protein, thus physically impossible solutions

were removed from the alignment. As significant protein flexibility

is observed on the side chain level, all crystal structures were

aligned using PyMol [39]. Side chains that have different rotamer

states for different co-crystallized ligands were removed from the

forbidden region definition.

Our multidimensional QSAR study (software Raptor [40]) was

based on the same set of 115 molecules as described in the

CoMFA and CoMSIA studies. The dataset was split into 95

training set compounds, and 20 test set compounds identical to the

separation used in the CoMFA and CoMSIA studies. For 33

compounds only an upper limit for their Ki values has been

experimentally determined. These molecules defined the ‘‘thresh-

old class’’ (26 training, 7 test). A threshold value of 100 mM was

chosen considering that the lowest affinities were measured for this

dataset at approximately this value. To allow for topological and

physicochemical variation at the true biological receptor with

different ligands bound, the Raptor results were averaged over 10

individual models defining a surrogate conformational family.

For alignment (1) we were not able to derive QSAR models with

predictive models for leave-5-groups-out (r2
CV-5) or cross-valida-

tion values (i.e..0.3). This is not surprising, as the identification of

bioactive binding modes using docking is difficult for this system

(see docking results). If we use an alignment with only the top-1 or

top-2 solutions, we most probably end up with an alignment

containing incorrect binding modes. Using the top-10 or top-20

binding modes generates too large a variety of contacts between

ligand and binding site model that the QSAR algorithm is not able

to extract the critical interactions throughout the binding site

modeling phase.

For alignment (2) a QSAR model with a r2
CV-5 value of 0.55

could be generated, but with no observed correlation for the test

set. For alignment (3) a QSAR model with an r2
CV-5 of 0.56 was

derived with a predictive r2 for the test set of 0.45. The superior

model based on alignment (3) was due to the focused class-based

alignment process (Figure 3). The maximum deviation of predicted

from experimentally measured EC50 is 5.6 and 3.0 fold for training

and test set, respectively. Significantly higher regression coeffi-

cients can hardly be expected for this dataset considering the fact

that the threshold compounds have to be removed from the

calculation of the regression coefficients yielding a rather small

range in EC50 of 2.2 log units (Figure S10, Table S11). This is in

contrast to the CoMFA and CoMSIA simulations where the

threshold compounds have been assigned an EC50 value of

10,000 mM yielding a range of 4.1 log units. All except one of the

33 threshold compounds have been predicted with an EC50 value

lower than the given threshold or maximally a factor of 6.6 fold

higher. Only 5a-Androstane was predicted to have a 46 fold

higher value than the threshold. Thus, the model was able to

predict the affinity of compounds accurately and at the same time

was able to classify weak- or non-binding molecules correctly.

Discussion

It has been suggested that PXR forms a heterotetramer and

exhibits a range of motions which are key for its functioning and

preparing for coactivator binding at the Activator Function (AF-2) site

[41]. The large and promiscuous ligand binding pocket of PXR

accepts molecules of widely varying sizes (Table S1), and is likely

capable of binding small molecules in multiple orientations.

Furthermore, movement of regions of this pocket may be translated

elsewhere in the protein to influence protein-protein interactions.

Thus, the identification of the bioactive conformation of a ligand

binding to PXR (and the effect it might have as an agonist, antagonist

or allosteric antagonist [10]) and development of a ligand alignment

based on these conformations represents a challenge for any

computational technique. A realistic ligand alignment, however, is

the basis for a reliable 3D-QSAR model. Computational methods

including QSAR (3D, 4D and 5D), pharmacophores and machine

learning classification models for PXR can assist in rapid prediction of

whether a compound is likely to be an agonist (activator), however

each method has its limitations and advantages (Table 2). For

example a previous study used human PXR activation data for 30

steroidal compounds (including 9 bile acids) to create a pharmaco-

phore with four hydrophobic features and one hydrogen bond

acceptor [27]. This pharmacophore contained 5a-androstan-3b-ol

(EC50 0.8 mM) which contains one hydrogen bond acceptor,

indicating that in contrast to the crystal structure of 17b-estradiol

(published EC50 20 mM) bound to human PXR with two hydrogen

bonding interactions [19], hydrophobic interactions may therefore be

more important for increased affinity [27]. This and other

pharmacophores have been used to predict PXR interactions for

antibiotics [35] which were verified in vitro, suggesting one use for

computational approaches in combination with experimental

methods.

To our knowledge there has been no comparative analysis of the

steroidal classes with respect to their use as PXR agonists. The use

of the Bayesian classification with 2D fingerprints represents a low

computational cost approach [42] which has been used frequently

with large molecule datasets [43–46]. Using 2D-molecular

fingerprint descriptors identified regions in the training set

molecules that were predominantly hydrophobic and that were

important for PXR activation. Substructures with free hydroxyls

as hydrogen bonding features were associated with compounds

that were not activators. This is in general agreement with other

studies which have used docking to try to help design out PXR

activation [38]. This model was able to successfully rank a large

test set (Table S3) of non-steroidal molecules, indicative that the

molecular descriptors adequately captured the global properties of

PXR agonists and suggests some utility.

The current study suggests that while it is generally possible to

create 3D-QSAR (CoMFA, CoMSIA, Catalyst) and 4D-QSAR

models that can be cross-validated, these models perform poorly

when used to predict external molecules. Only the 5D-QSAR model

generated displays some success in predicting external test set

steroidal compounds. Three main differences between the 5D-QSAR

and the 3D-QSAR studies that might contribute to the difference in

performance are the less rigid alignment using Symposar [40], the

possibility to present a ligand in more than one binding pose and the

better treatment of weak or non-binding compounds.

Pharmacophore models for the 4 classes of steroidal compounds

possessed some of the features in the published human PXR

crystal structures, however the models contained two or three

hydrophobic regions (rather than four as shown previous-

ly)[27,28,31] and one to two hydrogen bond acceptors or a

hydrogen bond acceptor and hydrogen bond donor (compared to

one hydrogen bond acceptor as shown previously). This might

suggest that the steroids evaluated occupy just a part of the ligand

binding pocket while larger molecules like rifampicin occupy most

of the binding pocket and have subsequently many more

interactions with the protein [17]. The addition of the excluded

volumes to the pharmacophores was shown to improve the

Predicting Interactions with Promiscuous Proteins
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Figure 3. Receptor model for PXR obtained using Raptor (beige-brown, hydrophobic properties; red, hydrogen bond acceptor;
blue, hydrogen-bond donor; and green, hydrogen bond donor/acceptor). The most active ligand of each of the four substrate classes
aligned to each other is displayed as sticks. A: Inner shell is displayed in surface representation, outer shell in wireframe. B: The bulky right portion of
the outer shell corresponds to the solvent exposed region of the ligand alignment. It is dominated by a mixed hydrogen bond donor/acceptor
character in agreement with solvent exposure.
doi:10.1371/journal.pcbi.1000594.g003
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correlation for the training sets and likely acts in a similar manner

to using the crystal structures in 5D-QSAR.

Consistent with the QSAR findings were those from docking

studies that though modest in success overall, fare much better

with individual classes of compounds. The classification was

performed using two similarity weighted scoring schemes: one

based on a highly potent compound 5a-androstan-3b-ol and the

other based on a structurally relevant compound 17b-estradiol.

The goal was to test the utility of biasing the scoring scheme with

either a structurally relevant compound or a functionally

significant compound.

However, in this case 17b-estradiol and 5a-androstan-3b-ol

share nearly 75% structural similarity (using MDL Keys and

Tanimoto similarity coefficient). The results from the classification

studies showed that biasing the scoring scheme with a structurally

relevant compound (17b-estradiol) produced classification rates

with sensitivity and specificity values averaging at 52% and 50%

respectively with slightly better prediction accuracy (Table 1).

These results unfortunately cannot be compared with our recent

docking study [47] as a different co-crystal ligand was used for the

scoring scheme. Although the structure biased scoring scheme

performed better among all the compounds, both the scoring

schemes performed equally well when individual classes were

considered. In the case of androstanes, 6 out of 11 compounds

were correctly predicted as activators in docking studies. 5a-

Androstan-3b-ol that had the lowest EC50 value (described earlier)

was predicted to be an activator in all structures. 5a-Androstan-

3b-ol binds with very high docking scores and has a hydrogen

bond interaction with His407, a key interaction of PXR

(Figure 1A). This interaction was consistent among all the

androstane activators. However, epitestosterone sulfate has an

EC50 of 3.39 mM and was misclassified in the combined model

using predictions from all structures as a non-activator. Docking

studies show that epitestosterone sulfate has a consistently reversed

docking pose (when compared with 5a-Androstan-3b-ol) in all the

models and the sulfate group is predicted to make a hydrogen

bond interaction with His407, as opposed to the steroid ester in

1M13 structure (Figure 1B). A few other misclassified activators

were docked in reversed poses and often had favorable hydrogen

bonding partners such as sulfates that probably influence the

binding mode of these steroids. This is a surprising and novel

finding of this study and other researchers should be aware of this

when docking similar compounds with this functional group.

Among the bile salts, all four activators were correctly predicted

and the ligands bind in a conserved mode with the steroid esters

participating in favorable interactions with the side chain of

His407 and Arg410, and the steroid rings with hydrophobic

groups such as Leu411, Leu239 and Phe281 (Figure 1C). The

pregnanes had similar activation patterns as the bile salts and

docking studies could predict 4 out of the 9 compounds correctly.

Among the misclassified compounds, levonorgestrol was predicted

to be an activator in three models, and a non-activator in three

models and hence could not be classified with high confidence.

Levonorgestrol has an EC50 of 4.30 mM and is predicted to have

favorable interactions with hPXR as shown in Figure 1D. Despite

this, the similarity weighted scoring functions generally performed

well in classifying activators as described in the examples above

and by the sensitivity values in Table 1. The paucity of available

PXR binding data may limit some of the insights from docking

experiments performed to date.

It is not surprising that CoMFA and CoMSIA do not perform

well as they use rigid alignments of the molecules. This is potentially

a seriously limitation given that the binding pocket of PXR may

accommodate multiple orientations of the steroids (Figure 1A vs.

Figure 1B). Theoretically, 4D- and 5-QSAR should perform better

by considering an ensemble of ligand conformations and in fact 4D-

QSAR does well within subsets (especially androstanes) but like all

methods extrapolates poorly. 5D-QSAR appears to perform the

best with the test set. Alignment independent methods like Catalyst

which can deal with structurally diverse molecules can generate

pharmacophores for the individual classes of compounds but their

inter-class predictivity is limited. Another alignment independent

method such as using 2D fingerprints and descriptors with the

Bayesian classification approach may represent a fast approach to

screen for potential PXR agonists, but like all methods their

applicability domain [48,49] is dependent on the training set. In this

case the set of steroids would be expected to limit the utility of such

models to a relatively narrow class of compounds, although it may

be picking up key features in more diverse molecules (Table S3)

suggesting overlap in the chemical space.

This study shows the inherent difficulty of producing predictive

ligand or structure-based computational models for PXR. Some of

Table 2. Summary of the different methods used in this study.

Method Advantages Limitations

Bayesian Classification with 2D Fingerprints
and interpretable descriptors

Computationally fast and cheap model generation,
illustration of features important for activity

Cannot deal with stereoisomers, not quantitative,
requires quite large training sets

3D-QSAR :Catalyst Can use structurally diverse molecules, can add excluded
volumes, quantitative, interpretable, starts from multiple
conformations.

Models may not be useful beyond a narrow compound
class, conformations may not be biologically relevant

3D-QSAR: CoMFA, COMSIA Widely used methods and useful for drug design
and analog modification.

Molecules require manual alignment and this may be a
major limitation in this study

4D-QSAR Considers an ensemble of different ligand
conformations to define the active conformation

Computationally expensive, Alignment strategy may be
a limitation

5D-QSAR Considers an ensemble of different ligand conformations
to define the active conformation in parallel, less rigid
alignment, better treatment of weak binders.

Computationally expensive, Alignment strategy may be
a limitation. For alignment crystal structures may not
amply take into account the protein flexibility however
in Raptor this is treated explicitly, exclusion areas could
be too harsh.

GOLD docking and scoring May provide potential binding orientation with respect
to pocket which could be verified by site directed
mutagenesis

Relatively slow, defining the binding site is key in such a
large pocket

doi:10.1371/journal.pcbi.1000594.t002
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the methods used are ligand alignment dependent while others are

alignment independent, and each has limitations when used with

flexible proteins. These computational models also confirm some

of the molecular features (hydrophobicity and hydrogen bond

acceptors) identified in previous models and structures, while using

a large quantitative dataset to create new QSAR, classification and

pharmacophore models to test docking and scoring. The study

represents an initial step comparing multiple methods focused on

steroidal compounds rather than a more diverse series of drug-like

molecules. Using a more diverse series of molecules would have

been expected to present even more difficulty for the alignment

dependent methods such as CoMFA and CoMSIA. There are also

many more commercial computational methods that could be

evaluated and compared, although we have used several 3D, 4D,

5D-QSAR methods, machine learning with 2D descriptors,

pharmacophore and GOLD docking and scoring methods in this

study. The results from these methods could be used in

combination as part of a consensus approach or Pareto

optimization [50]. The provision of the 115 molecule human

PXR dataset is potentially useful as a benchmark PXR set for

testing further methods in future. For example, flexible docking

methods [51] could be used as well as algorithms that could

differentiate multiple binding mechanisms [52].

In conclusion, there are many promiscuous proteins [34] where the

modeling of ligand-protein interactions is complicated by a large

binding site, multiple binding pockets, protein flexibility or all of the

preceding. We have applied several different computational approach-

es which could also be applied to other proteins like CYPs, transporters

and ion channels. This work is therefore more broadly applicable in an

attempt to predict whether molecules bind in such flexible proteins,

and which methods perform the best. Depending on the desired use of

such information, different modeling methods may be appropriate and

required. While 2D methods do not encode 3D information like shape

[53] they are fast and they can highlight important features likely

interacting with the protein. 3D-5D methods provide more shape

based information but they are fragile, with a narrow applicability

domain and may not be able to differentiate close analogs. Docking is

also limited unless key interactions with the protein are already known.

Our results suggest that even in the presence of multiple crystal

structures, the full range of protein motions may not be captured. As

we have previously shown, when docking classification predictions are

correct the binding conformation information alone may be instructive

[13]. This current analysis indicates that using many different

computational approaches (both alignment dependent and alignment

independent) may be necessary and expectations should be scaled

accordingly if some do not work with such promiscuous proteins. Even

with their respective limitations, these methods have provided some

useful information of general interest that could be applicable beyond

PXR.

Methods

Experimental Methodology and Datasets
Human PXR activation was determined by a luciferase-based

reporter assay as has been previously described [21,33,34]. The

datasets modeled in this study were collected by a consistent

protocol and have been previously published [31,54]. Experimen-

tal data for four classes of steroidal compounds, namely

androstanes, estratrienes, pregnanes and bile acids/ salts are

shown in Table S2.

In Silico Methodology: Docking and Scoring
All molecules described in Table S2 were used for docking

experiments. The molecules were docked into these six crystallized

structures of human PXR (PDB IDs 1M13, 1NRL, 1SKX, 2O9I,

2QNV and one structure co-crystallized with 17b-estradiol that is

not in the PDB identified here as EST). In all cases, the crystal

structure ligand was removed, and hydrogen atoms were added to

the amino acids. All amino acids within 6 Å of the co-crystallized

ligand were identified as the binding site. The docking program

GOLD (ver 4 [55]) was used for docking all compounds to the

binding sites of each PXR crystal structure. GOLD uses genetic

algorithm to explore the various conformations of ligands and

flexible receptor side chains in the binding pocket. Further, 20

independent docking runs were performed for each ligand. The

docked complexes were scored with goldscore [55] and then

rescored using similarity weighted scoring scheme (SWscore). For

each ligand, the best ranking conformation’s goldscore denoted by

Si was used to derive the SWscore shown in equation 1. The

similarity scores Wi were computed based on 2D similarity

encoded in MDL fingerprint keys calculated using Discovery

Studio 2.1 (Accelrys, San Diego, CA, USA). The Tanimoto

coefficient was used as the metric to compare the molecular

fingerprints. The coefficients varied between 0 and 1, where 0

meant maximally dissimilar and 1 coded for maximally similar.

The Tanimoto coefficient between fingerprints X and Y has been

defined to be: [number of features in intersect (A, B)]/[number of

features in union (A,B)], where A and B are two compounds.

So the SWscore is given by, SWscore = Wi*Si, where Wi was

the similarity score of compound i against 5a-Androstan-3b-ol

which had the best EC50 value of 0.8 mM for PXR or 17b-

estradiol which had a steroid core that was present in most of the

compounds. Further, the quality of the scoring function was

assessed using standard statistical indicators namely sensitivity

(SE), specificity (SP), overall prediction accuracy (Q) and Matthews

correlation coefficient (C) (Table 1) and were derived as described

previously [22].

In Silico Methodology: Machine Learning with 2D
Descriptors

Bayesian models were generated using Discovery Studio 2.1

(Accelrys, San Diego, CA) Laplacian-corrected Bayesian classifier

[37,42,43,45,56]. FCFP_6 fingerprints, AlogP, molecular weight,

number of rotatable bonds, number of rings, number of aromatic

rings, number of hydrogen bond acceptors, number of hydrogen

bond donors and molecular fractional polar surface area were

calculated from the input sdf file using the ‘‘calculate molecular

properties protocol’’. The ‘‘create Bayesian model protocol’’ was

used for model generation and a custom protocol for validation

(leave out 20% 100 times) was used.

In Silico Methodology: 5D-QSAR - Symposar and Raptor
5D-QSAR studies were performed using Raptor [40]. Raptor

includes the possibility of representing each ligand molecule as an

ensemble of conformations, orientations, stereoisomers and

protonation states (4D-QSAR), thereby reducing the bias in

identifying the bioactive conformer. In addition, it explicitly allows

for induced fit by a dual-shell representation of the three-

dimensional binding-site model, onto which the physicochemical

properties (hydrophobicity and hydrogen-bonding propensity) are

mapped (5D-QSAR). The inner shell is tailored using the most

potent ligand of the training set, the outer shell accommodates the

topology of all molecules from the training set. The adaptation of

both field and topology of the receptor surrogate to each ligand is

achieved by combining a steric adjustment to the topology of every

ligand and a term due to the attraction or repulsion between

ligand and receptor model. The latter is obtained by correlating

their physicochemical properties (hydrophobicity and hydrogen-
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bond propensity) in 3D space. Since the mapping of properties

onto the shells is not unambiguously determinable, different

models with similar predictive power can be identified. Raptor

generates a family of receptor models. Such model families may be

interpreted to represent the various configuration states of the true

biological receptor. The obtained binding affinities are averaged

over the individual models.

The underlying scoring function for evaluating ligand-protein

interactions includes directional terms for hydrogen bonding

(DGHbond), hydrophobicity (DGHphob) as well as terms for the

cost of the topological adaptation (DGIF) and the changes in

entropy (TDS) upon ligand binding: DGbinding =DGconstant +
DGHbond + DGHPhob 2 TDS + DGIF .

Experimental determination of binding affinity for weak

inhibitors is often prevented due to limited solubility or limited

sensitivity. Thus, only an upper limit (‘threshold’) for Ki values

is accessible. To prevent artificial assignment of affinities in a

QSAR study including weak binders, the Raptor concept

allows the use of a threshold option: the optimization

algorithm forces the model to reproduce the binding affinity

of the weak- and non-binding ligand molecules to be lower

than the experimental limit. Obviously, compounds which are

experimentally measured to bind weaker than a threshold Ki(t)

and are correctly classified during the model optimization, no

penalty is added to the lack-of-fit value, if, on the other hand,

the binding affinity of the ligand is predicted higher than the

threshold, the lack-of-fit function applies a penalty propor-

tional to DGbinding(t) 2 DGbinding.

4D sets of alternative conformations for each ligand as input for

Raptor were performed with Symposar [57]. In Symposar the

ligand molecules are superimposed onto one or several template

molecules, first, on the basis of fuzzy-like 2D substructure

similarities and, subsequently, in 3D space with respect to their

similarity of physicochemical fields. This two-step process

combines the speed of a 2D similarity search with the accuracy

and authenticity of protein-ligand interactions in 3D space. The

molecules are thereby treated as flexible and are fully relaxed at

the end of the alignment process.

Supporting Information

Table S1 Molecular descriptors for PXR crystal structure

ligands calculated with Discovery Studio ver 2.1 (Accelrys, San

Diego, CA).

Found at: doi:10.1371/journal.pcbi.1000594.s001 (0.01 MB PDF)

Table S2 Dataset of human PXR activation used for modeling

studies.

Found at: doi:10.1371/journal.pcbi.1000594.s002 (0.04 MB PDF)

Table S3 Test set [13] prediction with Bayesian model

(activator = EC50,100 mM, non-activator = EC50.100 mM).

Found at: doi:10.1371/journal.pcbi.1000594.s003 (0.02 MB PDF)

Table S4 CoMFA Test Set Predictions

Found at: doi:10.1371/journal.pcbi.1000594.s004 (0.02 MB PDF)

Table S5 To identify which outliers are bringing down the XV-

R2 of the CoMFA model, the following table lists the activities as

predicted by the cross-validated PLS model: The standard

deviation of the residuals in the following table is 0.825, and

accordingly, the two possible outliers are highlighted. The two

outliers are the only two inactives in the training set.

Found at: doi:10.1371/journal.pcbi.1000594.s005 (0.02 MB PDF)

Table S6 CoMFA outlier analysis.

Found at: doi:10.1371/journal.pcbi.1000594.s006 (0.02 MB PDF)

Table S7 Test set predictions for CoMFA and CoMSIA models.

Found at: doi:10.1371/journal.pcbi.1000594.s007 (0.02 MB PDF)

Table S8 Best model training set correlation (r) values and

model statistics (total cost and null cost) for Catalyst Hypogen

hypotheses.

Found at: doi:10.1371/journal.pcbi.1000594.s008 (0.01 MB PDF)

Table S9 Three-ordered atom alignments (based on the

steroidal core) used in the 4D- QSAR analysis.

Found at: doi:10.1371/journal.pcbi.1000594.s009 (0.01 MB PDF)

Table S10 External Validation test Set Predictions for 4D-

QSAR

Found at: doi:10.1371/journal.pcbi.1000594.s010 (0.02 MB PDF)

Table S11 Experimental versus predicted pEC50 values for 115

compounds binding to PXR divided into four different substrate

classes - 5D-QSAR.

Found at: doi:10.1371/journal.pcbi.1000594.s011 (0.03 MB PDF)

Text S1 In silico methodology: 3D-QSAR - CoMFA, CoMSIA,

In silico methodology: 3D-QSAR - Catalyst, In silico methodol-

ogy: 4D-QSAR, Supplemental results: CoMFA, CoMSIA and

Catalyst. Supplemental data - pharmacophores output files from

Discovery Studio Catalyst.

Found at: doi:10.1371/journal.pcbi.1000594.s012 (0.08 MB PDF)

Figure S1 Structural superposition of six PXR crystal structures

are shown in ribbon models and colored 1M13 (red), 1NRL

(orange), 1SKX (cyan), 2O9I (blue), 2QNV (yellow) and PXR-

EST (brown). The co-crystallized ligands are shown as sticks and

colored blue for rifampicin, orange for colupulone, dark green for

hyperforin, light green for N-{4-[2,2,2-trifluoro-1-hydroxy-1-

(trifluromethyl)-ethyl]phenyl}benzenesulfonamide and pink for

17b-estradiol.

Found at: doi:10.1371/journal.pcbi.1000594.s013 (0.68 MB TIF)

Figure S2 CoMFA models for androstanes. A 5a-Androstan-3b-

ol (pIC50 = 6.1) shown with the steric component of the CoMFA

model. Green denotes areas where steric bulk is favorable for

bioactivity while yellow shows areas where steric bulk is not

favored. B 5a-Androstan-3b-ol shown with the electrostatic

component of the CoMFA model. Blue denotes areas where

positive charge is favorable for bioactivity while red shows areas

where negative charge is favored.

Found at: doi:10.1371/journal.pcbi.1000594.s014 (0.22 MB TIF)

Figure S3 CoMSIA models for androstanes. A - 17b-dihy-

droandrosterone (pIC50 = 5.38) with the steric component of the

CoMSIA model. Blue denotes areas where steric bulk is favorable

for bioactivity while red shows areas where steric bulk is not

favored. B 17b-dihydroandrosterone with the hydrophobic

component of the CoMSIA model. Purple denotes areas where

hydrophobic groups are favorable for bioactivity while grey shows

areas where hydrophobic groups are not preferred. C 17b-

dihydroandrosterone with the hydrogen bond acceptor compo-

nent of the CoMSIA model. Blue denotes areas where acceptor

groups are favorable for bioactivity while red shows areas where

acceptor groups are not preferred.

Found at: doi:10.1371/journal.pcbi.1000594.s015 (0.24 MB TIF)

Figure S4 CoMFA models for pregnanes. A Pregnanedione

(pIC50 = 5.59) shown with the steric component of the CoMFA

model. Green denotes areas where steric bulk is favorable for

bioactivity while yellow shows areas where steric bulk is not

favored. B Pregnanedione shown with the electrostatic component

of the CoMFA model. Blue denotes areas where positive charge is
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favorable for bioactivity while red shows areas where negative

charge is favored.

Found at: doi:10.1371/journal.pcbi.1000594.s016 (0.26 MB TIF)

Figure S5 CoMSIA models for Pregnanes. A. Inactive training

set molecule Pregnenolone Carbonitrile (PCN) (pIC50 = 2.00) with

the steric component of the CoMSIA model. Blue denotes areas

where steric bulk is favorable for bioactivity while red shows areas

where steric bulk is not favored. B Inactive training set molecule

PCN shown with the electrostatic component of the CoMSIA

model. Blue denotes areas where positive charge is favorable for

bioactivity while red shows areas where negative charge is favored.

C. Inactive training set molecule PCN with the hydrophobic

component of the CoMSIA model. Purple denotes areas where

hydrophobic groups are favorable for bioactivity while grey shows

areas where hydrophobic groups are not preferred.

Found at: doi:10.1371/journal.pcbi.1000594.s017 (0.23 MB TIF)

Figure S6 A. CoMFA models for bile acids and bile salts.

Lithocholic acid acetate (pIC50 = 5.92) shown with the steric

component of the CoMFA model. Green denotes areas where

steric bulk is favorable for bioactivity while yellow shows areas

where steric bulk is not favored. B Lithocholic acid acetate shown

with the electrostatic component of the CoMFA model. Blue

denotes areas where positive charge is favorable for bioactivity

while red shows areas where negative charge is favored.

Found at: doi:10.1371/journal.pcbi.1000594.s018 (0.27 MB TIF)

Figure S7 CoMSIA models of bile acids and bile salts. Using the

PLS focused region, CoMSIA components were calculated. A.

Hyodeoxycholic acid (pIC50 = 4.42) shown with electrostatic

components of the CoMSIA model. Blue denotes areas where

positive charge is favorable for bioactivity while red shows areas

where negative charge is favored. B. Hyodeoxycholic acid with the

hydrophobic component of the CoMSIA model. Purple denotes

areas where hydrophobic groups are favorable for bioactivity while

grey shows areas where hydrophobic groups are not preferred. C.

Hyodeoxycholic acid with the hydrogen bond donor component

of the CoMSIA model. Blue denotes areas where donor groups are

favorable for bioactivity while red shows areas where donor groups

are not preferred.

Found at: doi:10.1371/journal.pcbi.1000594.s019 (0.31 MB TIF)

Figure S8 Catalyst PXR pharmacophores A. Bile acids, B.

Estratrienes, C. Androstanes, D Pregnanes pharmacophore

features represent Green = hydrogen bond acceptor, purple =

hydrogen bond donor, blue = Hydrophobic, gray = excluded

volumes.

Found at: doi:10.1371/journal.pcbi.1000594.s020 (0.15 MB TIF)

Figure S9 A. 4D-QSAR for androstanes showing the active

conformation of 5a-Androstan-3b-ol, B 4D-QSAR for pregnanes

showing the active conformation of pregnanolone, C 4D-QSAR

for bile acids/salts showing the active conformation of lithocholic

acid acetate.

Found at: doi:10.1371/journal.pcbi.1000594.s021 (0.19 MB TIF)

Figure S10 5D-QSAR Experimental versus predicted pEC50

values for 115 compounds binding to PXR. Training set

compounds are displayed in green, test set compounds in red.

Threshold compounds are placed at an experimental pEC50 value

of 2 to better separate them visually from the other molecules.

Found at: doi:10.1371/journal.pcbi.1000594.s022 (0.11 MB TIF)
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