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Abstract

The evolution of cooperation described in terms of simple two-person interactions has received considerable attention in
recent years, where several key results were obtained. Among those, it is now well established that the web of social
interaction networks promotes the emergence of cooperation when modeled in terms of symmetric two-person games. Up
until now, however, the impacts of the heterogeneity of social interactions into the emergence of cooperation have not
been fully explored, as other aspects remain to be investigated. Here we carry out a study employing the simplest example
of a prisoner’s dilemma game in which the benefits collected by the participants may be proportional to the costs
expended. We show that the heterogeneous nature of the social network naturally induces a symmetry breaking of the
game, as contributions made by cooperators may become contingent on the social context in which the individual is
embedded. A new, numerical, mean-field analysis reveals that prisoner’s dilemmas on networks no longer constitute a
defector dominance dilemma—instead, individuals engage effectively in a general coordination game. We find that the
symmetry breaking induced by population structure profoundly affects the evolutionary dynamics of cooperation,
dramatically enhancing the feasibility of cooperators: cooperation blooms when each cooperator contributes the same cost,
equally shared among the plethora of games in which she participates. This work provides clear evidence that, while
individual rational reasoning may hinder cooperative actions, the intricate nature of social interactions may effectively
transform a local dilemma of cooperation into a global coordination problem.
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Introduction

Portuguese is no exception: Like any other language, it has

many proverbs and popular sayings. One of them states something

like: I have already contributed to that charity [1], concerning originally

situations in which individuals are faced with the decision of

offering (or not) a contribution to a common venture, the

expression above meaning ‘‘no’’. Interestingly, the amount given

is never stated. It turns out that, quite often, we are confronted

with situations in which the act of giving is more important than

the amount given. Let us keep with a charity event, in which some

celebrities are invited to participate. Typically their appearance is

given maximal audience, and they are shown contributing a

seemingly large amount of money to the charity’s cause. This offer

is aimed at stimulating the contribution of many to the same

charity, and indeed this mechanism of ‘‘celebrity participation in

charities’’ is common, and presumably effective. But what is the

relevance of the amount contributed by the celebrity? It is

certainly impressive to many, despite being, most likely, a small

contribution, both in face of the celebrity’s wealth and also in what

concerns the overall amount accumulated. But it does induce,

hopefully, a large number of (much smaller) contributions from

anonymous (non-celebrities, the overwhelming majority) charity

participants, who feel compelled to contribute given the fact that

their role model (the celebrity) contributed. In other words, the

majority copies (imitates) the act of giving, but certainly not the

amount given.

Nowadays, web-signed petitions are also examples of collective

decisions which, often, benefit from the fact that some well-

known people adhere to the petition’s cause. Besides those who

are fully aware and agree with the cause, there are also those who

sign the petition simply because they admire someone who has

signed the petition, again copying the attitude. Many other

examples from real life could be provided along similar lines,

from trivia, to fads, to stock markets, to Humanitarian causes up

to the salvation of planet Earth [2–4]. From a theoretical

perspective, many of these situations provide beautiful examples

of public goods games [5,6] (PGG) which are often hard to

dissociate from reputation building, social norms and moral

principles [7–11]. This intricate interplay reflects the many-body

nature and multi-level complexity of the interactions among the

‘‘social atoms’’ [12].

The simplest PGG involves two persons. Both have the

opportunity to contribute a cost c to a common pool. A Cooperator

(C) is one who contributes; otherwise she is a Defector (D). The total

amount is multiplied by an enhancement factor F and equally

shared between the two participants. Hence, player i (i = 1, 2) using

strategy si (si = 1 if C, 0 if D) gets a payoff Pi~Fc s1zs2ð Þ=2{csi
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from this game, leading to the following payoff matrix

C D

C

D

F{1ð Þ c Fc=2{c

Fc=2 0

 !
ð1Þ

For Fƒ1 Ds dominate unconditionally. For F = 2 no strategy is

favored in well mixed populations (neutral drift); yet, for Fw2, it is

better to play C despite the fact that, in a mixed pair, a D collects a

higher payoff than a C. For 1vFv2 the game is an example of

the famous symmetric one-shot two-person prisoner’s dilemma

[13], on which many central results have been obtained over the

years, in particular in the context of evolutionary game theory

[14,15]: In 1992 [16] it has been explicitly shown that population

structure matters, despite its importance being recognized already

by Darwin, albeit in the form of Group selection [17,18]. It clearly

makes a difference whether everybody is equally likely to interact

with anybody else in the population or not (see also [19]). In 2004

we learnt that evolutionary game theory in finite populations may

behave very differently from that on infinite populations [20], even

in the absence of any population structure, Evolutionarily Stable

Strategies (ESS) becoming population size dependent. In 2005 we

learnt that heterogeneous population structures play an important

role in the evolution of cooperation under the prisoner’s and other

social dilemmas [21,22], a result which spawned a number of

investigations [23–29] (see also Szabó and Fáth for a recent review

[30]). In 2006 a mathematical condition was obtained for Cs to

become advantageous on populations structured along the links of

homogeneous networks [31], subsequently confirmed making use

of inclusive fitness methods [32] for a limited subset of game payoff

matrices. This result, valid in the limit of weak selection, has also

unraveled an important feature of evolutionary game theoretical

studies: The outcome of cooperation depends on the evolutionary

dynamics adopted, dictating how individual strategy evolves from

generation to generation. Furthermore, evolutionary game

dynamics on populations structured along multiple networks has

been explored [33,34], as well as the mechanisms which favor

cooperation under adaptive population structures have been

identified, both for non-repeated [35–43] and repeated games

[44,45]. These results consubstantiate and keep stimulating an

enormous amount of research work.

Common to all these studies are the settings underlying the

social dilemma: in the conventional view, every C pays a fixed cost

c per game, providing the same benefit b to the partner. However,

if what matters is the act of giving and not the amount given, then

there is no reason to assume that everybody contributes the same

cost c to each game. Depending on the amount of each individual

contribution, the overall result of the evolutionary dynamics may

change. The two person game introduced above provides not only

the ideal ground to introduce such a diversity of contributions, but

also an intuitive coupling between game dynamics and social

embedding: The first (second) individual contributes a cost c1 (c2) if

playing C and nothing otherwise. Hence, player i (i = 1, 2) now

gets the following payoff from this game:

Pi~F c1s1zc2s2ð Þ=2{cisi ð2Þ

reflecting the symmetry breaking induced by possibly different

contributions from different cooperating individuals. This poses a

natural question: Who will acquire an evolutionary edge under

these conditions?

Often the amount that each individual contributes is correlated

with the social context she is actually embedded in [28,46,47].

Modern communities are grounded in complex social networks of

investment and cooperation, in which some individuals play

radically different roles and interact more and more often than

others. Empirical studies have demonstrated that social networks

share both small-world properties and heterogeneous distribution

of connectivities [48–50]. In such heterogeneous communities,

where different individuals may be embedded in very different

social environments, it is indeed hard to imagine that every C will

always provide the same amount in every game interaction, hence

reducing the problem to the standard two-person prisoner’s

dilemma studied so far. In the context of N-person games played

in prototypical social networks, it has been found that the diversity

of contributions greatly favors cooperation [28]. However, and

similar to the relation between two-body and many-body

interactions in the Physical Sciences, N-person public goods

games have an intrinsic complexity which cannot be anticipated

from two-person games: In the words of late William Hamilton,

‘‘The theory of many person games may seem to stand to that of two-person

games in the relation of sea-sickness to a headache’’ [51].

Here, and besides the conventional scenario in which every C
contributes the same cost c to each game she participates, we shall

also explore the limit in which every C contributes the same

overall amount c. However, this amount is shared between all

games she participates, which are defined by the social network in

which the players are embedded. For instance, c may be

interpreted as the availability or the amount of resources each

individual has to dedicate to all her commitments. Hence, the

contribution to each game will depend now on the social context

(number of partners) of each C, and heterogeneity will foster a

symmetry breaking of pair-wise interactions, as two individuals

may contribute different amounts to the same game. In this sense,

cooperation will be identified with the act of giving and no longer

with the amount given.

Results

Figure 1 shows the final fraction of Cs for different classes of

population structures and different contribution paradigms. At

each time-step, every individual engages in a 2-person PGG with

each of her neighbors. The accumulated payoff resultant from all

Author Summary

Humans contribute to a broad range of cooperative
endeavors. In many of them, the amount or effort
contributed often depends on the social context of each
individual. Recent evidence has shown how modern
societies are grounded in complex and heterogeneous
networks of exchange and cooperation, in which some
individuals play radically different roles and/or interact
more than others. We show that such social heterogeneity
drastically affects the behavioral dynamics and promotes
cooperative behavior, whenever the social dilemma
perceived by each individual is contingent on her/his
social context. The multiplicity of roles and contributions
induced by realistic population structures is shown to
transform an initial defection dominance dilemma into a
coordination challenge or even a cooperator dominance
game. While locally defection may seem inescapable,
globally there is an emergent new dilemma in which
cooperation often prevails, illustrating how collective
cooperative action may emerge from myopic individual
selfishness.
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interactions is associated with reproductive fitness or social success,

which determines the behavior in the next generation [15]. We

adopt the so-called pairwise comparison rule [52–54] for the social

learning dynamics: Each individual copies the behavior of a

randomly chosen neighbor with a probability which increases with

the fitness difference (see Methods for details).

Figure 1a shows the outcome of evolving the conventional 2-

person PD (1,F,2), in which case each player contributes a fixed

amount c to each game she participates. Different population

structures are considered, one associated with a (homogeneous)

regular network (REG), the other with a (strongly heterogeneous)

scale-free network (SF). Real social networks fall somewhere

between these limits [55], and hence we also investigate a third

class of population structure, represented by an exponential

network (EXP), exhibiting a level of heterogeneity intermediate

between the previous two.

The existence of a minority of highly connected individuals in

SF networks (line and circles) allows the population to preserve

high cooperative standards, while on homogeneous networks (line

and filled squares) Ds dominate for the entire range of parameters

[21,22], as a result of the pairwise comparison rule adopted [56].

Heterogeneous networks thus pave the way for the emergence of

cooperation. Highly connected individuals (i.e. hubs) work as

catalysers of cooperative behavior, as their large number of

interactions allows them to accumulate a high fitness. This, in

turn, leads them to act as role models for a large number of social

ties. To the extent that hubs are Cs, they influence the vast

majority of the population to follow their behavior [23]. Clearly,

this feature has a stronger impact on SF networks than on EXP
networks, the difference between these two types of networks

stemming from the presence or absence, respectively, of the

preferential attachment mechanism.

The results in Figure 1a are based on the assumption that each

C contributes the same cost c to each game she plays – which we

denote by conventional prisoner’s dilemma (CPD). This assumption is

relaxed in Figure 1b where Cs now equally distribute the same cost

c among all games they play – the regime we denote by distributed

prisoner’s dilemma (DPD). Figure 1b shows what happens in this

limit. While on homogeneous networks the fate of cooperation is

the same as before 2 it amounts to rescaling of the intensity of

selection 2 heterogeneity in the amount contributed by each

individual to each game creates a remarkable boost in the final

number of Cs for the entire range of F, which increases with

increasing heterogeneity of the underlying network. Comparison

with the results of Figure 1a shows that under DPD preferential

attachment plays a prominent role, since it constitutes the network

wiring mechanism distinguishing EXP networks from SF
networks. Changing from CPD to DPD induces moderate boosts

in the equilibrium fraction of Cs on EXP networks, but a

spectacular boost of cooperation on SF networks: Hubs become

extremely influential under DPD.

In order to understand the mechanism underlying the

population-wide boost of cooperation obtained, we consider a

prototypical element of a heterogeneous network (similarly to what

has been done in [28,30,31]) as shown in Figure 2, and investigate

the microscopic balance determining individual change. In partic-

ular, we investigate under which conditions the central C on the

left – a stereotypical hub –becomes advantageous, that is,

accumulates a higher fitness than any of her neighbors (see

Figure 2). We consider a C-hub with z1 links (k1 of which are Cs,

left in Figure 2) and a D-hub with z2 links (k2 of which are Cs, right

in Figure 2). We assume, for simplicity, that all neighbors of the C
hub have z1L links each (k1L of which are Cs), whereas all

neighbors of the D hub have z2L links (k2L of which are Cs). The

remaining nodes have z0 links, where z0 stands, e.g., for the

average connectivity of the population. We implicitly assume that

the neighbors of the hubs have smaller connectivities, and

consequently we call them leaves.

The conditions are explicitly provided in Figure 2 for both DPD
and CPD. In both paradigms, for the C-hub to invade the D-hub (or

any of her D-leaf neighbors) depends crucially on the difference

between the number k1 of C-neighbors of the C-hub and the number k2

(k1L) of C-neighbors of the D-hub (D-leaf). In both DPD and CPD the

invasion threshold is always smaller for leaf invasion compared to

hub invasion. Furthermore, the threshold for invasion is also smaller

under DPD compared to CPD. Finally, as one would expect, all

thresholds coincide when networks are homogeneous, the threshold

conditions making it harder for invasion to occur in these networks.

As a result, on heterogeneous networks, the conditions which render

a C-hub advantageous with respect to a D-hub are more stringent

than those associated with invasion of a neighbor D-leaf, which leads

to an invasion pattern in which leaves are invaded before hubs [23].

Furthermore, one should not overlook that successful Ds tend to

place other Ds in their neighborhood [23] which acts as a negative

feedback mechanism reducing their fitness in time. On the contrary,

Figure 1. Fraction of Cooperators as a function of the
enhancement factor F. Upper panel: Under CPD Cooperation is able
to dominate on Scale-free networks (lines and circles), unlike what
happens on regular structures (lines and filled squares). On exponential
networks, intermediate levels of cooperation emerge, as a result of the
heterogeneity of such topologies. Lower panel: Under DPD the
advantage of Cs is dramatically enhanced when the same cost is
evenly shared among each one’s neighbors. The results were obtained
for networks of 103 nodes and an average degree z = 4. As expected,
abandoning the well-mixed regime leads to a break-up of neutrality for
F = 2.
doi:10.1371/journal.pcbi.1000596.g001
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successful Cs see their fitness increase in time, as more Cs join their

neighborhood, reinforcing their fitness.

The impact of the DPD paradigm, however, is most dramatic if

one takes into consideration that the condition for the C-hub to

become advantageous becomes less stringent the larger her

connectivity. On the contrary, under the CPD paradigm, the

cost of cooperation plays a major role in the overall fitness of the

C-hub, which means that the larger her connectivity, the harder it

will be for the C-hub to become advantageous with respect to any

of her D-neighbors. Finally, the threshold conditions in Figure 2 also

show that under DPD the range of game interaction is enlarged, as

second neighbors of a hub also play a role in defining the invasion

thresholds, unlike what happens under CPC. The insights

provided by the prototypical configuration in Figure 2 become

more explicit if one computes the outcome of cooperation in SF
networks for social networks with different average connectivities

and both contributive schemes (Figure 3). As the average degree

(z ) becomes sizable cooperation will inevitably collapse [21,23],

but while cooperation can hardly resist for z .10 in the case of

CPD, under DPD Cs survive for values of z roughly four times

larger. This is of particular importance given that social networks

often exhibit high average connectivity values (2ƒzƒ100) [48]:

Cooperation prevails under a DPD contributive system, even on

non-sparse static network structures. For intermediate regimes of

heterogeneity (EXP networks), under DPD cooperation is also

sustained up to higher values of z, but to a lesser extent: Once

more, the impact of large hubs resulting from the preferential

attachment mechanism underlying SF networks plays an impres-

sive role under DPD.

The previous analysis allowed us to understand in which way

heterogeneous networks, by inducing a symmetry breaking into

the game dynamics, may favor cooperation. Furthermore,

Figures 1 and 3 show how this indeed happens when one starts

from initial conditions in which Cs occupy the nodes of a network

with 50% probability. This approach, which is recurrent in

numerical studies of evolutionary game dynamics, contrasts with

Figure 2. Invasion conditions for a hub-cooperator. From the definitions of the parameters in the figure one obtains that DPD leads
systematically to less stringent conditions for invasion of the C (squares) occupying the left hub, explaining the increased success of Cs under DPD.
On general heterogeneous populations with average connectivity z0, conditions a) and b), as well as c) and d), show that it is easier to invade a D
(circles) on a leaf than in the center of another hub. This invasion creates a positive feedback resulting from cooperative ‘‘leaves’’ surrounding the left
hub (k1 - k2 increases) allowing a subsequent invasion of the right hub.
doi:10.1371/journal.pcbi.1000596.g002

Figure 3. Fraction of Cooperators as a function of the average
degree z of the social network. Cooperation is able to dominate on
sparse networks. Yet, only under DPD, combined with high levels of
heterogeneity of Scale-free networks, one observes the maintenance of
cooperative behavior in highly connected populations. The results were
obtained for networks of 103 nodes and F = 1.8.
doi:10.1371/journal.pcbi.1000596.g003
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the more conventional mean field analysis on which evolutionary

game theory is rooted. There, the fact that all Cs and Ds in an

infinite population have the same fitness, leads to a simple

replicator equation in which the rate of change of Cs is

proportional to a Gradient of selection G(x), the interior roots of

which dictate possible coexistence or coordination equilibria [14].

Here we shall define the finite population analog of G(x), valid for

any population size and structure (see Methods). In doing so we

overlook the microscopic details of the competition and self-

organization of Cs and Ds, but we gain an overview of the game

dynamics in a mean-field perspective. G becomes positive whenever

cooperation is favored by evolution and negative otherwise.

Whenever G = 0, selection becomes neutral and evolution

proceeds by random drift. Naturally, G will depend implicitly on

the population structure, on the fraction x of Cs and also on how

these Cs are spread in the network. In Figure 4 we plot G(x) as a

function of x, for different values of F and different game

paradigms (CPD and DPD). Each configuration, here character-

ized by x, was generated assuming that each C (D) has, at least,

one C (D) in her neighborhood, replicating the conditions

observed in all numerical simulations. This is an important point,

as strategy assortation constitutes a characteristic feature of

evolutionary game dynamics in structured populations.

Figure 4 shows that, unlike what happens on homogeneous

networks, where Ds are always advantageous (not shown), SF
networks effectively transform a prisoner’s dilemma into a different

game. Figure 4a indicates that, in the case of CPD, introducing

diversity in roles and positions in the social network effectively

leads to a coordination game [57,58], characterized (in an infinite,

well-mixed population) by a critical fraction x* above which Cs are

always advantageous (G,0 for x,x* and G.0 for x.x*). This

result provides a powerful qualitative rationale for many results

obtained previously on heterogeneous networks under strong

selection [21,22,28] in which degree heterogeneity is shown to

induce cooperative behavior, inasmuch as the initial fraction of Cs

is sufficient to overcome the coordination threshold. Moreover,

Figure 4b shows that changing the contributive scheme from CPD
to DPD in SF population structures acts to change a prisoner’s

dilemma effectively into a Harmony game where Cs become

advantageous irrespectively of the fraction of Cs (x*<0).

Discussion

The present study puts in evidence the impact of breaking the

symmetry of cooperative contributions to the same game. On

strongly heterogeneous networks, the results of Figures 1b and 3

provide an impressive account of the impact of this diversity of

contributions. Overall, our results strongly suggest that whenever

the act of cooperation is associated to the act of contributing, and

not to the amount contributed, cooperation blooms inasmuch as the

structure of the social web is heterogeneous, leading individuals to

play diverse roles. The multiplicity of roles and contributions

induced by the social structure effectively transforms a local

cooperative dilemma into a global coordination game [57]. The

latter embodies an exemplary representation of the social contracts

[57] found in several instances of animal [59,60] and human [61,62]

collective dilemmas. This work provides additional evidence that,

while locally, cooperation can be understood as a prisoner’s

dilemma, globally, the possibilities opened by the intricate nature

of collective dynamics of cooperation [63] often lead to a dynamical

portrait that is effectively described by a coordination dilemma

instead of a defection dominance dilemma [57].

Methods

Each individual is assigned to a node of a network, whereas

interactions are represented by links between nodes. In each

generation, all pairs of individuals directly connected, engage in a

single round of the game. As usual, the accumulated payoff from

all interactions emulates the individual fitness (fi) or social success and

the most successful individuals will tend to be imitated by their

neighbors. Such behavioral evolution is implemented using

the pairwise comparison rule [52,54]: at each time step an

individual x will adopt the strategy of a randomly chosen neighbor

y with a probability given by the ubiquitous Fermi distribution

p~ 1ze{b fy{fxð Þ
� �{1

from statistical physics [52,54], in which

b, the inverse temperature in Physics, translates here into noise

associated with errors in decision making. For high values of b we

obtain the imitation dynamics commonly used in cultural

evolution studies whereas for b%1 evolution proceeds by random

drift. The strong selection regime that we adopt here (b = 10.0)

enhances both the influence of the payoff values in the individual

fitness and the role played by the social network. It is noteworthy

that a detailed study of the impact of b on game dynamics on

heterogeneous networks is still lacking, unlike what happens on

homogeneous networks [52,54,64]. The results in Figures 1 and 3

were obtained for populations of N = 103 individuals starting with

50% of Cs randomly distributed on the network. In all cases we

used the value c = 1 for the cost of cooperation. The scale-free

networks were generated using a direct implementation of the

Figure 4. Gradients of selection G(x). a) Under the CPD paradigm,
Scale-free networks lead to the appearance of an unstable equilibrium
x* (open circles) and a scenario characteristic of a coordination game,
paving the way for cooperator dominance for frequencies above x*. b)
Under DPD, G(x) becomes positive for (almost) all values of x (x*,0.004
for F = 1.50 and x*,0.006 for F = 1.25), leading to a scenario
characteristic of a Harmony game, where cooperators dominate
unconditionally. In both panels the networks employed had 500 nodes
and an average degree z = 4, whereas b = 10.0.
doi:10.1371/journal.pcbi.1000596.g004
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Barabási-Albert (BA) model, based on growth and preferential

attachment [65], whereas exponential networks were generated

replacing the preferential attachment by uniform attachment in

the previous model [49]. Different mechanisms could be used

[38,42,48,66–68] to generate SF degree distributions portraying

features not present in the BA model. In general, however, SF
networks lead to evolutionary dynamical behaviors which are

similar to those observed in BA networks [24,27,42,68–70], which

may also depend on the way individual fitness is defined

[23,29,71,72]. The equilibrium fraction of Cs results from

averaging over 2000 generations after a transient period of 105

generations and each point in Figures 1 and 3 corresponds to an

average over 103 runs and networks. The results are independent

from the updating strategy (synchronous, asynchronous), popula-

tion size (N .500) and robust to the existence of a small number of

mutations in each time-step. In Figure 4, gradients of selection

were obtained by calculating G xð Þ~Tz xð Þ{T{ xð Þ, where

Tz xð Þ T{ xð Þð Þ is the average frequency of transitions increasing

(decreasing) the number of Cs for each random configuration with

xN Cs. G(x) represents a finite population analogue (using the

pairwise comparison rule [52,54]) of the gradient of selection in

infinite well-mixed populations G xð Þ~x 1{xð Þ fC{fDð Þ [14],

where fC and fD are the fitness values of Cs and Ds. Each value

was obtained by averaging over 105 different randomly generated

configurations and networks.
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