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Abstract

Transitive inference, class inclusion and a variety of other inferential abilities have strikingly similar developmental profiles—
all are acquired around the age of five. Yet, little is known about the reasons for this correspondence. Category theory was
invented as a formal means of establishing commonalities between various mathematical structures. We use category
theory to show that transitive inference and class inclusion involve dual mathematical structures, called product and
coproduct. Other inferential tasks with similar developmental profiles, including matrix completion, cardinality, dimensional
changed card sorting, balance-scale (weight-distance integration), and Theory of Mind also involve these structures. By
contrast, (co)products are not involved in the behaviours exhibited by younger children on these tasks, or simplified
versions that are within their ability. These results point to a fundamental cognitive principle under development during
childhood that is the capacity to compute (co)products in the categorical sense.
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Introduction

Children acquire various reasoning skills over remarkably

similar periods of development. Transitive Inference and Class

Inclusion are two behaviours among a suite of inferential abilities

that have strikingly similar developmental profiles—all are

acquired around the age of five years [1]. For example, older

children can infer that if John is taller than Mary, and Mary is taller

than Sue, then John is taller than Sue. This form of reasoning is called

Transitive Inference. Older children also understand that a

grocery store will contain more fruit than apples. That is, the

number of items belonging to the superclass is greater than the

number of items in any one of its subclasses. This form of

reasoning is called Class Inclusion. These two types of inference

appear to have little in common. Transitive Inference typically

involves physical relationships between objects, while Class

Inclusion involves abstract relative sizes of object classes.

Nonetheless, explicit tests of these and other inferences for a

range of age groups revealed that success was attained from about

the median age of five years [1].

Since Piaget, decades of research have revealed important clues

regarding the development of inference, yet little is known about

the reasons underlying these correspondences (see [2] for reviews).

A common theme in two recent proposals is the computing of

relational information [3,4]. In regard to Relational Complexity

theory [3], the correspondence between commonly acquired

cognitive behaviours is based on the maximum arity of relations

that must be processed (e.g., tasks acquired after age five involve

ternary relations, i.e., relations between three items). In regard to

Cognitive Complexity and Control theory [4], the correspondence is

based on the common depth of relation hierarchies. Although a

relational approach to cognitive behaviour has a formal basis in

relational algebra [5], certain assumptions must be made about the

units of analysis. For tasks as diverse in procedure and content as

Transitive Inference and Class Inclusion, it is difficult to see how

the analysis of one task leads naturally to the other. For Relational

Complexity theory, Transitive Inference is considered to involve

the integration of two binary relations between task elements into

an ordered triple, or ternary relation; whereas Class Inclusion is

regarded as the integration of three binary relations between three

sets of elements (one complement and two containments) into a

ternary relation [2,3]. For Cognitive Complexity and Control

theory, Transitive Inference involves relations over items; whereas

Class Inclusion involves relations over sets of items.

This theoretical difficulty is symptomatic of the general problem in

cognitive science where the basic components of cognition are

unknown. In the absence of such detailed knowledge, cognitive

modelers have been forced to assume a particular representational

format (e.g., symbolic [6], or subsymbolic [7]). This approach,

however, does not lend itself to the current problem, because the

elements of Transitive Inference and Class Inclusion tasks (i.e., objects

and classes of objects) do not share a common basis. Understandably,

then, these sorts of behaviours have tended to be studied in detailed

isolation, narrowing the scope for identifying general principles.

Category theory was born out of a desire to establish formal

commonalities between various mathematical structures [8,9], and

has since been applied to the analysis of computational structures

in computer science (see [10–12]). The seminal insight was a shift
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from objects as the primary focus of analysis to their transforma-

tions. Contrast, for instance, sets defined in terms of (the properties

of) the objects they contain—Set Theory—against sets defined in

terms of the morphisms that map to or from them—Category

Theory [13]. This insight motivates our categorical approach to

the analysis of inference, and our way around the current impasse.

In cognitive science, several authors have used category theory for

a conceptual analysis of space and time [14–16], though we know

of only one other application that has modeled empirical data

[17]. Since our application of category theory to cognitive

behaviour is novel, we first introduce the basic category theory

constructs needed for our subsequent analysis of Transitive

Inference, Class Inclusion, and other paradigms. The analysis

begins with a brief introduction of the sort of data our approach is

intended to explain, which primarily concerns contrasts between

younger and older children relative to age five, and correlations

across paradigms. Finally, we extend our categorical approach to

more complex levels of inference. Our main point is that, despite

the apparent lack of resemblance, all these tasks are formally

connected via the categorical (co)product, to be defined below.

The significance of this result is that it opens the door to an

entirely new (empirical) approach to identifying general principles,

particularly in regard to the development of inferential abilities,

that are less likely to be revealed by standard modeling methods.

Methods

In this section, we provide the basic category theory definitions

and constructs used in our subsequent analysis of various

inferential abilities. Detailed introductions to category theory are

found in [12,18,19]. Category theory is abstract in the sense that

its entities may not refer to particular concrete objects, such as

system states, or task stimuli, or even other mathematical objects.

This sort of abstractness is a strength of the theory, permitting one

to see the formal connection between otherwise disparate fields.

Nonetheless, this abstractness may also be a source of bewilder-

ment to those unfamiliar with this approach. Hence, throughout

this section, we provide specific examples of category theory

concepts for didactic purposes in some cases, and as a prelude to

our analysis in others.

Category
A category C consists of:

N a class jCj of objects (A,B, . . . );

N a set C(A,B) of morphisms (also called arrows, or maps), from

A to B, where for each morphism f : A?B indicates that A is

the domain, or source and B is the codomain, or target of f (i.e.,

A~dom(f ) and B~cod(f ));

N a morphism 1A : A?A called the identity for each object A;

and

N a composition operation, denoted ‘‘0’’, of morphisms f : A?B
and g : B?C, written g0f : A?C, satisfying the laws of:

– unity, where f 01A~f ~1B0f , for all f : A?B; and

– associativity, where h0(g0f )~(h0g)0f , for all f : A?B,

g : B?C and h : C?D.

One immediately recognizable example is the category Set,
which has sets for objects and functions for morphisms, where

the identity morphism 1A is the identity function and the

composition operation is the usual function composition

operator ‘‘0’’. Another, less obvious, example is the category

of Euclidean spaces, Euc, which has Rn spaces as objects, where

n is a natural number; m|n matrices for morphisms

f : Rm?Rn, where the identity matrix is the identity morphism;

and matrix multiplication is the composition operation. From a

cognitive perspective, an object may be a cognitive state, set of

states, or some other entity employing symbolic, or numerical

representations, and a morphism may be some cognitive process

transforming one state to another. At present, we do not

prejudge the cognitive nature of objects and morphisms for the

reasons already mentioned.

Categories exist for a diverse range of structures, with objects

more complex than sets of elements, and structure-preserving

morphisms more complex than associations. For example, the

following morphism

(<,z)�exp?(<,|) ð1Þ

maps from object (<,z) to object (<,|), where each object

consists of the set of real numbers with additional internal

structure (i.e., a rule—respectively, addition and multiplication—

for combining two numbers into another number). This morphism

maps real numbers x to ex, where ‘‘+’’ in the domain corresponds

to ‘‘|‘‘ in the codomain. Structure is preserved by exp, because

the transformation of the result of applying the rule to the numbers

is the same as the result of applying the corresponding rule to the

transformed numbers. In this case, exzy~ex|ey, for all x,y[<.

This morphism and its (co)domain objects are members of the

category of semigroups, which has semigroups for objects and

semigroup homomorphisms for arrows. A semigroup is just a set S
with an associative binary operation �, and a semigroup

homomorphism, f : (S, � )?(T ,#), preserves an object’s internal

structure as illustrated: that is, f (s1 � s2)~f (s1)# f (s2). Hence,

�e�x�p is a semigroup homomorphism. But, not every function is a

morphism in this category. For example, inc (i.e., increment by 1)

(<,z)�inc?(<,z) ð2Þ

is not a semigroup homomorphism, because 1z(xzy)=(1zx)z
(1zy). These examples illustrate that although category theory is

abstract, it is not arbitrary. So, statements derived from the theory are,

in principle, testable and falsifiable.

Dual
We need to introduce the notion of the dual Cop of a category C.

Cop is essentially C with all arrows reversed. That is, the set of

Author Summary

Children acquire various reasoning skills during a remark-
ably similar period of development. Yet, the reasons for
these similarities are a mystery. Two examples are
Transitive Inference and Class Inclusion, which develop
around five years of age. Older children understand that if
John is taller than Mary, and Mary is taller than Sue, then
John is also taller than Sue. This form of reasoning is called
transitive inference. Older children also understand that
there are more fruits than apples. This inference is called
class inclusion. We explain why these and a variety of other
abilities show the same development using a branch of
mathematics called category theory. Category theory
reveals that they have related underlying structure. So,
despite their apparent superficial differences these rea-
soning abilities have similar profiles of development
because they involve related sorts of processes.
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objects in Cop is the same as in C; there is a one-to-one

correspondence between arrows in C and Cop such that the arrow

f : A?B in C corresponds to the arrow f : B?A in Cop; and the

composition f 0 g~g0f : C?A is defined in Cop exactly when

g0f : A?C is defined in C. A definition or a proposition and

proof about C gives rise to its dual in Cop by taking the original

definition/proposition/proof and reversing all the arrows. Any

valid argument about the arrows in C is valid for the dual

argument in Cop, so proving or defining something in C gives you

something for free in Cop. Obviously, reversing an arrow twice will

return the original arrow, so Copop

~C.

Some examples of duals involve certain types of morphisms,

called epimorphisms, monomorphisms and isomorphisms. A

morphism f : A?B is an epimorphism, if for any pair of morphisms

i,j : B?D, i0f ~j0f implies i~j. That is, f is an epimorphism if

whenever the following diagram commutes, i~j,

ð3Þ

(Commutative diagrams afford proof by arrow chasing. A diagram is

said to be commutative if the compositions of the morphisms on

any two paths through the diagram, from a common start object to

a common finish object, are equal, except when both paths are of

length 1. In Diagram 3, the start object is A, the finish object is D,

and the two paths are f , i and f , j.) For Set and Euc, a morphism

f is an epimorphism if and only if it is onto (i.e., informally, there

are no elements in the codomain that are unreachable from

elements in the domain via f ). A morphism f : A?B is a

monomorphism, if for any pair of morphisms g,h : C?A, f 0g~f 0h
implies g~h,

ð4Þ

For Set and Euc, a morphism f is a monomorphism if and only if

it is one-to-one. By reversing arrows, we see that the definition of

an epimorphism in a category C is the definition of a

monomorphism in the category Cop (i.e., the definitions are dual).

A morphism f : A?B is an isomorphism if there exists a morphism

g : B?A, such that g0f ~1A and f 0g~1B. An isomorphism in C
is also an isomorphism in Cop. A more formal treatment of duality

can be found in Text S1.

Products
Cognitive behavior generally involves some means of integrat-

ing information. A general notion of integration is the categorical

product. In any category C, a product of two objects A and B is an

object P together with two morphisms p1 : P?A and p2 : P?B,

such that for any pair of morphisms z1 : Z?A and z2 : Z?B,

there is a unique morphism u : Z?P, such that the following

diagram commutes

ð5Þ

where a broken arrow indicates that there exists exactly one

morphism making the diagram commute. The morphisms used in

the definition of a product (p1 and p2 above) are sometimes called

projection morphisms. A product object P is unique up to a unique

isomorphism. That is, for any other product object P’ with

morphisms p’1 : P’?A and p’2 : P’?B there is one and only

one isomorphism between P and P’ that makes a diagram like the

one above commute. This means that P is not unique, only unique

with respect to another product object via isomorphism (a point to

which we will return shortly), which is why the definition refers to a

product, not the product. An essential characteristic of a product

object is that the constituents A and B are retrievable via the

projection morphisms. P is also written A|B, and since u is

uniquely determined by z1 and z2, u is often written as Sz1,z2T,

and the diagram used in defining a product then becomes

ð6Þ

In Set, P is, up to isomorphism, the Cartesian product A|B,

p1 : A|B?A, p2 : A|B?B, where p1 and p2 are the

projection maps to A and B, i.e., p1 : (a,b).a, and

p2 : (a,b).b, and u is the product function Sz1,z2T : Z?A|B,

sending x to tuple (z1(x),z2(x)), so that p10u~z1 and p20u~z2.

(The . arrow, often read as ‘‘maps to’’, indicates the action of a

function on a domain element. Thus f (a)~b is equivalent to

f : a.b.) For example, suppose A~fa1,a2g and B~fb1,b2g,
then P~f(a1,b1),(a1,b2),(a2,b1),(a2,b2)g, and p1(a1,b1)~a1,

p2(a1,b1)~b1, and so on. Suppose Z~f1g, z1 : 1.a1, and

z2 : 1.b1, then the only morphism u making this example

commute is u~Sz1,z2T : 1.(a1,b1).

One can think of tasks involving stimuli that vary along two

task-relevant dimensions as examples involving categorical prod-

ucts. For example, classification tasks where the rule is based on,

say, stimulus colour and size involves a product, with the set of task

stimuli as the product object and the determination of colour and

size features as the projection morphisms. Conservation tasks, for

example, predicting whether the amount of liquid in one container

is the same as another where the containers vary in, say, height

and width also involve products. In this case, the product object is

a set of volumes and the projection maps recover the associated

heights and widths. We will see further examples of tasks involving

products in the next section.

For our purposes, the categorical product (P,p1,p2) is a

statement about a cognitive (sub)system, whereas the triple

(Z,z1,z2) is a constraint on what constitutes a valid product rather

than a specific claim about cognition. Notice that (Z,z1,z2) is not

necessarily a product in its own right, as the example above

illustrated, since the one element set Z~f1g is not isomorphic to

the Cartesian product containing four elements. Notice, further,

that although (P,p1,p2) does pertain to the cognitive system it is

not a commitment to a particular representation and process. To

illustrate, the product object in the previous example could just as

easily be defined as the set P’~fx1,x2,x3,x4g, without explicitly

identifying the components ai and bj , so long as the projections p1

and p2 recover those components appropriately. From the

categorical perspective, these two isomorphic alternatives are the

‘‘same’’, relieving us of any prior commitment to, say, classical

[20] or functional [21] compositionality, which has been a

contentious issue when framing theories of cognition [22].

Coproducts (sums)
A related notion of information integration is the categorical

coproduct. In any category C, a coproduct (or, sum) of two objects A

Categorical (Co)Products and Cognitive Development
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and B is an object Q together with two morphisms q1 : A?Q and

q2 : B?Q, such that for any pair of morphisms z1 : A?Z and

z2 : B?Z, there is a unique morphism u : Q?Z, such that the

following diagram commutes

ð7Þ

The morphisms used in the definition of a coproduct (q1 and q2

above) are sometimes called injection morphisms. A coproduct

object Q is also unique up to a unique isomorphism. Q is also

written AzB, and since u is uniquely determined by z1 and z2, u

is often written as ½z1,z2�, and so the coproduct diagram becomes

ð8Þ

In Set, Q is the disjoint union A ] B, q1 : A?A ] B, and

q2 : B?A ] B. Suppose, for example, A~fa,bg and B~fx,yg,
then Q~f(1,a),(1,b),(2,x),(2,y)g. Basically, every element in A

and B is augmented with a label that identifies the set from which

it came. Unlike set union, which removes duplicates, all

information is maintained.

If we reverse all the arrows in the definition of a coproduct we

get a product. A product in a category C is a coproduct in Cop.

Coproducts are dual to products. The duality between product

and coproduct is shown formally in Text S1.

One way to think about coproducts in terms of cognitive tasks is

to regard the label as the context or condition under which a

stimulus is associated with a particular action. Experimental

paradigms designed to assess cognitive flexibility, such as the

Wisconsin Card Sorting Task, are examples. For instance, in one

context, say, a reward schedule based on colour, a red triangle

may require one type of response, but for a reward schedule based

on shape, the red triangle requires a different type of response. In

this case, the coproduct object is the disjoint union of the stimulus

set with itself with colour and shape as labels, and the response is

determined by a map from the coproduct object to a set of actions.

Pullbacks and pushouts
More generally, information integration is often subject to

satisfying some constraint. Hence, product and coproduct are

instances of more general constructs known as pullbacks and

pushouts, respectively. A pullback of morphisms f : A?C and

g : B?C is an object P and a pair of morphisms p1 : P?A and

p2 : P?B satisfying f 0p1~g0p2, such that for any pair of

morphisms z1 : Z?A and z2 : Z?B such that f 0z1~g0z2, there

is a unique morphism u : Z?P, such that the following diagram

commutes:

ð9Þ

In such a pullback, P may also be denoted by A|CB. The

constraint is contained in the requirement that the square in

Diagram 9 should commute.

Intersection is an example of pullback in Set, where P~A\B,

C~A|B, and p1, p2, f and g are inclusions. More generally, a

pullback is a constrained product, restricted to satisfy the

constraints imposed by f and g, so that f 0p1~g0p2, with P as

the set of solutions.

Pushout is dual to pullback. A pushout of morphisms f : C?A
and g : C?B is an object Q and a pair of morphisms q1 : A?Q
and q2 : B?Q satisfying q10f ~q20g, such that for any pair of

morphisms z1 : A?Z and z2 : B?Z such that z10f ~z20g, there

is a unique morphism u : Q?Z, such that the following diagram

commutes:

ð10Þ

In such a pushout, Q may also be denoted by AzCB.

Given the duality, union is an example of pushout in Set,
where Q~A|B, C~A\B, and all morphisms are inclusions.

In this case, the pushout is also a pullback. A more general

pushout in Set involves a form of disjoint union such that

elements ai~f (ck) and bj~g(ck) are identified (i.e., ‘‘glued’’

together) in the pushout object [9,23]. For example, suppose

C~fcg, f : c.a1 and g : c.b2, and A~f(a1,a2)g and

B~f(b2,b3)g, then A]CB~f(1,a1),(1,a2),(2,b3)g or, equivalent-

ly, f(1,a1),(2,b2),(2,b3)g. Here (1,a2)~(2,b2), because they have

been identified as described above. (These elements are actually

equivalence classes whose members are identified by coequalizers

[24], but we use this form for convenience.) In general, Q is the

integration of components providing no more and no less

information than necessary to satisfy the requirement that

q10f ~q20g.

For our purposes, the commutative squares in the pullback and

pushout diagrams pertain to statements about cognitive (sub)sys-

tems, and (Z,z1,z2) constrains what constitutes a valid pullback/

pushout construction. Aside from definitions, then, we no longer

refer to Z and associated morphisms z1, z2, and u, so they are

omitted from subsequent diagrams.

Initial and terminal objects and their (co)products
An initial object in a category C is an object 0, such that for

every object A there is exactly one morphism f : 0?A in C. A

terminal object is an object 1, such that for every object A there

exists a unique morphism g : A?1 in C. In Set, the only initial

object is the empty set 1, and any one-element set, e.g., fag, is a

terminal object. (In Set, the initial object, 0, has 0 members,

while the terminal object, 1, has 1 member. In some other

categories, e.g. Euc, the initial object is also the terminal object,

and is then called a null object. Some categories, such as a

discrete category with no non-identity arrows, lack an initial

object, or a terminal object, or both.) Multiple initial objects in a

category are not distinguished because they are isomorphic, and

the same also applies to terminal objects [18,24]. In a category

with initial and terminal objects, products and coproducts, a

product of an object A with a terminal object is isomorphic to A,

A|1%A; and a coproduct of A with an initial object is

Categorical (Co)Products and Cognitive Development
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isomorphic to A, Az0%A [18,24]. For example, the Cartesian

product fa,b,cg|f1g~f(a,1),(b,1),(c,1)g%fa,b,cg; and the

disjoint union fa,b,cg ]1~f(1,a),(1,b),(1,c)g%fa,b,cg. The

following diagram

ð11Þ

involving a terminal object (1) is always a pullback, and when

B~1, p1 is an isomorphism. The following diagram

ð12Þ

involving an initial object (0) is always a pushout, and when

B~0, q1 is an isomorphism. For subsequent pullback/pushout

diagrams, we omit references to specific morphisms with an

initial object as its domain, or a terminal object as its codomain,

since their existence is guaranteed by definition. Usually, the

initial or terminal object is also omitted in these cases, but we

choose to show it for conformity with the other diagrams.

These ‘‘special’’ cases are important for determining whether a

system that apparently involves a (co)product is in fact isomorphic

to one that does not. We will see an example of this situation in the

next section. In these situations, we say that task difficulty is related

to the simpler, non-(co)product form.

Notice that we could have explained all this just in terms of the

particular product, coproduct, pullback, pushout, initial and

terminal object that prevail in Set. Presenting in the more general

case of products, etc., in an arbitrary category, makes it clearer

that these are not constructions specific to Set, but instances of a

wider phenomenon.

Results

In this section, we apply category theory concepts to the analysis

of results from several studies that have provided empirical

evidence of within group similarities and between group

differences in behavioural performance across multiple tasks.

The objective is to identify a formal basis for an equivalence class

of tasks that accounts for these similarities and differences. Our

seed paradigms are Transitive Inference and Class Inclusion,

which were tested on age groups ranging from three to eight years

[1]. The main finding was that significant above chance

performances on Transitive Inference and Class Inclusion were

observed around five years. By contrast, younger children (three-

and four-year-olds) showed significant above chance performance

only on simpler versions of these two tasks. The thrust of our

analysis is to show that these tasks are formally connected by the

dual relationship between product (Transitive Inference) and

coproduct (Class Inclusion). By contrast, the simpler versions of

these tasks do not involve a (co)product, or involve a (co)product in

the trivial sense (e.g., A|1%A). Then, in the remainder of this

section, we extend this analysis to other paradigms, including:

Matrix Completion, Cardinality, Card Sorting, Balance-scale, and

Theory of Mind. In each case, the more difficult version of the

task, where significant above chance performance was observed in

the five-year-olds and older children, involves a product or

coproduct. By contrast, performance in the younger age groups

does not, or involves a (co)product with an initial or terminal

object, which reduces via isomorphism to a single map. Thus, the

core characteristic that distinguishes performance by younger

(three-, or four-year-olds) versus older (five-year-olds and above)

children is computing the categorical (co)product and its

encompassing pullback (pushout).

The data of primary concern here are the correlations in

achievement across paradigms and the significant differences

between age groups within paradigms. Age five is regarded as a

‘‘nominal’’ timepoint in that some children exhibit success at a

younger or older age. For example, 11% of the three- and four-

year-olds, and 71% of six-year-olds succeeded on Transitive

Inference, and respectively 15% and 67% succeeded on Class

Inclusion [1] (Table 16). Correlations are directly testable using

within-participant across-paradigm studies. For this reason, our

primary data sources come from three studies showing significant

correlations between Transitive Inference, Class Inclusion, and

Cardinality [1]; Transitive Inference, Class Inclusion, Cardinality

and Theory of Mind [25]; and Transitive Inference, Class

Inclusion, and Balance-scale[26]. For example, the correlations

in performance between Transitive Inference and Class Inclusion

(0.54), Transitive Inference and Cardinality (0.54), and Class

Inclusion and Cardinality (0.47) were all significant (pv:01) [1]

(Table 6). However, to illustrate the diverse applicability of our

category theory approach, we also include two other contrast

studies revealing significant differences between the same age

groups (i.e., younger versus older than age five) albeit with

different individuals for Matrix Completion (see [2]), and

Dimensional Change Card Sorting [27].

Transitive Inference
A transitive inference has the general form that given aRb and

bRc, then one can infer aRc, where R is some binary relation that

has the transitivity property. A Transitive Inference task, as

typically administered to children, involves presenting participants

with a series of premise pairs followed by a series of test pairs to

assess inferential capability. The premise series usually consists of

four pairs, AB, BC, CD, and DE, and testing is done on non-

adjacent pair, BD (not in the premise series). AC and DE are not

considered as evidence of transitive inference, because a consistent

response is obtainable by noting that A or E was paired with only

one other stimulus.

Transitivity is a property of relations, so a transitive inference is

just a particular operation in relational algebra. In relational

algebra, an equijoin of two relations is the set of tuples that have the

same values on the specified attributes. For example, suppose

R~f(A,B),(B,C)g and S~f(C,D),(D,E)g, then the equijoin

along the second and first attributes of R and S (respectively) is

f(B,C,D)g. (Only tuples with the same values at the specified

attributes are joined, and the redundant attribute removed. For

further details of relational operators, see for example [28].) A

transitive inference, then, involves a product of premise relations,

indicated in the following example diagram

ð13Þ

where pi is the project operator in relational algebra, returning the

values of each relation instance at the attributes listed by i. The

transitive inference bRd involves the constraint that premises

involving b and d share a common element c in the second and

first positions, respectively (i.e., bRc and cRd). This constraint is

captured by the following diagram (which relates to a pullback)

Categorical (Co)Products and Cognitive Development
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ð14Þ

where the joins of other premise pairs (e.g., AB and BC based on

the common element B) are omitted for clarity.

To contrast younger versus older children’s performance,

children were presented with difficult and simple versions of this

paradigm [1]. In the difficult version of the task, children were

presented with two non-adjacent blocks BD and asked which block

would be higher in a tower constructed from the premise pairs

(mini-towers). From Diagram 14 we see that this inference involves

a map from the product object. That is, given b as one block, then

the other block will be higher if it corresponds to d . In the simpler

version of the task, children were given one of the mini-towers and

a sequence of adjacent blocks and asked to build the complete

tower (e.g., BC, followed by D, A, E). Each step only requires a

map from one of the premise objects to determine where the next

block should be placed. Thus, it does not require computing the

product. Significantly, while younger and older children were

successful on the simpler version of the task, the older children but

not the younger ones were generally successful on the difficult

version [1].

Class Inclusion
In a Class Inclusion task, participants are given examples of a

superclass, and two complementary subclasses and asked about

their relative sizes. For example, given the superclass, fruit, and

subclasses apples and non-apples, participants are asked, Are there more

apples than fruit? We show that class inclusion involves a coproduct.

Coproduct is the dual of product, hence there is a duality between

Class Inclusion and Transitive Inference.

Class inclusion is a property of sets, so a class inclusion inference

involves a particular set operation—disjoint union. As we have

seen, the disjoint union of two objects in the category of sets is the

coproduct. Suppose, for example, the set of apple referents, or

indices fi1, . . . ,iag and non-apple indices fj1, . . . ,jng. The

coproduct is

ð15Þ

where qA and qN are the apple and non-apple injection maps,

respectively. The inference is obtained by observing the cardinality

of each set. Typically, a Class Inclusion task involves complemen-

tary subsets, so their intersection is empty. This arrangement is

captured in the following pushout diagram

ð16Þ

In a variation of Class Inclusion where A\B~C, elements

common to subclasses A and B would be identified by A]CB, so

they would not be counted twice in the superclass, i.e.,

jA]CBj~jA|Bj.
The same groups of children who were tested on Transitive

Inference were also tested on Class Inclusion [1]. Three questions

were posed to children who performed a version of Class Inclusion

consisting of blue triangles and circles, so that the two subclasses

were triangles and circles and the superclass was blue shapes. They

were: (1) Are there more triangles than circles? (2) Are there more blue things

or more triangles? (3) Are there more circles or more blue things? The older

children were successful on all three questions, whereas the

younger children were generally successful on the first question

only [1]. Questions 2 and 3 involve maps from one of the

component objects and the coproduct object to their cardinalities.

By contrast, Question 1 involves maps from the component objects

only, so the coproduct object is not involved.

There is a subtle difference between the diagrams for Transitive

Inference and Class Inclusion. Transitive Inference involves a

constrained product, while Class Inclusion involves an unconstrained

coproduct. The bottom-right object in Diagram 14 is not a

terminal object (other constraining elements were omitted),

whereas the top-left object in Diagram 16 is the initial object.

This difference has implications for pullback/pushout diagrams

containing (co)products of more than two objects, which we

address in the next section when we consider a more complex

version of Class Inclusion. The other paradigms considered in the

remainder of this section involve only unconstrained (co)products.

Other paradigms
Transitive Inference and Class Inclusion are both difficult for

children below about the age of five years. Our analysis indicates

that underlying this common difficulty is a lack of capacity to

compute categorical (co)products. In the remainder of this section,

we analyze other tasks used to compare performance within and

contrast performance between groups of younger and older

children.

Matrix Completion. In a modified version of Matrix

Completion [2], children are presented with a grid of figures

that vary along rows and columns in either one or two feature

dimensions (e.g., colour and shape). The task is to infer a missing

figure that matches features with the other figures in the

corresponding row and column. For example, if the first, second

and third rows contain circles, triangles and squares; and the first,

second and third columns contain red, green and blue figures

(respectively), then the missing figure in the second row and

column is a green triangle. This inference is obtained from a

product of the object containing the shapes and the object

containing colours. The pullback is indicated by the following

diagram

ð17Þ

where S|C is the Cartesian product of the set of shapes S and

colours C; ps and pc are the shape and colour projections; and 1

is terminal (i.e., there are no constraints on the product). The

grid identifying shape locations is also construed as a product,

S /
pX

X|Y ?
pY

C, where X and Y are the row and column

positions in the grid and pX and pY are the respective index to

shape and colour maps. We regard this product as input to the

cognitive system—thus X|Y takes the roll of Z in the definition

of product. The defining property of a product guarantees the

existence of Sz1,z2T : X|Y?S|C, and X|Y%S|C (see

Products), so the correct coloured shape can be inferred from the

missing figure location. Older children have demonstrated

successful performance on this task. However, younger children
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were generally shown to be capable of only simpler forms of this

task where one of the feature dimensions was constant (e.g., all red

shapes, or all triangles, see [2]). In the simpler forms of this task,

one of the component objects contains only one element. For

example, if all shapes were coloured red, then the colour object is

the set fredg. As indicated in the previous section, a single element

set is a terminal object in the category Set. The product object as

indicated in the following diagram

ð18Þ

is isomorphic to the shape object, S, and therefore not required for

the inference. The correct figure is inferred by a direct map to the

shape object (i.e., pX ). Since all terminal objects are isomorphic,

the same result is obtained regardless of the particular feature held

constant, as we would expect.

Cardinality. Participants are presented with rows of items

(e.g., four ducks, five frogs, or seven balls), and are asked three

types of questions: (1) How many x are there? where x identifies the

type of item (e.g., ducks); (2) Can you show me y by drawing a circle

around y? where y is the number of items counted; and (3) If you

counted from the other end, how many would there be? The third question

directly tests the understanding that counting does not depend on

order. Thus, a counting strategy that simply increments a counter

in a particular order would fail when the order was reversed. A

counting strategy that does not rely on item order must keep track

of two types of items: those that have been counted; and those that

have not. These two types are complementary subsets of the total

set of items to be counted. Hence, Cardinality involves the same

pushout structure as Class Inclusion, as indicated by the following

diagram

ð19Þ

where C and U refer to the counted and uncounted subsets,

respectively. In general, four-year-olds were successful on the first

two questions, but only the older groups (five years and above)

were successful on the third [1]. Questions 1 and 2 do not require

anything more than in-order counting of a set of elements already

identified by a single type or location. Hence, counting in these

two situations does not involve constructing a coproduct of

subtypes. Although this task arguably has an added component

where elements are transferred from the uncounted to the counted

set, it is not part of the coproduct process.

Dimensional change card sorting. In this task, participants

are presented cards identifiable by coloured shapes on the visible

side. Two target cards are placed on a table. Children play two

sorting games by placing additional (sort) cards under one of the

target cards based on the same colour (colour game), or same

shape (shape game). Suppose, for example, the target cards were

labeled red triangle (.) and green circle (p). In the context of playing

the colour game, a child should place a red circle (�) card under the

red triangle target card, and a green triangle (+) card under the green

circle target card. In the context of the shape game, a red circle card

should be placed under the green circle target, and a green triangle card

under the red triangle target. In general, only the five- and six-year-

olds performed this task above chance level, but not the three- and

four-year-olds [27]. By contrast, three- and four-year-olds were

only successful on a simpler form of the task where one of the two

feature dimensions was constant. For example, in the shape game,

the additional cards were either red triangle or red circle cards.

The more difficult version involves a product between dimension

(colour, shape) and the two sort cards (�,+) as indicated by the

following diagram

ð20Þ

where d and f are the dimension and figure projections

(respectively). The inference is obtained by a map from the

product object to the object containing the two target cards (not

shown). In the simpler version of this task, the sort cards differ on

only one dimension, so the games involve different sets of sort

cards. For the colour game, the sort cards are � and p; and for

the shape game, � and .. In this case, the dimension and sort

card objects do not form a correct product—because the sort card

object now has three elements, the product contains pairs (C,.)

and (S,p) that were not part of the task. Rather, in each game,

the target is inferred from just one feature dimension, either colour

or shape but not both. Hence, the simpler version does not involve

a product.

Balance-scale: weight-distance integration. In a modified

form of the balance-scale task, called weight-distance integration,

participants were shown a one-arm balance and asked to predict

the degree of tilt given a weight placed at a distance from the pivot

[26]. The arm was horizontal when no weight was added, and

pointed to one of nine pictured animals when tilted. Thus, a tilt

angle prediction was indicated by the expected animal pointed to

after releasing the arm. A spring provided the appropriate balance

mechanism. There were three levels of weight and three levels of

distance. Five-, six- and seven-year-olds predicted tilt by

integrating both distance and weight information, either

additively or multiplicatively. Four-year-olds predicted tilt

without integration (i.e., by weight, or distance only). Three-

year-olds used neither strategy and were generally non-systematic

in their responses [26]. Since product and coproduct are

generalizations of multiplication and addition, then the

integrative strategies are naturally captured by pullbacks and

pushouts, respectively. The pullback is indicated by the diagram

ð21Þ

where W|D is the Cartesian product of the set of weights W and

distances D; pw and pd are the weight and distance projections;

and 1 is terminal (i.e., there are no constraints on the product). Tilt

prediction is a map t| : W|D?A from the product object to the

set of animals indicating the degree of tilt (not shown). The

additive strategy is captured by the following pushout diagram

ð22Þ
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where WzD is the disjoint union of weight and distance sets; and

qw and qd are the corresponding injections. Tilt prediction is a

map tz : WzD?A (not shown). The simpler strategy used by

the four-year-olds just involves a map from either the weight or

distance object to the predicted tilt position.

Theory of mind. For this paradigm two sorts of tasks were

employed: appearance-reality; and false-belief [25]. As an example

of an appearance-reality task, children are shown milk poured into

a glass wrapped in a red filter. The colour of the milk is visible

before and after being poured into the glass. After filling the glass

they are asked an appearance question, When you look at this milk

right now, does it look red or does it look white?; and a reality question

What color is the milk really and truly? Is it white or is it red? As an

example of a false-belief task, children are shown drawings of a

boy and a puppy and told the story, Sam wants to find his puppy. Sam’s

puppy is really in the kitchen. Sam thinks his puppy is in the bathroom. They

are then asked a belief question, Where will Sam look first for his puppy,

the bathroom or the kitchen?; and a reality question, Where is the puppy

really, the bathroom or the kitchen? Four variations of appearance-

reality and four variations of false-belief tasks were tested on three

age groups: three-, four- and five-year-olds (16 participants in each

group). Only one of the three-year-olds, seven of the four-year-olds

and twelve of the five-year-olds passed the combined tasks, where

pooled responses over the eight tasks were significantly above

chance [25]. Both appearance-reality and false-belief involve a

pushout. The following diagram indicates the pushout for the milk

task example

ð23Þ

where qa and qr are the injection maps, identifying colour in the

context of appearance and reality (respectively). The puppy task

example is similarly indicated by the following pushout diagram

ð24Þ

where qb and qr are the injection maps, identifying location in the

context of belief and reality (respectively). In both cases, the

inference is obtained by a map from the coproduct object to colour

or location. By contrast, without the coproduct object one cannot

determine the correct context for colour or location. Hence, the

expected number of correct responses is the same as chance,

corresponding to the performance of the younger children.

Summary
The distinguishing characteristic at the heart of the behavioural

difference between younger (less than five years old) versus older

(more than five years old) children is the categorical (co)product. In

the case of Transitive Inference, Matrix Completion, and Card

Sorting, this difference was realised by task design (e.g., one versus

two relevant feature dimensions). In the case of Class Inclusion

and Cardinality, this difference was realized by questions probing,

for example, one versus two feature dimensions. And, in the case

of Balance-scale and Theory of Mind, this difference was realized

by alternative task strategies as inferred from the types of response

errors. In each paradigm, the more difficult situation observed in

the older children required access to a (co)product. By contrast, the

less difficult situation observed in younger and older children

involved directly accessing the component objects without

computing or accessing a (co)product. These correspondences

have been confirmed directly with the same participants

performing multiple paradigms that included: Transitive Infer-

ence, Class Inclusion, and Cardinality [1]; Transitive Inference,

Class Inclusion, Cardinality and Theory of Mind [25]; and

Transitive Inference, Class Inclusion, and Balance-scale [26].

Beyond early development: Finite (co)products
So far, our analysis has been confined to early development

around the age of five, where the capacity to compute (co)products

was identified as crucial. The more interesting statistic for our

purposes is the correlation across paradigms, rather than a specific

age of attainment. That is, for example, whether or not a four(six)-

year-old who succeeds (fails) at Transitive Inference also succeeds

(fails) at Class Inclusion. However, the simpler versions of these

tasks often form baselines that are within the capacity of all

children. In these situations, floor effects may attenuate the ability

to detect significant correlations. A methodological solution is to

contrast tasks at ‘‘higher levels’’ of complexity at which neither

level constituents a baseline (i.e., within the capacity of all

participants). Hence, in this section, we extend our analysis to

more complex tasks.

A number of studies point to higher complexity levels, at least in

adult cognition. For example, adults were tested on their ability to

identify the number of interactions underlying fictitious data sets

reported as bar graphs [29]. A two-way interaction, for instance,

was identifiable by observing that the change in bar height

between conditions a1 and a2 under condition b1 differed under

condition b2. The maximum number of interactions that adults

could effectively recognize was about four [29]. Adults have also

been tested on Raven’s Progressive Matrices, which is closely

related to Matrix Completion, where the number of feature

dimensions was increased to three. Functional magnetic resonance

imaging revealed significant differences in activity for regions in

the prefrontal cortex when figures varied along three versus two

feature dimensions [30]. These sorts of tasks have been

characterized in terms of the arity of relations processed (e.g.,

binary, ternary, quaternary) [3], or the number of related task

‘‘variables’’ [31]. Our main purpose in this section is to show how

our category theory approach incorporates higher levels of

complexity. Unlike the studies examined in the previous section,

there have not been multi-paradigm within-participant compar-

ison/between-participant contrast studies for these more complex

tasks. So, we proceed by extending the analysis to more complex

versions of the seven paradigms considered above.

In category theory, the (co)product extends naturally to any

finite number of objects. Moreover, the degenerate case where the

number of objects is one corresponds to the no (co)product cases in

the previous section. First, we provide the basic definitions before

showing how the existing paradigms are extendable to more

complex cases.

Finite (co)products. In any category C, a finite product of n

objects A1, . . . ,An is an object P together with n morphisms

pi : P?Ai, such that for any n-tuple of morphisms zi : Z?Ai,

there is a unique morphism u : Z?P, such that the following

diagram commutes
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ð25Þ

where P is denoted by A1| . . . |An, and u by Sz1, . . . ,znT.

The finite coproduct is defined similarly. In any category C, a

finite coproduct of n objects A1, . . . ,An is an object Q together with n

morphisms qi : Ai?Q, such that for any n-tuple of morphisms

zi : Ai?Z, there is a unique morphism u : Q?Z, such that the

following diagram commutes

ð26Þ

where Q is denoted by A1z . . . zAn, and u by ½z1, . . . ,zn�.
Naturally, finite product and finite coproduct are dual. That is, a

coproduct of n objects in C is a product of n objects in Cop.

There are four ways of constructing a product of three objects,

and the product objects, though not equal, are isomorphic, i.e.,

A|B|C%(A|B)|C%A|(B|C)%(A|B)|B(B|C). The

construction A|(B|C) is indicated in the following diagram

ð27Þ

The diagram for the construction (A|B)|C is similar except

that the product objects are arranged vertically. However, the

construction of (A|B)|B(B|C) also involves a pullback, as

indicated in the following diagram

ð28Þ

where the ternary product object is denoted A|B|C, since the

four ternary product objects are isomorphic.

There are also four ways of constructing a coproduct of three

objects, and the coproduct objects are also isomorphic, i.e.,

AzBzC%(AzB)zC%Az(BzC)%(AzB)zB(BzC).
These constructions are dual to the respective products. The

construction of (AzB)zC is indicated by the diagram

ð29Þ

and (AzB)zB(BzC), which contains a pushout, is indicated by

the diagram

ð30Þ

where the ternary coproduct is denoted AzBzC.

Extensions to paradigms. All seven paradigms analyzed in

the previous section can be extended in terms of (co)products of

more than two objects. Only ternary (co)products are considered

here, but extensions to more objects are also possible. We focus on

Transitive Inference and Class Inclusion, and sketch extensions to

the other paradigms. Transitive Inference can be extended to

include an additional premise EF, and an additional nonadjacent

test pair BE that requires two equijoins, for example, BC and CD

to infer BD, and BD and DE to infer BE. In category theory terms,

this inference involves three pullbacks, indicated by the diagram

ð31Þ

omitting some composition morphisms for clarity. By the pullback

lemma [24], if two adjacent commutative squares are pullbacks,

then the composed commutative rectangle is a pullback. This diagram

contains two commutative rectangles, indicated in part by the

composition arrows p½3,4� and p½1,2�.

Class Inclusion can be extended dually by supposing an

additional subclass (e.g., squares). For example, participants are

presented with small blue triangles (T), small red circles (C) and

large red squares (S). They are asked: (1) Are there more triangles and

circles than red shapes? (2) Are there more triangles and circles than shapes? (3)

Are there more circles and squares than shapes? Question 1 involves binary

coproducts, whereas Questions 2 and 3 involve ternary coproducts.

For comparison with Question 1 of the original Class Inclusion task,

the question Are there more triangles or circles? involves neither binary

nor ternary coproduct, or what might be called a unary coproduct.

The ternary coproduct is indicated in the diagram

ð32Þ

Notice that although this diagram involves a ternary coproduct,

which is dual to a ternary product, the diagram itself is not dual to

Diagram 31 for extended Transitive Inference. The reason is that
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the two initial objects in the extended Class Inclusion diagram are

the same (and so too are the two morphisms with C as their

codomain). Since the diagrams do not have the same number of

objects (i.e., eight versus seven), they cannot be isomorphic. This

difference, which we touched on earlier, arises because the

coproduct is unconstrained.

An alternative version of extended Class Inclusion that uses

constrained coproducts involves subclasses containing common

elements. For example, suppose that instead we have a collection

of small and large rectangular bars of various colours and

orientations. Within this collection, three subclasses are relevant:

small (S), red (R) and vertical (V ) bars, which include small red

(SR) and red vertical (RV ) bars. The following corresponding

questions are asked: (1) Are there more small bars and red bars than red

bars and vertical bars? (2) Are there more small bars and red bars than bars?

(3) Are there more red bars and vertical bars than bars? The constrained

coproducts are indicated in the following diagram.

ð33Þ

where SR and RV are not the same object. Hence, this diagram is

dual to the extended Transitive Inference diagram.

Matrix Completion, Dimensional Change Card Sorting, and

Balance-scale involve similar extensions to ternary products, though

the latter two are redesigned to accommodate all three levels of

products (i.e., unary, binary, and ternary) within the one paradigm.

For Matrix Completion, the figures vary along a third feature

dimension, such as size. In this case, the task involves a ternary

product of colour, shape and size, i.e., C|Sh|Sz. Dimensional

Change Card Sorting can be modified to include a third switch rule

indicating whether the cards are to be sorted using the same (no

switch) or opposite (switch) colour or shape feature. In this case, the

task involves a ternary product of rule, dimension and shape, i.e.,

R|D|S. The Balance-scale task can be modified so that tilt angle

also depends on spring strength. This case involves a product of the

spring (S), weight and distance, i.e., S|W|D.

Theory of Mind and Cardinality involve more substantial

changes, so we address these two tasks separately. Theory of Mind

can be extended by including an additional transformation condition

that involves mixing powered chocolate, which changes the colour of

milk to brown. In this case, there are two binary coproducts for

separately combining the reality and filtered glass contexts, and

reality and mixing contexts, and one ternary coproduct for

combining all three contexts, as indicated by the following diagram

ð34Þ

where R is the reality context, F is the filter context, and M is the

mixing context, and prefixing for the ternary coproduct elements is

omitted for clarity. This diagram, like Diagram 32, involves

unconstrained coproducts. It is isomorphic to the unconstrained

version of extended Class Inclusion (Diagram 32), but not the

constrained version (Diagram 33), or extended Transitive Inference

(Diagram 31). Unlike Class Inclusion, though, there does not appear

to be a constrained coproduct version of Theory of Mind in this

form, since there is only one object of interest (e.g., milk) in the task.

Cardinality in its current form, though, does not appear to have

an extension to ternary coproducts. A possible alternative form,

similar to extended Class Inclusion, requires participants to count

various combinations subclasses/superclasses (e.g., triangles, circle

and squares). The diagram for this case involves a ternary

coproduct like the one for unconstrained or constrained Class

Inclusion (see Diagram 32 and 33), where the objects are sets of

indices and the coproduct is disjoint union (see Diagram 16).

Segmenting and chunking. For some tasks, there may exist

alternative task strategies for achieving the same goals without

exceeding capacity limits. In the context of Relational Complexity

Theory, two general strategies were identified as segmenting and

chunking [3]. Segmenting refers to serializing a process by computing

intermediate results. In fact, an example of segmenting appeared in

the previous section as the simplified version of Transitive Inference,

where complete premise towers were constructed from a sequence

of mini-towers, circumventing the binary product. The key to this

strategy was supplied by the experimenter in the form of adjacent

blocks. Chunking refers to recoding information to temporarily

reduce (relational) details. Labeling is a common strategy. For

example, the relationships between two hydrogen and one oxygen

atom are chunked as water. A key to this strategy is learning. Here,

we show the category theory equivalent for the extended versions of

Transitive Inference and Class Inclusion.

From the definitions, we saw four ways of constructing ternary

(co)product objects. Although these objects are isomorphic,

Diagram 27 and 28 for constructing A|(B|C) and

(A|B)|B(B|C) are not, since the first refers to five objects,

but the second refers to six. This difference suggests an alternative

diagram for computing Transitive Inference BE from premises

BC, CD, and DE. Indeed, in the following diagram

ð35Þ

the inference BE is derived by mapping out elements b and e from

the product object f(b,c,e)g in the right pullback with the

morphism p’½1,3� (not shown). Notice that the two pullbacks in this

diagram involve only binary products. The crucial step involves

the projection morphism p½1,3�, which removes the middle term d,

as it is no longer needed to obtain the inference via a second

pullback. The key to this strategy is being able to segment the

inference into a sequence of two steps.

A related situation also arises for Class Inclusion, which is

shown in the following diagram

ð36Þ
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where the morphism f : TzC?TC is not inclusion, but some

recoding (chunking) of triangles and circles into instances of a

common object type, TC. For example, a possible key to accessing

this type of strategy is to recode on the basis of a common feature

by asking the question Are there more small shapes than shapes? These

two examples illustrate in category theory terms how the

complexity of a task may be influenced by strategy.

Discussion

Using category theory constructs, we have revealed a formal

connection between Transitive Inference and Class Inclusion.

Transitive Inference involves a categorical product of premise

relations. Class Inclusion involves a coproduct between two

complementary subclasses. In category theory, product and

coproduct are dual. Thus, the formal connection between

Transitive Inference and Class Inclusion is that they involve the

‘‘same’’ (isomorphic) processes in the categorical sense. This

connection extends to other tasks establishing an equivalence class

of inferential abilities formally based on the need to compute

(co)products. In the simpler, one-dimensional version of Matrix

Completion, the apparent product is isomorphic to a structure that

does not involve a (co)product. Note that children are not required

to first compute the (co)product to realize that it’s reducible: they

use a (co)product-free strategy which works, because of the simpler

nature of the task. These results point to a fundamental principle

under development during childhood that is the capacity to

compute (co)products.

The implication that computing (co)products is fundamental to

cognitive development raises two general questions: (1) Is the

connection between these inferential abilities real, or just a

coincidence? (2) If the connection is real, what does computing a

(co)product mean in terms of possible neurocognitive processes?

To the first question, as with any theory, one cannot rule out the

possibility of being discounted by new data. The best one can hope

for is to account for a wide variety of cases that are within the

intended scope of the theory. In this regard, the empirical evidence

now available and the variety of cases analyzed, both positive and

negative conditions in each of seven paradigms, gives us cause for

confidence that the connection is indeed real.

There are several caveats, however, in regard to establishing

correspondences between paradigms and age groups. First, as

already mentioned, an important consideration is the correlation

across paradigms, not a specific age of achievement. Second, task

knowledge and familiarity with materials will obviously be

modulating factors. Third, in some cases, there may exist

alternative task strategies that circumvent a particular level of

complexity, as shown in the extended versions of Transitive

Inference and Class Inclusion. These sorts of considerations have

been discussed elsewhere in the context of Relational Complexity

theory [32]. Hence, while we argue that categorical (co)product

captures an important aspect of cognitive development, it is not

intended to be the only consideration, nor is it necessarily

incompatible with other approaches.

Category theory offers a potentially powerful approach to

theorizing about cognition by not having to presuppose an, as yet,

unknown internal structure for cognitive states representing task

elements. Notice that the definition of a functor, and therefore

duality (see Text S1) does not make reference to the elements

within an object (i.e., an object’s internal structure). The definitions

refer only to the morphisms, which constrain the relationships

between objects (i.e., their external structure). So, one is not

required to make an a priori commitment to, say, symbolic or

subsymbolic computational processes. In this sense, category

theory complements more detailed (e.g., symbolic, or connec-

tionist) approaches to cognitive modeling. In particular, we started

with the difficulty that Transitive Inference and Class Inclusion

poses for Relational Complexity and Complexity and Cognitive Control

theories. From our categorical perspective, we now see that the

Relational Complexity explanation of Transitive Inference (i.e.,

integration of two binary relations into a ternary relation) is a

special case of a categorical product. The commutative diagrams

for ternary (co)products also show how one may incorporate a

levels of hierarchy explanation, as may be employed by

Complexity and Cognitive Control theory, where a ternary

(co)product may be computed from two binary (co)products.

While the abstractness afforded by category theory is generally

seen as a strength, it leaves open the question of what exactly is

being computed in these situations. To the second question, then,

we look to neuroscience. One of the major attractions of category

theory for mathematicians and computer scientists is that it offers

abstraction (hence, generalization) with precision. Cognitive

neuroscience research has implicated the prefrontal cortex as

important for processing relational information [30,33–35]. For

example, patients with damage to prefrontal cortex were

significantly worse on Transitive Inference and Class Inclusion

tasks than normals and patients with anterior temporal cortical

damage [35]. Adults, but not children (8–12 years old) showed

sustained activity in rostrolateral prefrontal cortex during the more

difficult two-relation than one-relation condition of a Raven’s

Progressive Matrices task [33]. The general suggestion has been

that regions within the prefrontal cortex are responsible, in some

informal sense, for the integration and maintenance of relational

information [30]. Our category theory approach makes more

precise claims in formal terms of pullbacks and pushouts.

Research on the neural basis of reasoning has focussed on

localizing functionality to specific cortical regions, particularly

within the prefrontal cortex. Yet, the commutative diagrams

clearly show the importance of transformations between objects.

One intriguing possibility is that the morphisms correspond to

functional connectivity realized in part by long-distance cortical

connections. An area where the neural basis of cognitive function

has been studied in detail is visual attention (see [36]). Conjunctive

visual search involves finding a target item among a display of

non-targets, where the target is uniquely identified by a

conjunction of features, such as colour and orientation. In

categorical terms, conjunctive search involves a product of (e.g.,

colour and orientation) feature maps. Each feature map is a set of

location-feature relationships, and their conjunction is the product

of those maps constrained by location (i.e., a pullback). It is well-

known that conjunctive search is more difficult (steeper search

slope) than feature search (see [37]). Interestingly, a visual search

study on monkeys using implanted electrodes revealed greater

frontal-parietal neural synchrony in the lower gamma band (22–34

Hz) for conjunctive than feature search [38]. A corresponding

significant increase in phase synchrony between frontal and

parietal scalp electrodes in the same frequency band was also

reported in humans [39]. Whether the product underlying

conjunctive search relates to the products identified here remains

to be determined. What this example illustrates is a further benefit

of a categorical approach, where the methods of one field are

shown to have novel applications in another—in this example,

phase synchrony as an indicator of complexity.

A recurring theme in our analysis of these tasks is the integration

(either multiplicatively, or additively) of multiple sources of

information. Regions within the prefrontal cortex are often

assigned this role, both anatomically and functionally (see [40]

for a review). A general theory of intelligence proposes that

Categorical (Co)Products and Cognitive Development
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maturation of the prefrontal cortex in coordination with other

cortical regions is a key factor [41]. Hence, maturation of cortical

connectivity is a possible biological basis for the observed

correspondences in the development of inference, though we do

not regard maturation as the only factor, as already discussed.

More generally, we have used category theory to propose new

experiments that directly test comparisons and contrasts for all

levels. The basis for determining whether tasks belong to the same

level is isomorphism, either between objects or the diagrams

(categories) to which they belong. In regard to the latter, we

identified a subtle difference between diagrams containing

constrained versus unconstrained (co)products. This difference

speaks to the potential power of category theory in that it affords a

finer grained analysis within the major levels defined by

(co)product arity (i.e., unary, binary, ternary, etc). Although

further work is needed to ascertain the empirical implications of

these differences both within and across higher levels, the

examples provided show how this work may proceed.

There are two main types of predictions for these extended

paradigms that follow naturally from the arities of computed

(co)oroducts. They are: (1) tasks involving (co)products of arity n
will yield significantly lower performance than tasks involving

(co)products are arity mvn for participants within the same age

group, excluding of course floor effects, where performance on

neither task is above chance; and (2) tasks at the same arity will

yield significance performance correlations. A corollary to these

predictions is that older participants will generally outperform

younger participants on a task at a given arity.

One may wonder whether other category theory-based models

could account for the same developmental data. Set has been the

categorical basis for our analysis. A natural alternative for modeling

relations is the category Rel, which has sets, A,B, . . ., for objects;

and for morphisms from A to B, relations R(A|B, instead of

functions, where the identity morphism on A is the equality relation,

f(a,a)ja[Ag; and composition defined so that for R : A?B and

S : B?C, S0R~f(a,c)jAb[B : (a,b)[R ^ (b,c)[Sg. Composition

in this category is essentially an equijoin. Thus, Transitive Inference

on a set A is represented more succinctly by a diagram consisting of

a morphism, R : A?A and its composition with itself, R0R, being

the inference. However, Class Inclusion does not lend itself to a

more succinct representation in Rel, so the analogy between the two

cannot be captured in Rel. (The inclusion relations A5C and

B5C capture the data for Class Inclusion, but there is no valid

composition operation in this context.) This example reinforces our

earlier point that category theory, while abstract, is not an arbitrary

fit-for-all formulation.

These two categorical bases for Transitive Inference (Set and

Rel) raise another point in regard to a notion of cognitive flexibility

mentioned earlier. The Set version of Transitive Inference

indicates that to make the inference one must consider the

constraining item c (in Diagram 14) from two perspectives

conjointly: in the case of the blocks task, as the block that is both

higher than b and lower than d. By contrast, in the Rel version,

the inference relies on just one morphism or perspective, applied

twice. This difference also has implications for developmental and

comparative psychology in that simply demonstrating transitivity

in infants and non-humans is not sufficient evidence of a cognitive

capacity that is in some way equivalent to older children and adult

humans. Our categorical (co)product formulation says that if they

have the capacity for Transitive Inference in the same cognitively

flexible manner, then they should also have the capacity for other

inferences involving (co)products such as Class Inclusion, assuming

a means of administering the test that is appropriate for the cohort.

Category theory affords a view of the forest despite the trees. It

helps reveal unseen connections between (cognitive) structures.

And, in doing so, the methods and results from one field become

applicable to another. That was the original motivation for having

a science of cognition.

Supporting Information

Text S1 Duality

Found at: doi:10.1371/journal.pcbi.1000599.s001 (0.09 MB PDF)
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