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Switzerland, 4 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America, 5 California Institute for

Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America

Abstract

Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public
databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The
level of misannotation and the types of misannotation in large public databases are currently unknown and have not been
analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence
databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for
which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest
annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL)
and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that
average 5%–63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one
or more of these databases is .80%. Examination of the NR database over time shows that misannotation has increased
from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with
‘‘overprediction’’ of molecular function. These results suggest that misannotation in enzyme superfamilies containing
multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for
addressing some of the systematic problems contributing to these high levels of misannotation.
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Introduction

The frequent addition of new genomes into public sequence

databases allows for rapid access to sequences from more than a

quarter million named species [1], an accumulation of information

that is astounding in both its scale and breadth. While these data

hold enormous promise for biological and medical discovery,

experimental characterization has been performed on only a tiny

fraction of the available sequences. Moreover, current technolo-

gies, including high-throughput techniques, can be applied to at

most a few thousand genes or proteins at a time. As a result,

computational methods are required to predict the molecular

functions of the millions of protein sequences that have not and

cannot be characterized experimentally. For over a decade, the

majority of sequences found in public databases have been

annotated using computational prediction alone, raising the issue

of annotation accuracy and database quality [2,3].

Two important papers examining genome annotation error in

one and three small genomes respectively [4,5] predicted that at

least 8% of molecular function annotations were incorrect.

Depending on the definition of function used, Devos and Valencia

further suggested that misannotation levels could be as high as

37%. Other large scale [6] and anecdotal studies describe

numerous examples of annotation error (see [7–11] for some

examples). In a recent paper that modeled annotation error in the

Gene Ontology database, it was estimated that up to 49% of

computationally annotated sequences could be misannotated [12].

Considering the problem from a different perspective, models of

error propagation have shown that with sufficient initial error in a

database, error propagation can significantly degrade the quality

of the annotations it contains [13,14] and specific examples of

error propagation have been noted [15,16]. Although functional

misannotation remains a significant concern [17,18], an in depth

analysis of the prevalence of annotation error in large public

databases has yet to be performed.

Concomitant with the growth of sequence data, annotation

strategies have become more sophisticated, benefiting especially

from the use of multiple orthogonal methods to improve

prediction accuracy (see [19] for a recent review). These include

taking advantage of co-localization of functionally linked genes

[20–23], homology-based annotation transfer using phylogenetic

and phylogenomic information [24–26], and experimental pro-

teomics approaches such as mass spectrometry [27]. Databases of

motifs [28–30], sequence profiles [31,32], and ortholog sets

[33,34], are available for use in computational annotation. In

addition, multidisciplinary efforts have focused on accurate
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annotation for the most important model organisms, including E.

coli [35], yeast [36], mouse [37] and human [38]. With the

availability of such resources, we might expect that the problem of

misannotation has diminished. However, the most common

approach in use today continues to be the assignment of molecular

function from the inference of homology followed by annotation

transfer [39–41]. Thus, a fresh look at the misannotation problem

is timely, particularly for primary public databases containing the

largest sets of available sequence data.

In this work, we have investigated the prevalence of annotation

error in several large public protein databases in common use today.

We examined the large archival sequence databases GenBank NR

(NR) [1] and UniProtKB/TrEMBL (TrEMBL) [42], which contain

sequences primarily annotated using automated methods. Protein

sequences associated with the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [43], a database of metabolic pathways, were also

examined to estimate the degree to which misannotation has been

propagated to a secondary database. These results were compared to

those for the manually curated protein database UniProtKB/Swiss-

Prot (Swiss-Prot) [42], which is often used in computational analyses

as a primary standard for annotation information.

Misannotation levels were determined for sequences annotated to

the functions of experimentally well-characterized enzyme families

and superfamilies used as a ‘‘gold standard,’’ allowing us to identify

misannotated sequences with confidence. Except for Swiss-Prot, all

of the databases examined exhibited much higher levels of

misannotation than have previously been suggested. Examination

of the NR database revealed both evidence for error propagation

from previously misannotated proteins and that levels of misannota-

tion have increased over time. The major types of misannotations

that were found were classified and their prevalence determined,

allowing us to propose strategies for addressing some of the

problems that contribute to them. This is the first study to use a gold

standard set of superfamilies and families to examine misannotation

in the archival NR and TrEMBL databases.

Results

Annotation error in the NR, TrEMBL, KEGG, and Swiss-Prot

databases was determined using as a gold standard 37 highly

curated and experimentally well-characterized enzyme families

from the Structure-Function Linkage Database (SFLD) (http://sfld.

rbvi.ucsf.edu/) [44–46]. This approach allowed us to achieve an

accurate count of misannotated sequences for each family. Enzymes

were chosen for analysis because they typically have concrete,

precise definitions of molecular function compared to many other

classes of proteins. In this work (and as defined in the SFLD), a

superfamily is defined as a set of homologous proteins in which

conserved sequence or structural characteristics can be associated

with conserved functional characteristic(s). A family is defined as a

set of homologous proteins within a superfamily that perform an

identical function by the same mechanism. These 37 families were

chosen because their members have been well characterized by

mechanistic analysis and in most cases, x-ray crystallography. They

come from six different superfamilies (enolase, haloacid dehalogen-

ase [HAD], vicinal oxygen chelate [VOC], terpene cyclase,

amidohydrolase [AH] and crotonase; see the SFLD for references)

representing five fold classes and enzymatic functions spanning five

major classes of the Enzyme Nomenclature Commission (E.C.)

system [47]. (At the start of this analysis the SFLD did not contain

any ligases and therefore the sixth major E.C. class, ligases, were not

included in this test set.) A total of 7255 sequences annotated to the

functions of these 37 gold standard families were evaluated from the

four public databases (Figure 1).

The misannotation analysis presented here examines the

question: Given a sequence annotated to a specific enzymatic

function, is the annotation correct? Misannotations were identified

using sequence, structural and mechanistic information from the

SFLD and the literature. Each sequence was analyzed using a four-

step protocol (Figure 2) where at each step a sequence could either

‘fail’, be classified as misannotated and labeled with a code defining

the type of misannotation, or could ‘pass’ and then be reexamined in

the next step. In brief, the analysis steps examined whether the

sequence under investigation 1) matched the known sequence

patterns of the superfamily to which it was annotated, 2) matched

the known sequence patterns of the gold standard family to which it

was annotated, 3) contained the residues known to be important for

the annotated function, and 4) scored sufficiently well against hand

curated hidden Markov models (HMMs) to be considered a

member of the annotated family (details in Methods). Family

specific cutoffs defined the scores required to confirm membership

in each family. Misannotation was defined as the incorrect

annotation of a sequence with a specific enzymatic function,

determined by its failure to pass any one of these four steps.

Figure 3 summarizes the results, showing that misannotation

was found in all six superfamilies examined (see Table S1 for

tabulated values associated with Figure 3). The average levels of

misannotation varied greatly between the superfamilies but were

remarkably high for four of the six superfamilies (enolase, VOC,

HAD, AH) in the three databases NR, TrEMBL and KEGG. The

average percent misannotation for these four superfamilies ranged

from a little under 25% in the enolase superfamily to over 60% in

the HAD superfamily (Figure 3A, C, E, F). In the crotonase

superfamily, the average percent misannotation across the

superfamily was greater than 20% only in the TrEMBL and

KEGG databases (Figure 3B). For five of the six superfamilies, the

results for the NR, TrEMBL and KEGG databases were nearly

identical (Figure 3A, C–F). For example, in the enolase

superfamily (Figure 3A) the average percent misannotations in

the NR, TrEMBL and KEGG databases were 24%, 22%, and

22%, respectively. The crotonase superfamily (Figure 3B) was the

outlier, showing different levels of misannotation across these

databases, (NR [12%], TrEMBL [32%], KEGG [46%]). In

contrast, the families in the terpene cyclase superfamily (Figure 3D)

Author Summary

One of the core elements of modern biological scientific
investigation is the universal availability of millions of
protein sequences from thousands of different organisms,
allowing for exciting new investigations into biological
questions. These sequences, found in large primary
sequence databases such as GenBank NR or UniProt/
TrEMBL, in secondary databases such as the valuable
pathways database KEGG, or in highly curated databases
such as UniProt/Swiss-Prot, are often annotated by
computationally predicted protein functions. The scale of
the available predicted function information is enormous
but the accuracy of these predictions is essentially
unknown. We investigate the critical question of the
accuracy of functional predictions in these four public
databases. We used 37 well-characterized enzyme families
as a gold standard for comparing the accuracy of
functional annotations in these databases. We find that
function prediction error (i.e., misannotation) is a serious
problem in all but the manually curated database Swiss-
Prot. We discuss several approaches for mitigating the
consequences of these high levels of misannotation.

Misannotation in Public Databases
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Figure 1. Enzyme superfamilies and their constituent functional families examined in this analysis. Families analyzed in this work are
shown organized by the superfamilies to which they belong. Names of superfamilies and families are from the SFLD. E.C. numbers are included where
available. Dashes (—) are used for those families for which a full E.C. number has yet to be assigned. Each family is designated by a specific color and
these mappings are also used in Figure 3 and Video S1. The number of sequences in each family that were analyzed from each database is listed; the
total number of sequences analyzed from each database is also given.
doi:10.1371/journal.pcbi.1000605.g001

Misannotation in Public Databases
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were consistently the best annotated with relatively low but still

significant levels of misannotation in all four of the databases: NR

(5%), TrEMBL (8%), KEGG (3%), and Swiss-Prot (4%).

Across the entire test set, the manually curated Swiss-Prot

database was uniformly the best-annotated, showing an average

percent misannotation level of 0% (or very nearly 0%) for four of

the superfamilies (Figure 3A–D). For all of the superfamilies,

misannotation levels were much lower in Swiss-Prot compared to

those for the automatically curated databases.

Similar to the results across superfamilies, most of the 37

families investigated displayed consistent levels of misannotation

across the NR, TrEMBL and KEGG databases. For instance, the

average percent misannotation in the 4-hydroxyphenylpyruvate

dioxygenase family (Figure 3C, VOC superfamily, purple-blue

dot) was 18%, 17% and 14% in NR, TrEMBL and KEGG,

respectively. This result was not surprising given that many

sequences within the databases are identical to one another, with

identical functional annotations (data not shown). In contrast,

large differences in the levels of misannotation were found among

the families within a superfamily. For example, in the enolase

superfamily (Figure 3A), the family percent misannotation in NR

ranged from a minimum of 0% (red dot, fuconate dehydratase

family) to a maximum of 90% (light blue dot, mandelate racemase

family). As before, variation in the levels of misannotation of

families within a superfamily is most pronounced in the databases

annotated largely by automated methods (NR, TrEMBL and

KEGG). The highly curated Swiss-Prot database showed very low

levels of misannotation for the majority of the families investigated;

however, even in Swiss-Prot, a few families showed quite high

levels of misannotation.

The accuracy of these results was validated using several

orthogonal protocols (see Text S1). The literature was searched

for experimental results that might contradict our predictions of

misannotation. Contradictions were found for only six sequences

out of 1155 that had been labeled as misannotated in NR and Swiss-

Prot. Another test of our predictions was a blinded analysis of

proteins that had been newly experimentally characterized

subsequent to our initial analysis. Out of 27 newly characterized

sequences, spanning 12 of the 37 families investigated, 26 were

found to have been correctly classified by our analysis protocol. We

also examined whether annotation corrections had been made for

misannotated sequences in the databases since the databases were

downloaded for this analysis. Of a random sampling of 111 of the

1112 sequences in the NR database found to be misannotated by

our analysis, 96% had unchanged functional annotations. Only for

three sequences had the annotations been corrected; one other

sequence no longer had a functional annotation.

Effect of threshold stringency on misannotation levels
The effect on predicted levels of misannotation due to the use of

a relatively stringent similarity threshold (Trusted Cutoff (TC)) in

the final step of the analysis protocol was evaluated using less

stringent thresholds for the NR database. (See Methods for details

about how threshold cutoffs were determined.) Two less stringent

thresholds for each family were defined, a Noise Cutoff (NC) and

Lenient Cutoff (LC), and each sequence was re-analyzed using

these thresholds (Figure S1). While the use of these alternative

thresholds resulted in somewhat lower levels of misannotation, for

most families most sequences identified as misannotated did not

change (Figure S2).

Misannotation over time
Expecting that larger volumes of sequence data and improved

methods for annotation would result in higher accuracy annota-

Figure 2. The misannotation analysis protocol. Annotations
determined to be incorrect are labelled with the following codes
depending on the type of misannotation: ‘No Superfamily Association’
(NSA); ‘Missing Functionally important Residue(s)’ (MFR) ‘Superfamily
Association only’ (SFA) ‘Below Trusted Cutoff’ (BTC). See Methods for
more detailed discussion of these definitions.
doi:10.1371/journal.pcbi.1000605.g002

Misannotation in Public Databases
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Figure 3. Percent misannotation in the families and superfamilies tested. The results are organized by superfamily: Panel A: enolase, B:
crotonase, C: vicinal oxygen chelate, D: terpene cyclase, E: haloacid dehalogenase and F: amidohydrolase. Each panel depicts the percent
misannotation for the superfamily in four plots, corresponding to the databases investigated. In each plot, the black bar denotes the average percent
misannotation for that superfamily in that database. The percent misannotation for each family within the superfamily is given by a colored circle.
The size of the circle provides an estimate of the number of sequences evaluated for that family (scaling in legend). An X through an open circle
means that no sequences annotated with that function were retrieved from that database. The order of the families depicted for each superfamily is
arbitrary but is consistent through all four plots. The colors of the family circles correspond to those used in Figure 1, which provide a mapping
between these family colors and their gold standard functions.
doi:10.1371/journal.pcbi.1000605.g003
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tions over time, we investigated whether the levels of misannota-

tion had changed over the period 1993–2005. Using sequences

from the NR database, the original sequence submission dates

were retrieved and binned into groups based upon their

submission dates and misannotation assignments (‘‘correct’’ or

‘‘incorrect’’) according to our protocol. (Because the levels of

misannotation for the three automated databases NR, TrEMBL

and KEGG were similar, only the NR database was examined in

this analysis.) Surprisingly, we found that for the 37 families

investigated in this study, misannotation has increased over this

twelve-year period: essentially no misannotated sequences were

submitted in 1993, while in 2005 approximately 40% of the

sequences submitted to NR were misannotated (Figure 4). Not

only were more misannotated sequences deposited in the later

years, they represented an increasing fraction (black line) of the

total depositions annotated to the 37 families. This suggests that

the rising level of misannotation is not simply due to the

submission of increasingly greater numbers of sequences over this

time period, but rather, that the real level of misannotation is

indeed increasing.

Types of misannotation
To better understand the types of misannotation that were

found, each misannotated sequence was labeled with an

individual, mutually exclusive evidence code describing the type

of annotation error it represented. Four primary classes of

misannotation emerged from the protocol used in the analysis

(Figure 2). Figure 5 shows their distribution for sequences from the

NR database. (As with the two previous analyses, only the NR

database was examined.) The two misannotation codes ‘Below

Trusted Cutoff’ (BTC) and ‘Superfamily Association only’ (SFA)

describe cases of overprediction, in which proteins have been

annotated to functions that are more specific than the available

evidence supports. SFA describes cases in which sequences do not

score against the specific family HMM but instead score only

against superfamily HMM(s), i.e., HMMs that capture similarities

across all families in a superfamily and that therefore do not

distinguish families with different reaction specificities. BTC

describes cases in which sequences were found to score against

both a superfamily and a specific family HMM and contain the

necessary functionally important residues, yet failed to score above

the TC threshold. Often, this designation refers to a sequence that

should have been assigned to a different but similar family,

determined by the sequence scoring better against another family

HMM. (In these cases, some known functionally important

residues may be the same for both families.) The majority of

misannotations in the NR database were found to be over-

predictions of these two types (85%, SFA + BTC). The remaining

15% of misannotations were associated with the two other

misannotation codes, ‘No Superfamily Association’ (NSA) and

‘Missing Functionally important Residue(s)’ (MFR). These codes

describe cases in which a sequence could not be associated with

the superfamily (NSA), or does not have the necessary functional

residues even though it scored against the family HMM (MFR).

Examples of some misannotations from the NR database that

were associated with these misannotation codes are provided in

Table 1. An example of an NSA misannotation is gi 505585

(GenBank:CAA48717), a sequence from soybean that had been

annotated to the glyoxalase I function (VOC superfamily). This

sequence did not score against any SFLD HMMs. When searched

against the Pfam database [31], the sequence had significant

matches only against the glutathione transferase (GST) N- and C-

terminal domain models but did not score against glyoxalase I

related models. A literature search showed that in this organism, a

different gene, gi 4127862 (GenBank:CAA09177), has been

characterized as the authentic glyoxalase I enzyme [11]. Further,

in the same paper, the gi 505585 sequence had been characterized

as a GST, confirming our prediction that gi 505585 had been

Figure 4. The change in misannotation over time in the NR
database for the 37 families investigated. Sequences are plotted
by the year when they were originally deposited in the database (x-
axis). The number of sequences (left y-axis, bar graph) found to be
correctly annotated is shown in green. The number of sequences found
to be misannotated is shown in red. The bars for each year represent
only the sequences deposited into the database in that year. The
fraction (right y-axis, line plot) of sequences deposited each year into
the NR database that were misannotated is given by the open nodes,
connected by the black line to aid in visualizing the overall trend. This
fraction represents the number of sequences in the 37 test families
predicted to be misannotated divided by the total number of
sequences deposited each year from the test set, i.e. the sum of the
sequences depicted in the red and green bars for each year.
doi:10.1371/journal.pcbi.1000605.g004

Figure 5. Distribution of major types of misannotation found in
the NR database. Classification of misannotated sequences follows
the steps of the protocol given in Figure 2: ‘No Superfamily Association’
(NSA); ‘Missing Functionally important Residue(s)’ (MFR) ‘Superfamily
Association only’ (SFA) ‘Below Trusted Cutoff’ (BTC), as described in
methods. The codes were grouped into two sets that specify whether
the misannotation is associated with overprediction or to other types of
errors (e.g., missing a required residue).
doi:10.1371/journal.pcbi.1000605.g005

Misannotation in Public Databases
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misannotated. This sequence corresponds to Swiss-Prot sequence

P46417 (Swiss-Prot: P46417), also incorrectly annotated as a

glyoxalase I.

An example of an SFA misannotation is gi 17987990 (Gen-

Bank:NP_540624), annotated to the mandelate racemase function in

the enolase superfamily. This sequence did not score against the

mandelate racemase family HMM, but it did score against other

enolase superfamily HMMs. In particular, it scored above the TC for

the fuconate dehydratase family and contained all the necessary

functional residues for that function. As such, we predicted that this

sequence is misannotated and that it instead catalyzes the fuconate

dehydratase reaction. Using gi 17987990 as a query, 11 other

sequences in NR score against this sequence with a BLAST E-value

of better than or equal to 16102150 and are also annotated as

‘mandelate racemase,’ likely indicating a case of error propagation. A

protein similarity network illustrating the excellent match of this

sequence to fuconate dehydratase sequences is provided in Figure 6.

The sequence gi: 71915096 (GenBank:AAZ54998) is an

example of an MFR misannotation from the enolase superfamily.

Although it was annotated in NR as an o-succinylbenzoate

synthase (OSBS) and scored against the HMM for that family, the

general base required for catalysis of the enzymatic reaction, lysine

166, is substituted in this sequence with a histidine. This sequence

also contains a number of additional substitutions in sequence

motifs conserved in authentic members of the OSBS family [48].

Glasner et al. have discussed this protein in depth and enumerate

the reasons (including genome context) why this sequence likely

represents a new and unknown function in the enolase

superfamily, rather than an OSBS.

The sequence gi 16082480 (GenBank:NP_393564) provides an

example of the BTC type of misannotation. This sequence was

annotated in NR as galactonate dehydratase. It scored against the

galactonate dehydratase family HMM at a bit score of only 126.6,

well below the TC for this family, 843.6, and was therefore

classified as misannotated. Additionally, the sequence scored well

against the gluconate dehydratase family HMM. The gluconate

dehydratase family was not one of the 37 families used as a gold

standard in this study because insufficient experimental informa-

tion was available in the SFLD when our analysis was performed.

Additional alignment and operon context information is now

available to predict that gi 16082480 is indeed a gluconate

dehydratase rather than a galactonate hydratase (see the SFLD).

The detailed results from this study are available in Dataset S1

or from the authors. Further work is underway to provide these

results online as part of a ‘‘misannotation resource’’ at the SFLD

web site (http://sfld.rbvi.ucsf.edu).

Discussion

The misannotation levels determined in this work are

substantially higher than those reported in previous studies.

Several reasons may account for these high levels. First, this study

is different in methodology from earlier studies that estimated

levels of misannotation in specific genome projects. Two

important earlier studies that predicted misannotation levels did

so based on discrepancies in annotations made by different groups

for specific genomes (for example, [4,5]), allowing placement only

of a lower limit on the likely levels of misannotation. In this study,

precise levels of misannotation could be documented for specific

sequences using a set of experimentally characterized families as a

gold standard. Second, in the archival databases NR and

TrEMBL, annotations are still largely made by inference from

simple sequence similarity, arguably the least accurate approach

for annotation transfer still in use [49]. Thus, misannotations in

these resources might be expected to be relatively high. Third,

most of the investigations focused on misannotation were

published early in the genomic era [4,5]. Our study is not unique

in finding increased levels of misannotation relative to earlier

Table 1. Examples of predicted misannotations in the NR database.

Misann. Type Example Notes

NSA gi: 48861106 annotation: COG1657: Squalene cyclase’
superfamily: terpene cyclase

Sequence does not score against any HMMs in the SFLD. In InterPro sequence maps to the
carbohydrate binding superfamily and the galactose-binding like superfamily. Sequence
does not map to any squalene cyclase motifs [69] or known models.

gi: 505585 annotation: ‘lactoylglutathione lyase’a

superfamily: VOC
Sequence does not score against any HMMs in the SFLD. Sequence matches well against
the glutathione transferase N- and C-terminal domain Pfam-A models. Sequence was
experimentally characterized and found to be a glutathione transferase rather than a
glyoxalase [11].

SFA gi: 17987990 annotation: ‘MANDELATE RACEMASE’
superfamily: enolase

Sequence does not score against the mandelate racemase family HMM but scores well against
the fuconate dehydratase family HMM and contains residues necessary for this function.

gi: 52628216 annotation: ‘3-hydroxyisobutyryl
Coenyzme A hydrolase’ superfamily: crotonase

Sequence does not score against the 3-hydroxyisobutyryl CoA hydrolase HMM but does
score against six other family HMMs in the crotonase superfamily.

MFR gi: 17983363 annotation: ‘2-HALOALKANOIC ACID
DEHALOGENASE I’ superfamily: HAD

Asp 180 that is necessary for the hydrolysis of the ester intermediate is substituted with
an arginine. Mutational work by Kurihara et al. [70] indicates that this substitution would
deactivate the enzyme.

gi: 71915096 annotation: ‘n-acylamino acid racemase :
O-succinylbenzoate-CoA synthase’ superfamily: enolase

Sequence has a histidine at position 166 along with several other substitutions to
canonical OSBS/NSAAR motifs.

BTC gi: 16082480 annotation: ‘Galactonate dehydratase’
superfamily: enolase

Sequence hits the galactonate dehydratase family HMM (bit score: 126.6), but this score
is well below the trusted cutoff for the family (TC = 843.6). Sequence does score against
the gluconate dehydrataseb family HMM with statistical significance.

gi: 56604528 annotation: ‘adenosine deaminase’
superfamily: AH

Sequence hits the adenosine deaminase family HMM (bit score: 9.7), well below the
trusted cutoff for that family (TC = 645.9). Sequence does score significantly against an
AH superfamily HMM in the SFLD for sequences of unknown function.

aSynonym for glyoxalase I family function.
bThis family was not in the gold standard analysis set because not enough experimental information was available at the time this analysis was performed.
doi:10.1371/journal.pcbi.1000605.t001

Misannotation in Public Databases
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studies [12]. Finally, the families and superfamilies evaluated here

likely represent somewhat more challenging problems for

annotation than do many groups of proteins for which ortholog

prediction is straightforward. This is because each superfamily in

our test set contains multiple homologous families that catalyze

different chemical reactions – yet all of the families in each

superfamily share a conserved chemical capability supported by

conserved active site motifs [50]. This complicates annotation

transfer based on simple approaches such as annotation transfer

from the best match to a previously annotated sequence. Besides

those used in our study, many additional enzyme superfamilies

have now been identified that contain multiple families that

catalyze different chemical reactions (see [51] for a compilation of

some of these). Misannotation levels in many of these additional

superfamilies (and new outlier enzymes identified in genomic and

metagenomic projects [52]) may also be especially high, although

our results cannot be broadly generalized to all annotations in the

public databases we investigated.

Another key observation from this study is the high variability in

the level of misannotation across both superfamily and family test

sets (Figure 3 and Table S1). Several issues were examined that

could account for this variability. Previously, others have shown

that annotation transfer at low levels of similarity greatly increase

the likelihood of incorrect function annotation [53–55]. Unfortu-

nately, the records available at NR are insufficient to determine

the specific routes by which sequences have been annotated so that

it is not possible to explicitly determine whether most misannota-

tion is the result of annotation transfer at low levels of similarity.

We were able to examine whether misannotation was more

prevalent in families with greater sequence diversity (i.e. families

with low average pairwise percent identity). The average and

range of pairwise percent identity for each of the 37 families in our

gold standard set were calculated and the results showed no

correlation between sequence similarity and the levels of

misannotation (data not shown). Other characteristics, including

superfamily size and family size (i.e. the number of sequences

correctly annotated to each) also failed to show correlation with

misannotation levels. We speculate that the variability in

misannotation levels seen in this study is likely associated with

many factors associated with the unsystematic way in which

sequences have been annotated in these databases [56]. Many

problems with annotation approaches, including annotating based

only on similarity to the nearest neighbor, failing to adequately

account for multidomain proteins and annotating based on

inappropriate levels of sequence similarity have been discussed

by others [2,3,57]. To accommodate this variation we suggest that

thresholds for homology-based annotation transfer should be

determined in a family-specific manner. Based on related

observations, this suggestion has been previously made [54].

Examination of misannotation levels over time suggests that error

propagation, likely occurring in a complex manner and associated

with multiple methodological causes, is also a primary cause of the

high and varied levels of misannotation that were observed. To

examine qualitatively the possibility of error propagation, we

modeled the emergence of misannotations over time using protein

similarity networks. An all-by-all BLAST [58] was performed on all

the sequences analyzed from the 37-family test set in the NR

database and the results were visualized as a network [59,60] (Video

S1). The movie shows that as time progresses from 1993–2005,

single proteins misannotated at early dates often became connected

at later dates by new edges to sequence-similar proteins with the

same incorrect annotations. A possible interpretation of this result is

that these clusters of misannotated proteins emerged from error

propagation from a single similar sequence that was misannotated

early in the time period covered by this analysis. The expected

continued use of simple annotation transfer for functional

annotation for sequences submitted to the NR and TrEMBL

databases from large scale sequencing projects suggests that this

trend is likely to continue [39–41].

Misannotation issues for large-scale databases
Two other primary issues for databases that are annotated

largely by automated methods deserve discussion: the common use

of source information without adequate reference and the inability

to correct misannotated functions. These appear to contribute to

the especially high levels of misannotation found in the archival

databases NR and TrEMBL, and, we speculate, by transfer of

information from these databases to KEGG.

A specific example from this study highlights the use of

information from sites such as Pfam [31] or InterPro [32] to

provide annotations without sufficient reference back to these

resources. This practice is problematic because the original source

information from such sites may not actually refer to a specific

functional annotation but rather may only refer to a group of

proteins sharing the same structural domain but representing

multiple different functions. Frequently, however, the qualifying

Figure 6. Network view of a misannotated sequence. The protein
similarity network shows clustering of sequences from an all-by-all
BLAST analysis of a subgroup of the enolase superfamily. Light grey
nodes (circles): unknown function; dark grey nodes: sequences
annotated in the SFLD but not examined in this analysis; colored
nodes: sequences colored by SFLD annotation (as designated in
Figure 1, enolase superfamily). Squares represent proteins that have
been experimentally characterized and colored circles represent those
in which residues known to be important for function and other
characteristics for that specific family are conserved. Edges (lines) show
BLAST connections between sequences that have an E-value at least as
good as 10250. Lengths of edges indicate that sequences in tightly
clustered groups are relatively more similar to each other than
sequences with few and distant connections. The sequence annotated
in GenBank as a mandelate racemase (gi|17987990, yellow dot) clusters
with fuconate dehydratases (red cluster) suggesting that it should be
annotated as a fuconate dehydratase instead of as a mandelate
racemase. The blue cluster containing two characterized mandelate
racemases is not close to the fuconate dehydratase cluster, providing
further evidence that this sequence is not a mandelate racemase.
doi:10.1371/journal.pcbi.1000605.g006
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designation of ‘domain’ or ‘superfamily’ is not included in the final

annotation, leading a user to conclude that such broad annotations

represent specific functions. For example, in this study it was found

that the description ‘mandelate racemase/muconate lactonizing

enzyme’ was used to annotate some members of the enolase

superfamily in the NR, TrEMBL and KEGG databases without

identification of the source. This annotation is problematic

because it is in fact the descriptor of the N- and C-terminal

Pfam-A models of the same name (PF01188 and PF02746) that

include many different enolase superfamily functions [44]. To a

user unfamiliar with this superfamily, this annotation appears to

describe a multifunctional enzyme that performs both racemiza-

tion and lactonization reactions. Such a multifunctional enzyme in

the enolase superfamily does not exist. We assume that this

annotation was originally meant to indicate membership in a

subgroup of related proteins in this superfamily that was defined

by Pfam. Although this example could be considered as a type of

misannotation likely to cause considerable confusion for users, it

was not counted in the misannotation levels given in Figure 3 since

it did not fall within the protocol used in this study.

A direct consequence of the use of source information without

proper attribution is that it becomes essentially impossible to

propagate corrections for misannotated sequences either back to

the original source of the annotation or to secondary sources to

which these annotations have been propagated. The glyoxalase I

example given in Table 1 is a case in point, underscoring the

difficulty of back propagating corrected annotation information

through a database to sequences and annotations that are already

there. As has been described elsewhere [61,62], correcting

misannotation in large archival databases such as NR is usually

not possible because NR is not just a database but is also an

archival library for which a primary mission is to keep an accurate

record of sequence submissions, along with author supplied

annotations. Thus, NR is not the owner of its annotations (or

misannotations); rather, they are owned by the author(s) or

genome sequencing project that submitted them.

Addressing the issue of misannotation
Misannotation of molecular function in public databases

continues to be a significant problem, particularly when new

annotations are made by annotation transfer based on similarity,

increasing the urgency for alternative strategies for obtaining high-

confidence annotations. Discussion of whether and how to

reannotate sequences for which incorrect annotations are already

embedded in primary (and secondary) databases is an active topic

in the literature [17,18,61–63]. We offer here suggestions that

could be implemented to alleviate some of the worst consequences

of the problem going forward.

First, we advocate, as many others have suggested, the use of

evidence codes to provide attribution of the evidence used in

support of a particular annotation. A growing number of databases

including Swiss-Prot and the SFLD have added evidence codes for

this purpose and evidence codes are integral to the GO effort as

well [64,65]. In this work, we created ‘‘misannotation evidence

codes’’ to label the type of misannotations found. Evidence codes

are useful because they convey important information simply and

clearly. They are also readable by computers, thereby facilitating

automated analyses by providing systematic definitions for

evidence supporting an annotation. For example, to find all

sequences that have been experimentally characterized in a

database, e.g., in GO, one can simply filter the database by the

evidence code ‘‘Inferred from Direct Assay’’ (IDA) and quickly

retrieve the sequences of interest. Evidence codes require little

effort to add to an annotation when it is originally generated and

should generally be incorporated as a structured element of these

records. (We note here that some annotations for test sequences

examined in this study were modified by what might be considered

qualifying evidence. These included terms that modified functional

designations such as ‘‘hypothetical,’’ ‘‘predicted,’’ and ‘‘likely.’’

Although perhaps intended for use as a type of rudimentary

evidence code, their meanings are not defined precisely, nor are

they systematic in ways easily classified by computers. For these

reasons, these terms were ignored in this study.)

In addition to simple operational ideas such as evidence codes to

improve annotation quality and utility, our results showed that a

major source of misannotation can be ascribed to ‘‘over

annotation’’ of function, a concept that has also been described

by others [57,63]. The majority of misannotated sequences

identified in this study (85%) resulted from over annotation, i.e.,

sequences were annotated with a specific family function even

though they scored well only to a superfamily HMM but not to a

family HMM. Thus, we suggest a more conservative approach to

annotation, i.e., annotation only at the level of function for which

there is strong evidence [45,46]. If available evidence allows clear

placement of a sequence only to a superfamily but not to a family

within it, it should only be annotated as a member of that

superfamily. This strategy is used by the SFLD, which annotates

sequences at different levels of granularity based on supporting

evidence for annotation to each, allowing us to claim high

confidence annotations for this manually curated database.

The consequence of this approach is that many sequences would

be annotated with only general functional characteristics common to

all members of an enzyme superfamily, lowering significantly the

number of sequences for which reaction specificity is annotated.

Clearly, there is a tradeoff between the value of annotating most

sequences with some level of function to facilitate interpretation of

genomes and the confusion and misinterpretation that may result as

misannotations continue to accumulate at a high levels. Undoubtedly,

the individual scientist must choose where along the ‘‘annotation

confidence’’ spectrum is most appealing for a particular study.

Our results also highlight the value of building and supporting

manually curated databases that rely heavily on experimental

evidence available from many types of biological experiments. These

include Swiss-Prot as well as some organism-specific databases and

specialty databases such as the Catalytic Site Atlas [28] and the

SFLD. However, a main drawback to manual curation is the

difficulty of keeping pace with new functional data resulting in far

smaller and less representative databases than their automatically

curated cousins [66]. Additionally, databases can be subject to bias

because of the punctuated nature of scientific work, i.e., some protein

functions and sequences attract much scientific attention, investiga-

tion and publication while others attract very little. As has been

pointed out previously [53], Swiss-Prot exhibits such bias in its

‘overrepresentation’ of the sequences about which the scientific

community knows most (contributing to the high quality of these

annotations). Still, given the considerable difference in quality

between manually and automatically curated databases, additional

focus and resources should be devoted to manual curation. For

example, the scientific community might consider enabling the

submission of all experimentally characterized sequences to a

centralized source such as Swiss-Prot at the time of publication,

enhancing its size and currency. Such an effort could also contribute

to broadening representation of the protein universe in these

manually curated databases.

Conclusion
This study examined the incidence of misannotation for over

7,000 sequences from the major archival databases and documents
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its prevalence, major types and some of its causes. Using a gold

standard test set of well characterized enzyme families and

superfamilies representing 5 fold classes, and spanning five of the

six major classes of the E.C. system, our results demonstrate

similar and surprisingly high levels of misannotation across all of

the databases evaluated, except for Swiss-Prot, which showed very

low levels of misannotation overall. We additionally found

considerable variation in levels of misannotation across each of

the 37 families examined. This result suggests that it will likely be

difficult to predict even relative levels of misannotation for other

superfamilies and families generally without the careful analysis of

each. How our conclusions apply to other classes of proteins

besides enzymes cannot be determined from this study. However,

based on the breadth of the test set we investigated, we expect

misannotation in public databases, at least for other functionally

diverse enzyme superfamilies, to be a larger issue than has

previously been estimated.

We found evidence for error propagation and an increase in

annotation errors over time, indicating that the problem is getting

worse even as multiple orthogonal information sources and tools

are becoming available to complement simple annotation transfer

protocols. Several major types of misannotation were identified,

with a large majority (85%) associated with ‘‘over annotation,’’ i.e.,

annotation of sequences at a greater level of functional specificity

than available evidence supports. We suggest that support for

manually curated databases, including organismal databases and

databases such as Swiss-Prot, could provide high confidence

annotation for a subset of proteins. For large databases annotated

largely by automated methods, the misannotation problem could

be ameliorated to some extent by the use of evidence codes

describing in a systematic and computer-readable format the

evidence available to support annotation assignments.

Methods

Selection of functions to investigate for misannotation
The functions analyzed in this investigation were selected from

the August 11, 2005 version of the Structure-Function Linkage

database (SFLD) [46]. A set of functional families was defined for

use as a gold standard, each of which met two criteria: catalytic

residues needed for enzymatic function had been identified from

experimental studies, and suitable manually curated hidden Markov

models [67] and alignments were available. In all but two cases

(galactonate dehydratase and 3-hydroxyisobutyryl-CoA hydrolase)

at least one x-ray crystal structure was also available for each family.

Superfamilies and families from the SFLD have been previously

described as a Gold Standard for use as a benchmark for the

development of computational tools for function prediction [44].

The set of enzymes used here are a subset of families from that work

plus families from the terpene cyclase superfamily, which were

added to the SFLD after the publication of the Gold Standard set.

These families come from six superfamilies representing five

different structural folds and 37 different functional families

(Figure 1): enolase superfamily (10 families), crotonase superfamily

(6 families), vicinal oxygen chelate superfamily (4 families), terpene

cyclase superfamily (6 families), haloacid dehalogenase superfamily

(4 families) and amidohydrolase superfamily (7 families).

Protein sequence data
Four public databases were analyzed for misannotation: the

NCBI GenBank Non-redundant (NR) protein database [1] the

UniProtKB/TrEMBL and UniProtKB/Swiss-Prot protein data-

bases [42] and the protein database of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [43]. The protein sequences from

these four databases were downloaded on February 17, 2006.

Additionally, the protein sequences from the Gene Ontology (GO)

database [64] were downloaded on the same day. These sequences

were used as ‘knowns’ in the definition of family threshold (see

below).

Misannotation analysis protocol
Keyword search. The misannotation analysis followed the

protocol given in Figure 2 and was identical for each database

examined and family analyzed. A keyword search was used to

gather sequences from the test databases. Keyword dictionaries

were created for each family using information available from the

SFLD and, when appropriate, the functional information and

synonym lists from the Enzyme Commission (EC) [47]. Sequences

with annotations matching one or more of the keywords were

retrieved using regular expression string matching.

Misannotation prediction and classification. Sequences

retrieved by the keyword search were scored in an automated

fashion against all of the HMMs in the SFLD using the HMMER

program hmmpfam A highly permissive and inclusive E-value

cutoff of 100 was used for this step to gather highly divergent hits

and to determine at what scores sequences from related families hit

each family HMM. Using hmmalign (HMMER) each sequence

was aligned to each HMM it scored against and discrepancies

between the sequence and residues known to be necessary for

catalysis were output.

Initial text parsing. The annotation of every sequence

retrieved was examined manually. The sequences associated with

annotations unrelated to the analysis function or that were not

annotated to an enzymatic function (including sequences annotated

only to a gene name) were removed. If an annotation contained

both an enzymatic designation and a designation not associated

with its catalytic functionality (e.g. localization or biological role)

only the catalytic designation was analyzed. Annotations that used

the terms ‘family’, ‘-like’, ‘similar to’, ‘related to’ and ‘homolog’ were

not included in the final analysis set. Terms like ‘family or ‘homolog’

do not denote a specific reaction and can be inferred to mean either

similarity in function or similarity in sequence based upon the user’s

context. As there was no specified context for these terms in the

annotations, it was not possible to disambiguate the ‘functional

similarity’ annotations from the ‘sequence similarity’ annotations,

therefore, all such annotations were removed. The descriptors of

‘hypothetical’, ‘probable’, ‘putative’, ‘potential’, ‘predicted’ and

‘likely’ are also not well-defined terms [15] and serve only as

qualifiers of unknown strength regarding the confidence of a

functional prediction. These qualifiers were not considered in the

analysis, i.e., annotations that included these types of descriptors

were analyzed as though they were not present. If an annotation

contained both a general description and a specific description (e.g.

‘‘(GLYOXALASE I HOMOLOG); lactoylglutathione lyase’’) only

the portion of the annotation that defined a specific function was

analyzed. Additionally, fragments were removed from the analysis.

A sequence was considered a fragment if it was too short either at

the N or C terminus to contain all functionally important residues. A

sequence that by alignment appeared to be missing interior portions

of sequence was not considered a fragment. Sequences associated

with crystal structures that had been mutated to remove required

catalytic residues were not included in the test set. The sequences

that remained after these steps constituted the analysis set.

Manual misannotation analysis steps. Using the output

from the automated HMMER-based analysis, pruned as

described, each sequence in the analysis set was analyzed in a

four-step process and labeled with appropriate misannotation

codes if a misannotation was found (Figure 2). The first step
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determined whether a test sequence mapped to the appropriate

superfamily. If the sequence did not score against the appropriate

superfamily HMM, it was labeled as misannotated and was

classified with the ‘No Superfamily Association’ (NSA)

misannotation code. The second step was to determine if the

sequence under examination mapped to the appropriate family. If

the sequence did not score against the family HMM to which it

was annotated, the sequence was labeled as misannotated and

classified as ‘Superfamily Associated Only’ (SFA). In the third step

it was determined whether the sequence under examination

contained the amino acid residues necessary for catalytic function.

If the output of the automated alignment of the sequence against

the family HMM indicated a discrepancy for the residues in

question, additional manual analysis was undertaken (see below).

Sequences missing one or more of functionally necessary residues

were labeled as misannotated and classified as ‘Missing

Functionally Important Residue(s)’ (MFR). Conservative amino

acid substitutions and/or mutations that might still be functional

(e.g. likely able to bind to a metal etc.) were accepted, however.

The fourth step was used to determine if a test sequence scored

sufficiently well against to the family HMM to be considered a true

family member. This was determined by a threshold named the

Trusted Cutoff (see the section describing threshold definitions

below). If a sequence did not score above the Trusted Cutoff, it

was labeled misannotated and classified as ‘‘Below Trusted Cutoff’

(BTC). Any sequence that passed all four of these steps was

considered to be annotated correctly. In total, over all four

databases, 7255 sequences were examined in the misannotation

analysis (Figure 1); Annotation designations are provided for these

sequences in Dataset S1.

Assessment of functional residue designation. Every

sequence that was found by the automated process to be missing

one or more functionally important residues was checked manually.

First, the alignment of the sequence to the family HMM alignment

was visually inspected to ensure that there was no obvious

misalignment or conservative substitution (conservative amino acid

substitutions were accepted). Using the alignment program Muscle

[68], sequences with non-conservative substitutions of functionally

important residues were aligned to the sequences of authenticated

family members. The alignments were manually analyzed, checked

against available literature and case-by-case decisions were made

whether to accept these non-conservative substitutions. Sequences for

which the mutations were accepted were passed on to the next (and

final) analysis step (threshold step, Figure 2).

Thresholds to determine family (functional) membership
In order to differentiate family members from non-family

members, HMM bit-score thresholds were determined for each

gold standard family. Sequences in the SFLD assigned to families

and sequences from GO that were marked with the evidence code

‘‘Inferred from Direct Assay’’ (IDA) were scored against all of the

SFLD HMMs using the HMMER program hmmpfam using an E-

value cutoff of 100 (14,902 sequences scored). The scores were

compiled and the sequences labeled according to whether they

were true positives or true negatives for the family against which

they scored. The Trusted Cutoff (TC) was defined as the HMM

score of the lowest-scoring true family member against the family

HMM (Figure S1). The TC was the threshold at which the

primary misannotation analysis was performed.

Change in misannotation over time
For each sequence analyzed in the GenBank NR database, the

original submission date of that sequence was retrieved from NR.

The sequences were binned by submission year and predicted

annotation status (Figure 3). The fractions of predicted misanno-

tated sequences versus the total number of sequences deposited

were calculated as follows: misannotated sequences deposited in

year X/total sequences deposited in year X.

Protein similarity networks
To generate the network shown in Figure 6, an all-by-all

BLAST analysis of sequences of a subgroup of families from the

enolase superfamily was performed. A protein similarity network

[60] was created from the BLAST results using the software

Cytoscape [59]. The nodes were arranged using the yFiles organic

layout provided with Cytoscape version 2.4. Connections between

nodes were shown as edges if the E-value of the best BLAST hit

between two sequences is at least as good as 1610250 (As these

BLAST analyses were performed using a custom sequence

database the resulting E-values are not necessarily directly

comparable to the E-values determined by BLASTing against

databases with large background models such as GenBank NR

[60]). Tools used for visualization of protein networks were created

in part by the UCSF Resource for Biocomputing, Visualization,

and Informatics, supported by NIH P41 RR-01081, and are

available from the Resource (http://www.rbvi.ucsf.edu).

Data plots
All data plots were produced using the software R v2.6.0.

Supporting Information

Figure S1 Three analysis thresholds used in the misannotation

analysis. This example for the galactonate dehydratase family

(enolase superfamily) illustrates how the three scoring thresholds

were defined for each of the 37 families evaluated in this study.

The Trusted Cutoff (TC) (used for the primary misannotation

analysis) was defined as the lowest score at which a true family

member scores against the family HMM. The Noise Cutoff (NC)

threshold was defined as the highest score at which a non-family

member scores against the family HMM. The Lenient Cutoff (LC)

threshold uses the set of true family sequences to which some false

positive sequences have been added so that they represent 5% of

the total sequences. Using this artificial set of family sequences, the

LC threshold for each family was defined as the lowest score at

which one of these non-family sequences scored.

Found at: doi:10.1371/journal.pcbi.1000605.s001 (1.00 MB TIF)

Figure S2 Average percent misannotation in the NR database

across families in each superfamily using different thresholds. The

black bar in each plot depicts the average percent misannotation

predicted in the analysis over each superfamily at the three scoring

thresholds described in additional figure 1.

Found at: doi:10.1371/journal.pcbi.1000605.s002 (0.01 MB TIF)

Table S1 Percent misannotation for each family in the NR,

TrEMBL, KEGG and Swiss-Prot databases.

Found at: doi:10.1371/journal.pcbi.1000605.s003 (0.13 MB

DOC)

Text S1 Misannotation analysis controls and tests

Found at: doi:10.1371/journal.pcbi.1000605.s004 (0.06 MB

DOC)

Dataset S1 Sequences analyzed in misannotation analysis and

their designations

Found at: doi:10.1371/journal.pcbi.1000605.s005 (1.21 MB XLS)

Video S1 Movie of the annotations from the NR database

displayed by year (1993–2005). The movie tracks correctly

annotated and misannotated sequences in the test set over the
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years 1993–2005. The similarity network is arranged by

superfamily and colored as in figure 1, i.e. all nodes of the same

color were annotated to the same function. The network was

generated from an all-by-all BLAST analysis of the test sequences

with results that had BLAST E-value scores of 1610230 or lower

retained. Nodes represent sequences deposited into the NR

database during the years 1993–2005. Any two nodes are

connected by an edge if at least one node found the other with

a BLAST E-value less than or equal to 1610230. The network is

visualized using Cytoscape v2.6.0-beta. The distance between any

two connected nodes is roughly inversely proportional to the

strength of the E-value between them (force-directed layout). The

shapes of the nodes indicate annotation status: circles depict

correctly annotated sequences and triangles depict incorrectly

annotated sequences. Black arrows indicate examples in the

haloacid dehalogenase family (HAD) and glyoxalase I family

(VOC) that display potential evidence of error propagation. As

these BLAST analyses were performed using a custom sequence

database the resulting E-values are not necessarily comparable to

the E-vaules determined by BLASTing against databases with

large background models such as GenBank NR [60].

Found at: doi:10.1371/journal.pcbi.1000605.s006 (1.29 MB

MOV)
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