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Abstract

The differentiation of embryonic stem cells is initiated by a gradual loss of pluripotency-associated transcripts and induction
of differentiation genes. Accordingly, the detection of differentially expressed genes at the early stages of differentiation
could assist the identification of the causal genes that either promote or inhibit differentiation. The previous methods of
identifying differentially expressed genes by comparing different cell types would inevitably include a large portion of
genes that respond to, rather than regulate, the differentiation process. We demonstrate through the use of biological
replicates and a novel statistical approach that the gene expression data obtained without prior separation of cell types are
informative for detecting differentially expressed genes at the early stages of differentiation. Applying the proposed
method to analyze the differentiation of murine embryonic stem cells, we identified and then experimentally verified
Smarcad1 as a novel regulator of pluripotency and self-renewal. We formalized this statistical approach as a statistical test
that is generally applicable to analyze other differentiation processes.
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Introduction

Cellular differentiation is the process by which a less specialized cell

becomes a more specialized cell type, characterized by the expression

pattern of a subset of genes (called marker genes hereafter) during the

differentiation process. The search for marker genes is widely pursued

in almost every differentiation process, although a principled

approach is still missing. The current practice is to separate

distinguishable cell types, measure gene expression from each cell

type, and then identify differentially expressed genes (Table S1). Such

methods require the expression data for both cell types to be

available. A limitation of these methods is that by the time the cell

types are distinguishable, for example by morphology, many genes

have already shown differential expression. This set of differentially

expressed genes may include the class of ‘‘early marker genes’’ that

are enriched for markers of early differentiating cell lineages as well as

genes whose down-regulation triggers differentiation. However, the

set of differentially expressed genes will also include a second, larger

class of genes in which gene expression is not important to the

regulation of the differentiation process but in which genes are simply

characteristic of the fully differentiated cell types. Traditional sample

comparison procedures are not designed to separate the two classes

differentially expressed genes and as a result, the large lists of

differentially expressed genes usually do not provide direct guidance

for dissecting underlining mechanisms of differentiation.

Recognizing early marker genes enables separation of cell types

at an early stage of differentiation; in turn, separating cell types at

an early stage of differentiation enables identification of early

marker genes. However, neither piece of the puzzle is currently

available to a study of a new differentiation process.

We demonstrate that, contrary to common belief, early marker

genes can be detected by measuring the average expression of a

mixture of cell types, provided that enough biological replicates

have been measured and statistical test based on variance ratio has

been used. We provide (1) the theoretical reasoning, (2) a statistical

method, and (3) two validation experiments.

Results

During the early stages of differentiation, a parental population

of cells gives rise to at least one descendent cell type, generating a

mixed population of both parent and descendent cells (Figure 1).

In a general experimental design, the average expression of a gene

in the cell mixture is measured, for example by microarrays, at a

few time points (§2) during the differentiation process. Biological

replicates (§3) are available for every time point. Our task is to

identify the earliest group of genes that have differential expression

patterns. For a toy example (Figure 1), this group of genes includes

Gene 1 only, although all three genes have changed expression

values over time. After time T1, the average expression level in a
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mixed cell population is measured for Gene 1 (dotted line,

Figure 1B). After T1, the variance of measured expression of Gene

1 across biological replicates should inflate as compared to its

variance before T1. The reason for this variance inflation is that

the percentage of descendent cells is not identical across biological

replicates (Figure S1, Text S1). For example, at t2, biological

replicate 1 may have 50% parental cells and 50% descendent cells,

whereas biological replicate 2 may have an 80%–20% split of

parental and descendent cells in the mixture (see Fig 5B of [1] as

an example). In contrast to a nearly 100% parental cell population

at t0 for all biological replicates, the difference in percentage of

sub-populations after differentiation is a signal that can be utilized

in a statistical method, hereafter referred to as Differentiation-Test

(Methods). Although the description of rationales above has

various simplified assumptions, inflation of variance is intrinsic to

unsynchronized differentiation events across biological replicates.

Neither the model nor the applications assume the parental

population is homogeneous (see Discussion).

We used this approach to study the differentiation of mouse

embryonic stem (mES) cells into embryoid bodies (EB). Very early

in this differentiation process, different subsets of mES cells start to

show different expression changes that then bias the development

towards different lineages. These early marker genes are probably

small in number, and the timing of their changes in early

differentiating cells may be stochastic and exhibit large variation in

replicate experiments. As differentiation continues, there will be

further changes in the expression of these genes as well as in a

larger number of other genes characteristic of the fully

differentiated states of the various lineages (e.g., ectoderm,

mesoderm, visceral and definitive endoderm). Strictly speaking, a

time dependent mixture of two or more cell populations, as

formulated in the Methods section and the above titration

experiment, is too simplistic to model the setting of mES to EB

differentiation. However, the Differentiation-Test derived from

such a model should still be applicable in this setting. At an early

time point, such as 4 days after differentiation, the stochastic

timing of the changes in an early marker gene will lead to

increased variability of its measured expression level in biological

replicates. The Differentiation-Test was designed to detect exactly

this increased variability. To test this idea, we differentiated mES

cells spontaneously into EBs (Figure S2). Gene expression of six

biological replicates of undifferentiated mES cells (0-day), as well

as 4-day, 8-day and 14-day EBs was measured by Affymetrix

microarrays (Methods). We applied the Differentiation-Test to this

dataset and identified the top 200 differentially expressed genes of

4-day and 8-day EBs (Text S2). These time points represented

early stages of mES differentiation because after 8 days, numerous

cystic structures were observed to become progressively larger over

time. As a benchmark experiment, Zhou et al. used fluorescence

activated cell sorting (FACS) to obtain the subset of differentiating

mES cells that express a GFP under the control of an Oct4

promoter (Oct4+) and the subset of cells that do not express Oct4-

promoter controlled GFP (Oct42) [2]. Oct4 is master regulator of

self-renewal of mES cells, and its expression level is used as the

indicator of the differentiation state [3]. Differentially expressed

genes between Oct4+ and Oct42 cells reported by Zhou et al.

were used as a benchmark gene list. The statistical significance of

the overlap between the Differentiation-Test reported gene lists

and the benchmark genes was assessed by Fisher’s Exact Test,

generating p-values of 3:8|10{8 and 1:7|10{9 for 4-day and 8-

day EBs, respectively. These small p-values were not due to a

particular cutoff of the number of top-ranking genes reported

(Table S2). In contrast, in testing 10,000 random lists of 200 genes

each against the benchmark list, none (0%) of these reached p-

values as significant as 3:8|10{8 or 1:7|10{9 (Figure S3). In

fact, the Differentiation-Test’s top-ranked transcription regulators

in 4-day EBs (Table S3) included a number of markers of early

differentiation, including Sox4, Egr1, Id2, and Pax6 (ranked as 6,

9, 12, and 36, respectively), as well as known self-renewal

regulators of mES cells, including Klf4 [4], and Oct4 [5,6]

(ranked 1 and 13, respectively). In contrast, a traditional T-test

between 4-day EBs and undifferentiated mES cells failed to reveal

any of these differentially expressed genes because 4-day EBs still

had a similar mean expression of the marker genes as 0-day mES

cells (Column H, Table S3). For example, T-test p-values for Klf4

and Oct4 are 0.90 and 0.95, respectively. These test results suggest

that the Differentiation-Test detected differentially expressed

genes in a very early stage of the differentiation process, generating

consistent results to those obtained from a laborious experimental

procedure of cell sorting. Cell sorting requires prior knowledge of a

marker gene that is differentially expressed, which may not be

available for every differentiation process in future studies.

We hypothesized that the Differentiation-Test reported list

would include uncharacterized critical regulators of pluripotency and

self-renewal. Self-renewal regulators should have a lower expres-

sion in differentiated cells and therefore should be detectable in the

cell mixture of 4-day EBs. We used short hairpin RNA (shRNA) to

further study two transcription regulators detected by the

Differentiation-Test, namely, Smarcad1 and Pias2. They ranked

10 and 99 respectively among all transcription regulators (Table

S3). The other top-ranking regulators were not picked for

experimental validation because they had known regulatory roles

in ES cell differentiation. Upon 2 days of Smarcad1 shRNA

induction, ES cells started to take on a flattened morphology; large

percentages of cells lost Alkaline Phosphatase (AP) staining

(Figure 2A). Quantitative real time polymerase chain reaction

(qPCR) analysis showed that the knockdown of Smarcad1 induced

the expression of Fgf5, a growth factor involved in multiple

differentiation processes including differentiation to the neuronal

lineage [7] (Figure 2B). At 4 days of shRNA induction, we

observed further loss of AP staining (Figure S4A), reduction in

pluripotency markers such as Oct4, Sox2, and Nanog, as well as

induction of multiple differentiation marker genes including Fgf5,

Cdx2, and Hand1, confirming that the cells depleted of Smarcad1

Author Summary

Cellular differentiation is the process by which a less
specialized cell becomes a more specialized cell type,
characterized by the expression pattern of a subset of
genes during the differentiation process. Identifying the
subset of genes that initiate the differentiation process is
critical to study differentiation mechanisms. The current
practice for finding such genes is to separate distinguish-
able cell types, measure gene expression from each cell
type, and then identify differentially expressed genes.
These methods would inevitably include a large portion of
genes that respond to, rather than regulate, the differen-
tiation process. We demonstrate through the use of
biological replicates and a novel statistical approach that
the gene expression data obtained without prior separa-
tion of cell types are informative for detecting genes that
may regulate differentiation. Applying this method to
analyze the differentiation of murine embryonic stem cells,
we identified and then experimentally verified a novel
regulatory gene. We formalized this statistical approach as
a statistical test that is generally applicable to analyze
other differentiation processes.
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lost the ability to maintain their stemness state (Figure S4B).

Multiple shRNA constructs targeting different regions of the target

genes gave the same results. On the other hand, neither mock

shRNA nor shRNA knockdown of Pias2 induced ES cell

differentiation (Figure 2). These results demonstrate the ability of

the Differentiation-Test to identify novel self-renewal regulators.

A regulatory network of early differentiation genes might reveal

the critical events that underlie the earliest differentiation of ES

cells. Using the genes identified by the Differentiation-Test, we

constructed a gene regulatory network (GRN) that demonstrates

the transition of ES cells to 4-day EBs (see Methods). Nodes of this

GRN were top-ranked transcription factors and signal transduc-

tion genes detected by the Differentiation-Test in 4-day EBs

(Figure 3). Regulatory relationships among these nodes were taken

from published results of ChIP-chip experiments [4,8,9], ChIP-seq

experiments [10], and RNAi followed by microarray experiments

[3,4]. Comparing the mean expression value of a gene in Oct4

expressing cells (Oct4+) and Oct4 non-expressing cells (Oct42)

[2], we separated the differentiation regulators into two modules:

the upregulated module during differentiation (termed the

differentiation module, yellow nodes, Figure 3) and the downreg-

ulated module (termed the pluripotency module, blue and red

nodes, Figure 3). The DNA binding motif of RBP-J, the canonical

downstream transcription factor of the Notch signaling pathway, is

strongly enriched in the upstream regions of the differentiation

module as compared to those of the pluripotency module

(Figures 4, S5, Text S3) [11], suggesting the Notch signaling

pathway might trigger the early differentiation of ES cells. These

data are consistent with recent reports that Notch signaling

promotes neural lineage entry of mES cells [12] and that it is

required for undifferentiated human ES cells to form the progeny

of all three embryonic germ layers [13].

Discussion

If high-throughput measurements of gene expression at the

single-cell level were available, currently available statistical tools

(Table S1) would be applicable to the search for differentially

Figure 1. A toy example of gene expression levels during a cellular differentiation process. (A) Two differentiation events happened at T1
and T2, respectively. From T1, Gene 1 has two expression levels in two subsets of cells in the cell mixture. Gene expression data are available at t0 to
t4. (B) The solid black and green lines are not observed after T1 and T2, respectively; instead, the dotted lines are observed as mean expression levels
of the cell mixture from microarray data.
doi:10.1371/journal.pcbi.1000607.g001

Dissecting Early Differentially Expressed Genes
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Figure 2. Depletion of the candidate self-renewal factor Smarcad1 by RNAi. Three shRNA constructs were used to target different regions
of respective transcripts. (A) Two days after puromycin selection, the colony morphology of typical undifferentiated ES cells with positive alkaline
phosphatase (AP) staining (red) was maintained in two control experiments (Empty and Luci) and three Pias2 knockdown experiments. In contrast,
flattened fibroblast-like cells were formed in each Smarcad1 knockdown experiment, and AP staining in Smarcad1 depleted cells was reduced. (B)
Quantitative real-time PCR analysis of gene expression in four-day knockdown ES cells. The levels of the transcripts were normalized against the
control experiment of empty vector transfection. Data are presented as the mean6SEM, which was derived from three independent experiments.
doi:10.1371/journal.pcbi.1000607.g002
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expressed genes during differentiation. However, microarrays

typically cannot measure gene expression from a single cell but can

only measure the average signal from a bulk of cells. Such data

demand new gene expression models from the single-cell level to

the cell-mixture level.

The Differentiation-Test method makes a number of abstrac-

tions to the differentiation process. Most remarkably, the method

assumes that the differentiation process starts from a relatively

homogeneous initial cell mixture and progresses into a more

heterogeneous cell mixture with identifiable events of divergence

of expression levels of certain genes during the process. There are

at least two sources contributing to the heterogeneity of gene

expression in a cell mixture, including the unsynchronized cell-

cycle stages and the cell type difference. The first source of

heterogeneity is assumed to persist over time, and therefore it is

adjusted for by the ratio of variances across time points.

Statistically, when the initial cell mixture is not purely homoge-

neous, Equation (5) would have a non-zero first term in the

summation. In such a scenario, the DT statistic still reflects the

contrast of variation across time and the null distribution can be

approximated by an F distribution with the same degrees of

freedom. Therefore, the Differentiation-Test does not require the

initial cell mixture to be absolutely homogenous but does require

the heterogeneity of the cell mixture to increase over time.

The same set of core regulatory proteins and protein complexes

interact and regulate the genes in both the pluripotency module

and the differentiation module (Figure 3). The complex interac-

tions of these regulatory proteins suggest that their pivotal roles in

ES cells may not be sufficiently reflected in a binary description as

‘‘activators’’ or ‘‘repressors,’’ whereas they may serve to strike a

balance between the multiple extrinsic signals that the cells receive,

filter intrinsic noise of the system, and collectively predispose the

ES cells to pro- or anti-differentiation states. The implications of

such complex interactions to data modeling and interpretation are

twofold. First, a predictive model for cell fate decision might

require modeling the regulators as continuous rather than Boolean

variables. A case in point is the observation that the feedback loop

of Oct4-Sox2-Nanog is capable of translating continuous differ-

entiation signals into an irreversible bistable switch [14]. Second,

gene knockout data should be interpreted with caution given that a

Figure 3. A regulatory network in differentiating ES cells. Modules and regulatory relationships. Yellow and blue nodes represent genes that
are up- and down-regulated in differentiated cells. All blue and yellow nodes are collectively termed as pluripotency and differentiation modules,
respectively. Edges (plain edges, activators q and repressors i) represent evidence of regulatory relationships. Plain edges: the regulatory
relationship is supported by the binding of the regulator to the target gene (ChIP-seq or ChIP-chip data). Activators: the regulatory relationship is
supported by both the binding of the regulator to the target gene (ChIP-seq or ChIP-chip data) and down-regulation of the target gene expression
when the regulator is knocked down (RNAi microarray data). Repressors: the regulatory relationship is supported by both the binding of the regulator
to the target gene (ChIP-seq or ChIP-chip data) and up-regulation of the target gene expression when the regulator is knocked down (RNAi
microarray data).
doi:10.1371/journal.pcbi.1000607.g003
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regulator may not merely activate or repress gene expression but

may also buffer variability in transcription by minimizing

stochastic extrinsic and intrinsic signals that create noise in gene

expression [15]. A case in point is the deletion experiment of the

Polycomb complex protein Suz12 [16]. Suz12(2/2) ES cells are

viable and exhibit defective differentiation, which seems to

contradict the role of the Polycomb group as a repressor complex

that suppresses the expression of lineage-specific differentiation

genes in ES cells [8]. However Suz12(2/2) ES cells exhibit a

global loss of H3K27 trimethylation (H3K27me3) [16], which may

have lost a buffering mechanism that renders the intrinsic signal

for pluripotency unrestrictedly amplified. More experiments, such

as a series of knockdowns of Suz12 into different concentrations,

may produce data to further investigate such questions.

The new gene expression and RNA knockdown data suggest that

Smarcad1 is a chromatin modeling factor that contributes to

maintaining the pluripotency of ES cells. Smarcad1 is structurally

classified into the SWI2/SNF2 superfamily of DNA-dependent

ATPases that are catalytic subunits of chromatin-remodeling

complexes. Although the importance of other members of the

SWR1-like subfamily in chromatin remodeling (EP400, INOC1,

and SRCAP) has already been elucidated, little was known about the

Figure 4. Enrichment of the RBP-J motif in the upstreams of the differentiation module. (A) Average upstream binding affinity of RBP-J
both shows enhanced signals in the upstream sequences of the differentiation module genes as compared to that of the pluripotency module genes.
(B) Testing of all 332 non-redundant mammalian DNA binding motifs available in TRANSFAC v10.2, four motifs were found to be enriched in the
upstream sequences of the differentiation module genes as compared to that of the pluripotency module genes (p-value #0.05). In particular, the
RBP-J motif exhibited the second smallest p-value (0.028) and the largest enrichment factor (2.0) among the 332 motifs.
doi:10.1371/journal.pcbi.1000607.g004
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biological function of Smarcad1 in transcriptional regulation.

Homozygous mutation of Smarcad1 gives rise to a number of

phenotypes including prenatal-perinatal lethality [17], confirming

Smarcad1’s importance in regulating early development. Smarcad1

preferentially binds to transcription start sites in embryonal

carcinoma cells [18], which suggests that Smarcad1 is a gene

specific transcription regulator rather than a ubiquitous chromatin

modeling factor. These data and our observations collectively suggest

that Smarcad1 might be an overlooked sequence-specific transcrip-

tion regulator important for both ES cells and early development.

Methods

The statistical model for the Differentiation-Test
Model for cell-level transcript copy numbers. Let ygtrc

denote the gene expression level (copy number) of gene transcript

g in cell c of biological replicate (sample) r at time t. Without loss

of generalizability, assume that during the first differentiation

event, a parental cell population becomes a mixture of two cell

types. For a cell, let d~d(c)[f0,1g denote its cell type: 0 for the

parental and 1 for a descendent cell type. Suppose there are nr

cells in biological replicate (sample) r. Let Xtr denote the

proportion of the cells that belong to a differentiated cell type

(d~1). The copy number of transcript g can be expressed as:

ygtr.~
Xnr

c~1

ygtrc

*
Xnr

c~1

Poisson mgtzbgtI(d~1)
� �

~Poisson
X

c:d(c)~0

mgt

 !
zPoisson

X
c:d(c)~1

(mgtzbgt)

 !

~Poisson(n0trmgt)zPoisson(n1trmgtzn1trbgt),

ð1Þ

where n0tr and n1tr are the number of cells of type 0 and type 1.

The mean of the copy number of transcript g is

nrmgtzn1rbgt~nr(mgtzXtrbgt), where mgt is the mean copy

number of transcript g in the parental cell type (d = 0), and bgt

is the difference of the mean copy numbers between the

descendent cell type (d = 1) and the parental cell type (d = 0).

Model for raw microarray data. The raw microarray

readouts are the fluorescence intensities of fluorophores attached

to the hybridized RNA molecules. These readouts are monotone

transformations of the transcript copy numbers with measurement

noise. A commonly accepted model between transcript copy

number and fluorescence intensity is given by [19]:

wgtr~f (ygtr., gtr)~dzcgygtr.z gtr

~dzcgnr(mgtzXtrbgt) exp (egtr)z gtr,
ð2Þ

where exp (egtr) is a multiplicative error term with egtr*N(0,s2
eg);

gtr is an additive background noise error term with

gtr*N(0,s2
g); and cg is a ‘‘unit-conversion’’ constant. Except

for low-abundance transcripts, the multiplicative error dominates

the additive error and thus the latter can be ignored [19]. This

practice is consistent with the observation that the microarray

readouts are approximately linear to the targeted transcripts

[20,21]. After normalization and log transformation of the raw

data, a normal error model can be derived from (6), which has

general support from independent literature [22,23]:

Zgtr~ log (wgtr)~

~ log (cgn(mgtzXtrbgt))zegtr

~ log nz log cgz log (mgtzXtrbgt)zegtr ,

ð3Þ

where Zgtr is the normalized and log transformed microarray

readout. The normalization removes the differences of cell

numbers and overall fluorescence intensities across samples, and

therefore the subscript r in nr was dropped. The independence of

mean log nz log cgz log (mgtzXtrbgt) and the technical noise

egtr in model (3) was often assumed in published analyses, because

the log transformation of the raw data usually removes the

dependences between the mean and the variance of the raw array

data (see (6)). Nevertheless, to ensure such an independence, the

authors recommend first applying the variance stabilization

normalization (VSN) [24] before performing the following tests.

The test statistic. Within the model for raw microarray

data, the search for differentially expressed genes is turned into a

gene-by-gene test of its differentiation effect:

H0 : bgt~0 vs H1 : bgt=0, ð4Þ

at time t for gene g. To identify an appropriate test statistic, we

examine the behavior of the variance of measured data. Given

transcript g and time t, the variance of its microarray

measurement (6) across the replicates is:

Var(Zgtr)~Var( log n)zVar( log cg)zlVar(Xtr)b
2
gtzVar(egtr)

~0z0zlVar(Xtr)b
2
gtzs2

e,g

~lVar(Xtr)b
2
gtzs2

e,g,

ð5Þ

where l~1=(mgtzE(Xtr)bgt)
2 is the factor derived by the Delta

method of variance calculation [25]. log (n) represents the average

intensity of the log transformed microarray readouts of the rth

sample, which was adjusted to be the same by almost all

normalization procedures, and therefore its variance is 0.

Equation (5) shows that the variation of the log transformed

microarray readout stems from at least two sources, one being the

difference of the proportions of cell types across biological

replicates (Var(Xtr)), the other being the measurement error

(s2
e,gt). The differentiation effect bgt contributes to the first term

Var(Xtr)b
2
gt in (9). Under the null hypothesis bgt~0, this term is 0.

Under the alternative hypothesis, this term is positive and

contributes to a larger variation of the measurements Zgtr.

However, a large variation of the measurements Zgtr does not

necessarily favor the alternative hypothesis, because it might be

confounded by a large measurement error s2
e,gt. To adjust for the

measurement error, the Differentiation-Test uses the ratio of

measurement variances across time as the test statistic:

DTgt~
Var(Zgt)

Var(Zg0)
~

1

R{1

XR

r~1

Zgtr{ �ZZgt.
� �2

1

R{1

XR

r~1

Zg0r{ �ZZg0.
� �2

, ð6Þ

where Var(Zg0) is the sample variance of the initial time point. If

we assume the differentiation effect is the least manifested at the

Dissecting Early Differentially Expressed Genes
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first time point, the test statistic DT can be used to rank genes for

their differentiation effect at time t.

Under the null hypothesis, the test statistic follows an F-

distribution: DTgt*F (Rt{1,R0{1), where Rt and R0 are the

number of biological replicates at time t and time 0, respectively.

With the null distribution, the Differentiation-Test reports both

the p-value and the q-value (related to false discovery rate) [26] for

every gene. With a q-value cutoff of 0.1, Differentiation-Test

reported 137 and 116 genes in 4-day and 8-day EBs, respectively.

The overlap of the two gene lists contained 31 genes (p-

value = 1:28|10{30) The p-value was generated from the Fisher’s

Exact Test for enrichment analysis.

Construction of the gene regulatory network. The gene

regulatory network in 4-day EBs is constructed as follows:

1) Node selection. The Differentiation-Test was applied to 4-

day EB and 0-day ES data, and the genes with a q-value

threshold of 0.1 were selected. These genes should express

different amounts of transcripts between the ES and the

differentiated cells. Among these genes, the ones with Gene

Ontology annotation of Transcriptional Regulation (GO:

0003700) and Signal Transduction (GO: 0007165) were

selected as nodes of the gene regulatory network.

2) Regulatory relationship. From whole genome transcription

factor (TF) or histone modification factor binding data (ChIP-

seq [10] and ChIP-chip [8]), if one node from step 1 binds to

the genomic neighborhood region of another node, then a

tentative regulatory relationship is drawn as an undirected

edge between the two nodes (Figure 3). Furthermore, gene

knockdown followed by microarray analysis data [3] were

merged to the tentative regulatory relationships. When a

tentative regulatory relationship is supported by the change of

target gene expression after the knockdown of the putative

regulatory node, the undirected edge is subsequently changed

into a directed edge, with an activation or a repression sign to

reflect the concordant or reverse directions of expression

changes between the regulator and the target gene.

Transcription profiling. Total RNA for transcriptional

profiling was obtained from B6 mES cells at 0 day (undifferentiated),

4 days and 8 days of spontaneous differentiation. B6 mouse ESC were

cultured on mouse embryonic feeders (MEFs) using standard methods

as previously described [27] in 15% FCS supplemented with LIF.

Undifferentiated ES cell samples were obtained by trypsinising near

confluent plates of ES cells and depleting the MEFs by plating the cells

onto gelatin coated plates for 2620 min. The ES on gelatin samples

were MEF depleted ES cells seeded on gelatin coated dishes and

cultured until they reached ,70% confluency. To ensure the

undifferentiated ES cell samples were free from MEF contamination,

MEF depleted ES cells that passaged once on gelatin were used as 0-

day ES cell samples. To make EBs, the ES cells on gelatin were seeded

into non-adherent petri dishes, and LIF was withdrawn to induce

differentiation. Half of the EB media was changed every 3–4 days. The

formation of EBs was consistent with previous studies [28,29]. After 8

days, numerous cystic structures were observed and became

progressively larger over time. After about 10 days, beating foci of

cardiac myocytes could be observed in some EBs, indicating the

terminal differentiation of some cell types.

Total RNA was extracted from the different samples using the

RNeasy kit (Quiagen) and amplified using a two-round linear

amplification strategy as previously described [27]. The labeled

RNA was then hybridized to Affymetrix MgU74A microarrays

according to the manufacturer’s instructions. Normalization and

probe-level modeling were done with dChip software [30].

shRNA mediated knockdown. Feeder-free E14 mouse ES

cells were cultured at 37uC with 5% CO2. All cells were maintained on

gelatin-coated dishes in DMEM (Gibco), supplemented with 15%

heat-inactivated FBS (Gibco), 0.055 mM b-mercaptoethanol (Gibco),

2 mM l-glutamine, 0.1 mM MEM nonessential amino acid, 5,000

units per ml penicillin–streptomycin, and 1,000 units per ml LIF

(Chemicon), as described previously. Transfection of shRNA constructs

was performed using Lipofectamine 2000 (Invitrogen) according to

manufacturer’s instructions. Briefly, 1.5 mg plasmid DNA was

transfected into ES cells on 60 mm plates for RNA extraction.

Puromycin (Sigma) selection was introduced 1 day after transfection at

1.0 mg/ml, and maintained for 2 and 4 days before harvesting.

Detection of alkaline phosphatase, which is indicative of the

nondifferentiated state of ES cells, was carried out using a

commercial ES cell characterization kit (Chemicon).

shRNA targeting specific genes was designed as previously

described [31,32]. The 19-nucleotide hairpin-type shRNAs with a

9-nucleotide loop were cloned into pSUPER.puro (Bgl II and

Hind III sites, Oligoengine). Three shRNA, targeting different

regions of respective transcripts, were designed for each gene to

ensure specificity. pSuperpuro constructs expressing shRNA

against luciferase (Firefly) were used as controls. The 19 nucleotide

sequence for each gene is listed below:

Smarcad1:

GAAGCTCTGTTTACAAAGA

GAAGAGCGTAAGCAAATTA

GTATGAGGATTACAATGTA

Pias2:

GCCCTGCGGTTCAGATTAA

GCCTTCGACTTCAATTACA

GTTCAAGTGTCTTTAGTAA

RNA extraction, reverse transcription, and quantitative

real-time PCR. Total RNA was extracted using TRIzol

Reagent (Invitrogen) and purified with the RNAeasy Mini Kit

(Qiagen). Reverse transcription was performed using SuperScript

II Kit (Invitrogen). DNA contamination was removed by DNase

(Ambion) treatment, and the RNA was further purified by an

RNeasy column (Qiagen). Quantitative PCR analyses were

performed in real time using an ABI PRISM 7900 sequence

detection system and SYBR green master mix, as previously

described [33]. For all the primers used, each gave a single product

of the correct size. In all controls lacking reverse transcriptase, no

signal was detected. Each RNAi experiment was repeated at least

three times with different batches of ES cells.

Supporting Information

Figure S1 An illustration of the inter-replicate variations of the

average expressions of a gene in a parent population (a) and a

mixture of parental and descendent populations (b). The

histograms are for the (unobserved) cell level expressions of a

gene. Only the averages (red bars) are observed by microarray

data. The three biological replicates after differentiation have

different mixture proportions of cell types.

Found at: doi:10.1371/journal.pcbi.1000607.s001 (0.02 MB PDF)

Figure S2 Phase contrast micrographs of murine ES cells on

gelatin (a) and 8-day EB (b).

Found at: doi:10.1371/journal.pcbi.1000607.s002 (0.03 MB PDF)

Figure S3 Significance calibration from 10,000 random gene

lists. 10,000 randomly picked gene lists of 200 genes each were

compared to the benchmark gene list. A histogram of calculated R

values is shown. R = K/E(K), where K is the number of

overlapped genes between a random list and the benchmark list,
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and E(K) is its expectation. Out of the 10,000 R values, only one

was greater than the Differentiation-Test’s 4-day R value ( = 2.2);

none of them was greater than the Differentiation-Test’s 8-day R

value ( = 2.3).

Found at: doi:10.1371/journal.pcbi.1000607.s003 (0.04 MB PDF)

Figure S4 ES cells after 4 days of Smarcad1 knockdown. Three

shRNA constructs are used to target different regions of respective

transcripts. (A) Four days after pruomycin selection, Smarcad1

knockdown cells became more flattened and fibroblast-like, and

completely lost the AP positive colony compared with the cells

after two days of RNA knockdown (Figure 2). (B) Quantitative

real-time PCR analysis of gene expression in four-day knockdown

ES cells. The levels of the transcripts were normalized against

control empty vector transfection. Data are presented as the mean

6SEM and derived from independent experiments.

Found at: doi:10.1371/journal.pcbi.1000607.s004 (0.18 MB PDF)

Figure S5 Average motif counts. Average motif counts of RBP-J

in the upstreams of the differentiation module are consistently larger

than the counts in the upstreams of the pluripotency module.

Found at: doi:10.1371/journal.pcbi.1000607.s005 (0.08 MB PDF)

Table S1 Two sample comparison methods. All these methods

require gene expression measurements from individual cell types.

Found at: doi:10.1371/journal.pcbi.1000607.s006 (0.02 MB PDF)

Table S2 Fisher’s Exact Tests between top-ranked genes of the

Differentiation-Test and benchmark gene list.

Found at: doi:10.1371/journal.pcbi.1000607.s007 (0.04 MB PDF)

Table S3 Top-ranked differentially expressed transcription

regulators in 4-day EBs.

Found at: doi:10.1371/journal.pcbi.1000607.s008 (0.21 MB XLS)

Text S1 Illustration of the rationale behind the Differentiation-

Test

Found at: doi:10.1371/journal.pcbi.1000607.s009 (0.03 MB

DOC)

Text S2 Analysis of differentiation of mouse embryonic stem

cells

Found at: doi:10.1371/journal.pcbi.1000607.s010 (0.05 MB

DOC)

Text S3 Systematic overrepresentation of RBP-J binding sites in

the upstream regions of the differentiation module

Found at: doi:10.1371/journal.pcbi.1000607.s011 (0.04 MB

DOC)
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