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Abstract

Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent
patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has
ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained
unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns,
thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental
function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent
patterns can signal information by propagating across the neural circuit. Computational operations occur when these
emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both
distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to
work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns
are the underlying primitives with which neural circuits carry out distributed dynamical computation.
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Introduction

To understand brain function, it is essential to study the

collective electrical activity of neural circuits [1]. This activity

typically exhibits intriguing spatiotemporally organized patterns:

they are commonly observed in multi-unit electrophysiological

recording, EEG local field potential recording, MEG, optical

imaging and fMRI imaging, both in spontaneous activity [2–5]

and evoked responses [6–21]. In space, these patterns often take

the form of localized patches or clusters of activity [2–16].

Recordings over large populations of neurons have shown that

several of such localized patterns can occur simultaneously across

cortical regions [2–16]. Over time, these patterns often do not

remain at specific locations. As self-sustained entities, they

propagate or move about in space [4–8,10–16]. In doing so, they

interact with each other, resulting in dynamical collective

behavior. Here we will consider what kind of functional role this

behavior may have.

Propagating coherent patterns have been registered in the

experimental literature as ‘‘spreading’’ or ‘‘drifting’’ activity [4–8]

or as ‘‘traveling waves’’ [13–24]. The simultaneous presence of

several of these patterns has been observed in the spontaneous

activity of cat visual cortex [4,5; see 25 for a corresponding model

study], in evoked response patterns in turtle olfactory bulb [14],

and visual cortex of various species [9,15], as well as in

sensorimotor cortex of behaving mice [7]. When several localized,

moving patterns occur together, they are likely to interact. Indeed,

interactions have been shown to occur in rat somatosensory cortex

[13]. To describe the collective activity in olfactory, visual,

auditory and somatosensory cortices of behaving rabbits, the term

‘‘interacting wave packets’’ was explicitly used [11,12], which

nicely captures the relevance of propagations and interactions of

these patterns.

Despite the ubiquity of these patterns and their interactions,

their fundamental functional role has remained unknown.

Although some authors have speculated on the role of propagating

waves [26], the functional implications of other aspects such as the

simultaneous presence of multiple propagating patterns or their

interactions have remained completely unclear. Current theoret-

ical frameworks describe neural activity either in computational or

dynamical systems perspectives. Conventional computational

theory is based on the manipulation and representation of static

symbols [27]. This perspective contradicts the temporal variability

of brain activity, which calls for a dynamical systems approach.

When dynamical systems theories are applied to neuroscience, the

prevailing concept is that of stable low-dimensional attractors [28].

This notion, although it has provided many important insights, is

less suitable to capture the functional role of brain activity in its

actual spatiotemporal complexity.

We need to resolve the restrictions of conventional computation

and standard dynamical systems theories, in order to describe

neural activity and understand its fundamental function. This

study is based on the consideration that neural circuits are

spatially-extended, pattern-forming systems, containing large

numbers of simple neurons with spatially restricted connectivity

[29,30,31]. In spatially extended physical systems composed of
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large numbers of simple interacting elements, such as reaction-

diffusion systems and fluidic systems, localized propagating

coherent patterns are a common feature known under different

names, including wave packets, spots, breathers and soliton waves,

amongst others [32,33,34]. They are an emergent, collective

property of these systems.

Using these systems as analogy, we construct a simple, spatially

extended neural circuit model to represent the gross architecture

within the cerebral cortex. As an emergent, collective property of

the system, the circuit exhibits dynamical activity patterns,

reproducing some of the complexities observed in empirical

studies. In particular, the circuit provides simultaneous propaga-

tion of multiple locally coherent patterns and their interactions. By

revealing how their ongoing collective behavior can naturally

embody computation, we demonstrate what fundamental function

these patterns can serve.

Propagating coherent spiking patterns can support several

essential aspects of a computational processing. As self-sustained

objects, these patterns can signal information by propagating

across neural circuits. Information processing, or computation,

occurs when they interact or, specifically, collide with each other.

Collectively, these patterns perform distributed, parallel and

cascaded computational operations, thereby enabling neural

systems to work in an efficient and flexible way. We shall call

this distributed dynamical computation, which is proposed as a

framework for understanding spatiotemporal propagating activity

patterns in neural circuits. This understanding links their dynamics

with a form of non-conventional, abstract computation.

Results

Qualitative characterization of spatiotemporal

patterns. Significant correlations exist between neural

activities recorded at different levels, from spikes and field

potentials to fMRI [4,35]. We focus this study on the most basic

of these levels: neuron spiking behavior. Given that the myriad

details of neuronal anatomy and its function are only partially

known, rather than modeling neurons in great detail, we use a

simple model (see Methods section) in an effort to capture some of

the features of real neurons and neural circuits crucial for

dynamical spatiotemporal pattern formation.

Starting from random initial conditions and after initial

transients, the neural circuit generates collective activity, in which

localized pattern structures with temporal regularities are clearly in

evidence (see Methods section for more details including coherent

and incoherent spiking patterns). By varying the excitatory

coupling strengths WE and inhibitory coupling strengths WI

(See Methods section) within the range considered, we distinguish

three types of patterns. The patterns are qualitatively character-

ized by the following phenomena, respectively: (1) localized

incoherent spiking patterns occur, which slightly move around;

the motions are constrained within local areas without any long-

range movements; (2) several spatially localized coherent patterns

move about; the movements are long-range across space and over

time; there are many interactions or collisions between them,

resulting in complex, dynamical collective behaviors; (3) several

localized coherent patterns occur, showing regular motions

without complicated interactions.

Fig. 1 shows the instantaneous activity patterns of each type and

Fig. 2 maps out where these three types of patterns occur in the

parameter space. Among these patterns, those of Type 2 appear

the most intriguing ones, showing the greatest space-time

complexity in their overall behavior. Several coherent patterns

originate at apparently random locations, and propagate in all

possible directions. Each time a pattern sweeps through a given

region, the direction varies. Sometimes patterns are spontaneously

annihilated, but most of time they persist, traveling over long

distances as self-sustained objects. These distances for the most

part exceed the coupling ranges and can cover the whole space of

the model circuit. The patterns interact when they meet; this

includes non-destructive interactions, in which the moving

patterns modulate each other’s states, as well as destructive ones,

in which one or both of the patterns are annihilated.

Patterns of Type 2 qualitatively reflect many of the features

observed in empirical studies, particularly the distributed properties

of multiple activity patterns [4–7,11–16], their propagations

[4,5,11,12,14,15], and their interactions [11,12,13]. In addition,

the movements have a seemingly random feature. Several

experimental studies, for instance in cortical local field potentials

of rabbits, have pointed out that localized coherent structures called

‘‘wave packets’’ originate from random locations and propa-

gate in variable directions [11,12]. Propagating coherent activity

patterns termed ‘‘traveling waves’’ have the likewise variability of

moving speeds and directions in the collective activity of monkey

and cat visual cortex and in that of rat hippocampus [22,23].

Quantitative properties of dynamical spatiotemporal

patterns. Since the collective behavior of Type 2 reflects

some key features of activity patterns observed in real neural

circuits, we shall mainly focus on these patterns and investigate

their quantitative properties. As propagations are the most obvious

dynamical feature of these patterns, a convenient quantitative

measure is their velocities. As shown in Fig. 1B, collective activity

at any moment is sustained by the clusters of neurons. We label

each of them with a letter. We calculate the center-of-mass

position (Xj(t), Yj(t)) of jth cluster at time moment t,

Xj(t)~
1

Nj

P
i

xi(t), Yj(t)~
1

Nj

P
i

yi(t), where xi and yi are the x

and y position of ith neuron of the cluster, and Nj is the total

number of neurons in the cluster. We define Nj as the size of the

cluster. For Pattern a in Fig. 1B, its center-of-mass is positioned at

(5.1, 74.2). Based on center-of-mass positions, a 2-dimensional

velocity with components in x and y directions is:

~VVj(t)~
Xj (tzDt){Xj (t)

Dt
,

Yj (tzDt){Yj (t)

Dt

� �
. The magnitude of

Author Summary

The brain processes information with extraordinary effi-
ciency, and can perform feats such as effortlessly
recognizing objects from among thousands of possibilities
within a fraction of a second. This is accomplished because
the brain represents and processes information in a
distributed fashion and in a dynamical way. This process-
ing is manifested in spatiotemporal neural activity patterns
of great complexities within the brain. Here, we construct a
spiking neural circuit that can reproduce some of the
complexities, which are evident in terms of multiple wave
patterns with interactions between each other. We show
that their dynamics can support propagating pattern-
based computation; spiking wave patterns signal informa-
tion by propagating across neural circuits, and computa-
tional operations occur when they collide with each other.
Such dynamical computation contrasts sharply with that
done by static and physically fixed logic gates operating in
other computing machines such as computers. Moreover,
we elucidate that the collective dynamics of multiple,
interacting wave patterns enable computation processing
implemented in a fundamentally distributed and parallel
manner in the neural circuit.

Distributed Dynamical Computation
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velocity is speed Vj(t): Vj(t)~ V
I

j(t)
��� ���. We consider the velocity

with Dt~1:0 ms. Table 1 gives the velocities of the localized

patterns shown in Fig. 1B. To get further quantitative characte-

ristics of these patterns, we calculated the distributions of their

sizes and their speeds, which are shown in Fig. 3. It is interesting to

note that the distributions are qualitatively similar to that of

traveling waves in rat hippocampus [24] and cat visual cortex [22].

In addition, to understand how these patterns change as the

parameters change when the system is in the regime of Type 2

patterns, we have calculated the change of the mean values of the

speeds and sizes as a function of system parameters. The results are

shown in Fig. S1 and Fig. S2 in the supporting information.

Another significant property of Type 2 patterns involves the

complex dynamics of their collective propagating behavior, which

can be quantified by mean-squared-displacement (MSD). Firstly,

for each localized activity pattern, its traveling trajectory is

obtained by feeding its center-of-mass positions into an algorithm

developed for tracking them over time. Based on the trajectories of

all moving patterns, the MSD as a function of time increment t is:

D(t)~S(Xi(tzt){Xi(t))
2z(Yi(tzt){Yi(t))

2T ð1Þ

The bracket ST represents averaging over time t and across

trajectories. On a given trajectory, X (t), Y (t)ð Þ and

(X (tzt), Y (tzt)) are its positions at time moments t and tzt.

We calculated the MSD for Types 2 and 3 patterns, since they

involve long-range propagations across the circuit. Fig. 4 (red dots)

shows the log-log plot of the MSD as a function of t for Type 2

patterns. As the plot shows, the MSD function appears to follow a

straight line, suggesting that it is a power function of the time

increment. To verify this observation, we used the maximum-

likelihood method [36], and obtained the result that the best fit is a

power function, D(t)~ta with an exponent a~1:74. With different

system parameters, the exponent for the patterns of Type 2 is in

the range 1:79waw1:63. Type 3 patterns, shown in black dots in

Fig. 4, have a MSD with exponent a&2:0, which characterizes

regular movements along straight lines. For comparison, we also

show in blue dots a normal random diffusion process (Brownian

motion), for which the scaling exponent is a~1. A MSD as a

power function of t and with an exponent larger than 1 and

smaller than 2 indicates that the collective propagating behavior is

neither a fully random motion nor a regular motion, instead it is

in-between these two extremes. In fact, the collective behavior of

Type 2 patterns is a kind of non-normal diffusion process, known

as anomalous super-diffusion [37,38].

The fact that the behavior of Type 2 patterns belongs to the

class of non-normal diffusion process is quite informative; it

indicates that there are long-range spatiotemporal correlations for

the propagating patterns [37,38]. In neuroscience, nontrivial

spatial and temporal correlations have been very well documented

by analyzing brain activity from several different perspectives,

Figure 1. Snapshots of three different types of spatiotemporal patterns distinguished in the circuit model. Each neuron is oscillatory
with a frequency of 11Hz. Black dots indicate the coordinates where neurons are firing. (A) Type 1 (with parameters WE~1:36, and WI ~{1:94):
spatially localized patterns that lightly jitter around; (B) Type 2 (with parameters WE~1:12 and WI ~{1:94): localized coherent patterns with long-
range movements and complicated interactions. Each pattern is labeled by a distinct letter. At this time moment, the system has five spatially
localized structures labeled from a to f, of which the center-of-mass positions are respectively: (5.1, 74.2), (39.7, 64.2), (9.3, 50.5), (27.3, 19.7), (15.1, 9.9),
(67.2, 20.8). (C) Type 3 (with parameters WE~0:9 , and WI ~{1:94): localized coherent structures with regular motion and regular overall features.
doi:10.1371/journal.pcbi.1000611.g001

Figure 2. Phase diagram of spatiotemporal activity patterns in
the WI , WEð Þ parameter space. The region B circled by the dark line
is the region in which the system generates the Type 2 patterns, the
region A for Type 1 patterns, and the region C for Type 3 patterns.
doi:10.1371/journal.pcbi.1000611.g002

Distributed Dynamical Computation
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including the temporal fluctuations of power of brain oscillations

[39,40], the distribution of size of neural avalanches [41], and the

intervals of synchronized activity [42]. Our present study provides

an alternative measure of nontrivial spatiotemporal correlations,

regarding specifically the characteristics of propagating wave

patterns that have been ubiquitously observed in brain activity.

The above described quantitative measures reveal the main

features of Type 2 patterns. These measures can therefore be used

to obtain a parameterization scheme for the present model, in

order to show the existence of the dynamical patterns in the

parameter space, as was done in obtaining Fig. 2. Our

explorations of the model with much larger numbers, such as

200|200, of neurons have suggested that Type 2 patterns are

quite common. For instance, if WE~1:13, Iex~0:0502, a model

with 200|200 neurons shows Type 2 patterns when

{2:04ƒWIƒ{1:76.

Dynamical computation by propagating coherent activity

patterns. Having characterized the complexity of the

propagating patterns, we are now ready to approach the

question of their fundamental function. This question can now

be specified: how do the dynamical patterns enable the system to

do computation? To develop answers to this question, we use the

methodology of examining how general-purpose computations can

be embedded in autonomous dynamical processes without setting

up specific computational tasks. Note that because of its

conceptual simplicity and convenience, the methodology of

revealing general-purpose computation based on the

autonomous dynamics of a system has played an important role

in developing a computational theory of the brain [43] and

investigating the general computational capabilities of dynamical

systems [44].

For these purposes, let us consider that at any time there are

several spatially localized coherent patterns. These can be labeled

by letters as demonstrated in Fig. 1B. From among several moving

patterns, we select two of them, Pattern a and Pattern b, without

loss of generality, at an arbitrary time moment after an initial

transient, t1~620503 ms. We then focus on the way they

propagate and interact. The detailed space-time behavior of the

two coherent patterns can be viewed in Video S1 in the supporting

information, which we recapitulate in Fig. 5A. At time moment

t1~620503 ms, Pattern a is centered at position P1 (57.8, 50.4),

and Pattern b at position Q1 (75.1, 32.6). The two patterns

propagate along their own paths, represented as black lines in

Fig. 5A until around time moment t2~620507 ms, when Pattern a

is at P2 (54.0, 41.1), and Pattern b is at Q2 (64.4, 31.6), where they

collide with each other. After that, their states and therefore their

momentums are changed compared to those before their collision.

Here ‘‘collision’’ is used to describe a co-current change in two

structures’ momentums due to their physical proximity, even

though the objects do not actually touch each other. Because of the

lateral inhibitory coupling, each moving pattern gets inhibitory

effects from another one when they propagate to approach each

other, hence resulting in the repulsive interactions as shown in

Fig.5A. After the collision at time moment t3~620510 ms, there

are coherent structures centered at positions P3 (47.3, 39.5) and

Q3 (59.0, 25.9).

In order to examine how abstract computational operations can

be embedded in the ongoing interactions between propagating

coherent activity patterns, a simple manipulation can be helpful.

For instance, consider the situation before the collision, at a time

Figure 4. Log-log plot of mean-squared-displacement (MSD) as
a function of time increment for different collective motions.
The red dots, representing the coherent patterns of Type 2, show a clear
straight-line part in the log-log plot, fitting to an exponent of 1.73
(dashed line). The cut-off is due to the finite-size of the circuit. For the
black dots, representing Type 3 patterns, the exponent of the fitted line
is 2.0. The blue dots represent random Brownian motion, corresponding
to an exponent of 1.0.
doi:10.1371/journal.pcbi.1000611.g004

Table 1. The velocities of the spatially localized patterns.

Localized pattern a b c d e f

Velocity (0.6, 2.0) (21.0, 21.6) (1.0, 0.0) (1.2, 22.4) (1.2, 21.2) (0.7, 1.1)

doi:10.1371/journal.pcbi.1000611.t001

Figure 3. Statistical properties of the propagating coherent
spiking patterns. (A) The distribution of the propagating speeds of
the dynamical patterns; (B) the distribution of the patterns’ sizes.
doi:10.1371/journal.pcbi.1000611.g003
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moment such as t1 = 620503 ms or at any other time along the

incoming path. If we eliminate all the spikes belonging to Pattern

b, there will be no encounter at the rendezvous point Q2 (64.4,

31.6) at time moment 620507 ms; Pattern a will continue,

unaffected by Pattern b, to move in the same direction. Thus it

will follow the path indicated by the dashed black line in Fig. 5A to

pass through P4 (51.6, 27.9) at time moment t3~620510 ms.

Similarly, if all spikes in Pattern a are eliminated at t1, Pattern b

will continue its original path along the dashed red line and pass

through Q4 (54.8, 30.1) at t3. These results demonstrate that two

moving spiking patterns effectively modulate each other when they

meet at the right time and at the right place.

To reveal how the collective behaviors of these patterns can

support the essential aspects of a computational processing, which

include signal (or ‘‘information’’) transmission and signal (or

‘‘information’’) processing [45], their dynamics is considered at a

more abstract, computational level of analysis. Firstly, we perform

the following abstraction: the presence of a localized coherent

activity pattern at a particular position within the circuit signifies

‘1’, whereas its absence signifies ‘0’. Hence, based on the

abstraction, a localized coherent pattern that is propagating can

represent a bit of information (or ‘‘signal’’). It is in the spirit of

McCulloch and Pitts’ classical study to abstract from neuronal

activities to binary values in order to develop a computation theory

of the brain [43]. In [43], neural activities are excitatory and

inhibitory synaptic inputs of threshold neurons along fixed lines,

while here the relevant activities are the coherent patterns at the

level of spiking neural circuits and are emergent properties

unconstrained by fixed lines. Because the presence of a localized

pattern is abstracted or interpreted to represent a bit of

information ‘1’, through its dynamical behavior, i.e., its propaga-

tion, the bit of information (or the signal ‘1’ ) can then be

transferred along its propagating path from one part of the circuit

to another. For an illustration, when the Pattern a propagates

along its path from P1 (57.8, 50.4) to P2 (54.0, 41.1) shown in

Fig. 5A, a bit of ‘1’ signal is transferred along this path from

position P1 to P2, and clearly the speed of the information transfer

is the propagating speed of the pattern. Thus, the propagating

behavior of the coherent patterns is a primary mechanism for

transferring information over long space-time distance. Interest-

ingly, the functional role of the propagating behavior makes its

trajectories analogous to real physical wires used to transfer

electrical pulses in electrical circuits.

Thus far, we have introduced the emergent localized coherent

patterns with their role of representing signals, and elucidated that

their propagation can support an essential function of a computa-

tional processing, which is signal transmission. We shall now turn to

signal or information processing. The processing can be embedded

in the dynamical interactions between these patterns: the patterns

implement logical functions and the locations of their possible

encounters act as logic gates. This principle is illustrated

schematically in Fig. 5B, in which moving spiking patterns are

represented by filled circles for an illustrative purpose.

In Fig. 5B, signals A and B represent, respectively, the presence

or absence at t1 of localized activity patterns at positions P1 and

Q1 shown in Fig. 5A. The interaction logic gate at P2, Q2 can carry

Figure 5. The space-time behavior of two, moving localized coherent patterns and the dynamical logical operations based on the
interaction between them. (A) Among several other activity patterns, two of them are shown here. Different colors indicate the patterns at different
time moments: blue at t1 = 620503 ms, red at t2 = 620507 ms, and green at t2 = 620510 ms. At t1, Pattern a is centered at position P1 (57.8, 50.4) and
Pattern b at Q1 (75.1, 32.6). Time t2, is the moment when the collision between the two moving patterns happens. At that time, Pattern a is at P2 (54.0,
41.1) and Pattern b at Q2 (64.4, 31.6). Afterwards, at t3 Pattern a is at P3 (47.3, 39.5) and Pattern b at Q3 (59.0, 25.9). Without a mutual collision, Pattern a
would have traveled along the dashed black line and passed through P4 at time moment t3, and Pattern b along the dashed red line and through Q4 at
t3. To see the positions P1, Q1, P3, Q3, P4, and Q4 clearly, they are also noted by red circles. (B) An illustration of interaction-based logical operations. The
two filled black circle are used to represent patterns at the time moment when they collide with each other. Arrows correspond to their trajectories prior
to and after the collision; dotted arrows correspond to trajectories that occur if the other signal is absent. The signal AB represents ‘A AND B’, and AB
represents ‘A AND NOT B’. A, B, AB, BA, AB and BA are corresponding signals at the positions P1, Q1, P3, Q3, P4, and Q4.
doi:10.1371/journal.pcbi.1000611.g005
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out the following operations: A AND B or, equivalently, B AND

A, A AND NOT B, B AND NOT A. At time moment t3,

t3~620510 ms, there will be a coherent pattern at position P3 if

there was one at P1 and another at Q1. No other patterns are

involved in these particular interactions. Hence, signal C at P3 is

‘1’ if and only if A is ‘1’ and B is ‘1’. So we have: C = A AND B.

Likewise, signal D at Q3 is ‘1’ when both B and A are ‘1’ (D = B
AND A), realizing the same AND function. Similarly, there will be

a pattern at P4 if and only if there was one at P1 and none at Q1.

The signal E at position P4 is: E = A AND NOT B. Signal F at

position is Q4: F = B AND NOT A, which implements the same

AND NOT function. Owing to its AND and NOT capabilities,

the interaction gate is a universal logic primitive. By abstractly

depicting the localized coherent patterns as bits of information,

signal processing or computation can be accomplished in terms of

logical functions. Hence, the dynamics of the propagating

patterns, that is, their collisions, can support another essential

function of a computational processing, which is signal processing.

The logical operations performed here are reminiscent of those

done with collisions in the billiard ball model [45,46,47], which

has played a very important role in linking basic physical laws with

computation theory.

Considering the number of neurons active within a cluster as its

‘mass’ and using its propagation velocity, we can calculate whether

the collision preserves momentum. The velocity of Pattern a

before collision is V
I

a~ Vax, Vay

� �
= (21.26, 21.69), and that

after collision is V
I

’a~ V ’ax, V ’ay

� �
= (22, 20.4). The size or the

mass of Pattern a is 12, that is, ma~12. For Pattern b, its velocity

before collision is V
I

b~ Vbx, Vby

� �
= (22.45, 20.9) and that after

collision is V
I

’b~ V ’bx, V ’by

� �
= (21.35, 22.15). The mass of this

pattern is 13, mb~13. The x-component of total momentum before

collision and after collision is Px~maVaxzmbVbx~{46:97
P’x~maV ’axzmbV ’bx~{41:55, respectively. Apparently

Px=P’x, thus there is no conservation of momentum; the

interaction is a kind of inelastic collision; and so it is not reversible.

This is generally the case for interactions in our model. In this

respect, our model differs from the billiard ball model [46,47,45], in

which interactions are typically reversible.

Cascaded computational operations. The elementary

logical operations demonstrated above can essentially be

interpreted as computational building blocks in neural circuits.

To show this, we need to demonstrate that they are cascadable,

that is, the output of one logical operation is able to be used as an

input to another one [48]. In other words, these operations must

support compositionality. For the elementary computation as

shown in Fig. 5B, both input and output signals are propagating

activity patterns. Indeed, output of one operation can later be used

as input for another one. During the ongoing evolution of the

activity patterns, as shown in Fig. 6A and the corresponding Video

S2 in the supporting information, at t1~952922 ms an interaction

happens when Pattern a is at P1 (14.3, 41.4), and Pattern b is at Q1

(32.0, 44.0). The outcome of this interaction is carried through

space by propagating patterns, one of which at t2~952929 ms is

located at P2 (15.9, 24.2), where it interacts with another one,

Pattern d at Q2 (31.7, 21.9), which comes from a different part of

the circuit. Note that only those patterns relevant for illustrating

the cascaded operation are shown in Fig. 6A. The example shows

how populations of neurons collectively route signals through the

circuit in a manner that naturally embeds cascaded operations.

The cascaded logical operations are shown in Fig. 6B in an

abstract form. Particularly, we can get the composed outputs, such

as A AND B AND D. The occurrence of the computation

represented by collision of the yellow and blue filled circles at

Positions P2 (15.9, 24.2) and Q2 (31.7, 21.9) at time moment t2 is

enabled by the computation that has previously occurred at time

moment t1. During the cascaded operations, propagation is

essential to make local information available at larger spatial scales

and to assemble signals that are distributed over space and time.

Figure 6. The space-time behavior of several localized coherent patterns and cascaded computational operations. (A) At time
t1~952922 ms, the two coherent Patterns a and b depicted in blue collide with each other. The output is a coherent Pattern c (red) which, at time
t2~952929 ms is positioned at P2, where it collides with Pattern d coming from a different direction. The dashed black lines show the trajectories of
the propagating patterns. (B) Illustration of the cascaded logical operations. A, B, C, D are signals signifying the presence or absence of coherent
activity patterns at time moments t1 and t2. Based on these signals, the logical operation occurring at t1 is located on the green dotted line, and the
one at t2 is located on the black dotted line. The output signal from the operation at t1 that involves A and B is a signal C, C = A AND B, which acts as
the input signal for the operation happening at t2, which also involves a signal D. The dashed arrows correspond to the situation that one of these
signals is absent.
doi:10.1371/journal.pcbi.1000611.g006
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Distributed parallel computational processing. At the

computational level of analysis, the pattern dynamics supports two

fundamental activities of a computational processing: signal

transmission and signal processing. We now turn to the

functional implications of multiple, propagating patterns that are

distributed over the different parts of the circuit. Indeed, the

simultaneous presence of these patterns and their ongoing

behavior can provide the needed substrate for distributed

parallel signal transferring and processing. Fig. 7A (Video S3 in

the supporting information), shows that, Pattern g and Pattern h

collide with each other at time moment t = 862039 ms, when g is at

(30.7, 62.7) and h is at (41.0, 55.1). Meanwhile in the other parts of

the circuit the Pattern k and Pattern l collide, when k is at (41.6,

33.2) and l is at (45.2, 19.9). This example illustrates that several

interactions can occur in parallel at the different parts of the

circuit. The parallel interactions embody the parallel logical

operations shown in Fig. 7B. They involve the Patterns g–h and

k–l, which are physically distributed over the circuit. Furthermore,

another localized pattern such as Pattern m, located at a different

position, is moving along its own path. This one, as we have shown

above, has the function to transfer a binary signal ‘1’ along its

path. Thus, propagating patterns co-occurring can at any time

either transfer signals or process signals, resulting in a

computational processing carried out in a distributed parallel way.

It is important to emphasize that the distributed computing

scheme in the spatially-extended spiking neural circuit exhibits the

typical features of the parallel distributed processing paradigm

proposed for the brain: a set of large number of neurons, recurrent

connections without central controllers, and patterns of activation

distributed across neurons [49]. In our case, however, these

patterns consist of spiking activity collectively propagating.

Distributed computational processing is supported by the co-

occurrence of several of these patterns; each of these patterns

either propagates along, or collides with others. Based on this

consideration, the number of co-occurring patterns, to some

degree of approximation, can be used to estimate the system’s

distributed parallel processing capacity. Some factors, such as the

range of coupling would delimit the maximal number of coherent

structures operating simultaneously in the system. When the

system is in the Type 2 regime, generally more patterns

propagating simultaneously will result in more collisions. For our

current model, we calculated the number of co-occurring localized

coherent patterns, which is denoted as Np at each time moment to

characterize the complexity of the distributed computational

processing. The result is shown in Fig. 8. Note that at any time

moment considerable numbers of patterns are involved in carrying

out the different aspects of a computational processing: signal

transmission (propagations without collisions) or signal processing

(collisions).

The effects of external perturbations. We have studied

how general-purpose computation is implemented based on

ongoing, autonomous dynamics of the propagating patterns. A

question that naturally arises is: how does the system deal with

external perturbations? To answer this question, firstly, we add

external perturbations to one of ongoing propagating patterns. We

then follow the evolution of both the perturbed and the

unperturbed systems in order to capture the spreading of the

perturbations. For instance, for Pattern a shown in Fig. 9A, in the

original system, the pattern moves along the black line and it

interacts with Pattern b when it reaches the position (34.4, 35.9).

After external perturbations are added to Pattern a, as shown in

Fig. 9A, the propagating trajectory of the pattern (red line in

Fig. 9A) is slightly shifted in comparison with the original

propagating path. This consequently results in the situation that

Patterns a and b collide at a slightly different time moment at a

slightly different position, compared to the original event. This

shift leads to a different outgoing propagating trajectory (the

trajectory after collision) for Pattern b. It is important to notice that

before the collision, there are no changes to the propagating path

of Pattern b; it is just the collision between the perturbed

propagating pattern with an co-occurring one that results in the

changes in the outgoing path of Pattern b. Instead of interrupting

Figure 7. The space-time behavior of propagating, coherent activity patterns and corresponding parallel computations. (A) At time
moment t = 862039 ms, two collisions happen simultaneously. Pattern g collides with Pattern h, and Pattern k collides with Pattern l. The dashed lines
are the trajectories of the five moving coherent patterns. (B) Illustration of interaction-based parallel logical operations. A, B, C and D are input signals.
The vertical green dashed line indicates where two computations happen at the same time moment t1, t1~862039 ms. The two black filled circles
represent a pair of signals involved in one logical operation, and the two red filled circles represent the signals in another one. Each of these
operations can produce ‘AND’, ‘AND NOT’ functions. The dashed arrows correspond to the situation that one of these signals is absent.
doi:10.1371/journal.pcbi.1000611.g007
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ongoing activity patterns, external perturbations modulate the

propagating trajectories and interactions.

To characterize the effects of external perturbations,

we calculated the distance between the outgoing trajec-

tories when there are external perturbations and the corre-

sponding original outgoing ones. The distance is defined

as: dout~
1
T

Pt2

t1

(Xj(t){X ’j(t))
2z(Yj(t){Y ’j(t))

2
� �1=2, where

(Xj(t), Yj(t)) is the center-of-mass position of a pattern of the

original system and (X ’j(t), Y ’j(t)) is that of the corresponding

pattern of the perturbed system. T~t2{t1, is total time length

considered for an outgoing trajectory after a collision. In the

current study, T = 8 ms. In order to obtain the statistics of the

modulation, external perturbations are added to many

different interacting pairs of propagating patterns before their

collisions. Fig. 9B shows the distribution of the distance. We

have also calculated the dynamics of the perturbed propagat-

ing trajectories and found that they also can be quantified as

an anomalous super-diffusion process. This indicates that the

statistical properties of the collective motions of the propagat-

ing patterns are preserved under external perturbations. Let us

note that experimental studies have found that, in the visual

cortex of freely viewing ferrets, stimulus-evoked activity reflects

the modulation and triggering of intrinsic circuit dynamics by

sensory signals, with a preservation of collective correlations of

neural firing rates [50].

Discussion

The importance of spatiotemporal dynamical patterns in the

brain has been proposed in [29], with an emphasis on spatial modes

and their coupling. Here, we have focused on propagating coherent

activity patterns, which are ubiquitous in the brain. These

dynamical patterns are neither random nor stable; rather they are

characterized by rich dynamical behaviors. We have used a simple,

stereotypical spiking neural circuit to generate spatially localized

propagating patterns. The patterns capture some of the key features

of real pattern complexities: a distribution of multiple localized

activity patterns, their propagations and their mutual interactions.

To understand their fundamental functional role, we propose the

notion of distributed dynamical computation. Localized propagat-

ing patterns are the underling primitives of dynamical computation;

over time they transfer information across space and process

information through their interactions. Collisions distributed over

different locations and occurring at different time moments can be

connected to each other by propagating patterns. This mechanism

enables elementary computations to occur in a cascaded fashion,

resulting in more complex computations. In addition, several

interactions distributed across different locations can occur

simultaneously, resulting in parallel processing.

Dynamical computation emerges on the basis of activity in

neural circuits; they enable and sustain propagating localized

patterns and their interactions. In this framework, the propagation

Figure 9. The space-time behavior of propagating coherent patterns with and without external perturbations. (A) The blue dots are
original propagating trajectories of Pattern a (green color) and Pattern b (black color) without external perturbations. The two patterns collide when
Pattern a is located at (34.35, 35.86) and Pattern b is at (22.4, 44.8) respectively. Before the collision, Pattern a is located at (38.9, 29.4) and Pattern b is
located at (13.1, 39.2). The red dots are propagating trajectories of these two patterns after external perturbations. (B) The distribution of distances
between the perturbed outgoing trajectories after collisions and the corresponding original ones.
doi:10.1371/journal.pcbi.1000611.g009

Figure 8. The number of co-occurring localized, coherent
spiking patterns as a function of time, with the parameters
WE~1:13, WI~-1:89.
doi:10.1371/journal.pcbi.1000611.g008
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and processing of signals are fluid; signals do not rely on the fixed

physical lines of neural circuits to guide their propagation

trajectories. The computations are not confined to specific

anatomical sites; rather they occur wherever moving patterns

collide with each other. With respect to real-brain architecture,

this is clearly a simplification. We may consider the neural

architecture as biasing the trajectories of propagating patterns to

various extents. Nevertheless, a certain independence of fixed

connectivity structure must be at the basis of how flexibility in

brain functions is achieved.

Propagating coherent activity patterns implement logical

operations in a manner reminiscent of the collisions in the classical

billiard ball model [45,46,47]. In this model, however, collisions

are elastic and reversible, whereas in our model they are inelastic

and therefore irreversible. This allows the exchange of information

between the interacting patterns. The corresponding computations

are equally irreversible and therefore context-dependent. An

additional essential difference with the billiard ball model is that

computation in our model is naturally embedded in the ongoing

behavior of a circuit.

Computation based on the propagations and interactions of

coherent spiking patterns in neural systems is definitely a non-

conventional form of computation. Conventional computation

requires information to be represented and manipulated in the form

of static symbols [27]. As the longstanding debate between

computationalists and dynamicists [51] has pointed out, static

symbols are less suitable to describe the temporal variability in the

way the brain executes its functions and how it achieves flexibility.

Dynamical computation can capture the spatiotemporal character-

istics of brain activity patterns and provide them with an underlying

computational interpretation. By synthesizing dynamics and compu-

tation, the present approach offers a starting point for a comprehen-

sive understanding of the working mechanisms of the brain.

The collective propagation of activity patterns through a

substrate of neurons can be portrayed as spatiotemporal spike

chains. Our current emphasis on propagating patterns bears a

similarity to the paradigm of synfire chains [52,53], in which

sequential spike chains play a central role. They are obtained by

setting up feed-forward networks, designed to support wave-like

spikes propagation through them. These networks perform

information processing by synchronizing different spike chains

[52,53]. In our model, spatiotemporal spike chains are an emergent

property of recurrent networks [54]. Rather than synchrony, their

nonlinear pattern-forming capacities and transient interactions are

the essential mechanisms for dynamical computation.

In the current study we have mainly focused on general-

purpose computation based on ongoing, autonomous dynamics of

neural circuits. We have also found that external perturbations

can modulate the ongoing patterns, which include their

propagations and interactions. Hence, propagating activity

patterns could enable neural systems carry out some specific

computations when actual sensory inputs are given. Indeed,

propagating coherent patterns such as propagating waves have

been found in evoked activity [7,9,11,12,14,55]. Furthermore,

during whole computing processes based on propagating coherent

patterns, internal synaptic modifications and external feedbacks

from other parts of the brain can be used to shape or control

dynamical wave pattern to generate specific propagating patterns

as required outputs or behavior sequences. The effect from

feedback activity is analogous to use feedback signals to control

waves patterns in spatially-extended non-equilibrium physical

systems [56].

Instead of focusing on multiple, stationary patch patterns

[57,58] or single propagating wave pattern as in the most studies

about neural fields [58,59], the current model generates dynamical

spiking activity patterns that can capture some of the complexities

of empirically observed patterns. Therefore, the current study

provides specific, experimentally testable predictions. In particular,

the collective behavior of interacting, propagating coherent

patterns belongs to the class of anomalous super-diffusion. As a

process with underlying long-range coherence, collective anoma-

lous super-diffusion is an important indicator of complicated,

nontrivial interactions between propagating patterns. Its presence

can be tested experimentally in a straightforward way. First

qualitative indications that this process may occur in real neural

circuits are the seeming randomness of the points of origin of

neural activity patterns and the variability of their propagating

directions [11,22,23]. More conclusive evidence can be obtained

through calculating the MSD of the collective motions in the same

way as for the current model data.

In the current dynamical computational framework, propagat-

ing coherent activity patterns are the fundamental primitives for

signaling information and for processing information through their

interactions. Indeed, at the level of neural circuits, signaling

information by propagating coherent patterns has been clearly and

very well documented as an important component of the function

of the cortex [18–21]. Interactions between multiple active

patterns, however, have merely been registered in experimental

studies without considering their importance [11,12,13]. Our

current work shows in an abstract, principled way how these

interactions could play a key role in dynamical computation. For

instance, in the visual cortex of ferrets, top-down influences have

been found to be evident in terms of localized wave patterns [17],

which could have collisions with wave patterns evoked by external

visual inputs; such collisions might reflect ‘‘attention guided’’

processing of visual stimuli. It is, therefore, of crucial importance

to study interactions between different propagating wave patterns

experimentally and sow how they relate to the functions of the

cortex.

Methods

A spiking neural circuit model. Our model represents

biological neurons by integrate-and-fire spiking neurons that are

uniformly distributed across a two-dimensional grid. The free

dynamics of each neuron is:

t
dV (t)

dt
~{V (t)zI0 ð2Þ

where t is time, V is the membrane potential of the neuron, t is the

time scale of membrane potential change, t~20 ms, and I0 is

constant external stimulation. Each neuron thus is an intrinsic

oscillator. When the membrane potential reaches the threshold

value Vth the neuron releases a spike, after which its membrane

potential is reset and the neuron remains quiet for a refractory

period tref . Each neuron receives excitatory and inhibitory inputs

from other neurons. We include a delay time tdelay into the

interactions between neurons. For simplicity, we chose

tdelay~tref ~Dt~1ms; our results do not depend sensitively on

these values. Considering the values of delay time and refractory

time, we let the model evolve in time steps of Dt~1ms. Eq. (2) can

be integrated in Dt to obtain the membrane potential for a single

neuron:

V (tz1)~e
{Dt

=tV (t)zI0(1{e
{Dt

=t) ð3Þ
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Let Iex~I0(1{e
{Dt

=t), so Eq. (3) can be written as:

V (tz1)~e
{1

=tV (t)zIex. The whole spiking neural circuit is:

Vi(tz1)~e
{1

=tVi(t)zIex

z
X

j1

W E
ij1
H½Vj1 (t){Vth�

z
X

j2

W I
ij2
H½Vj2 (t){Vth�, for Vi(t)vVth

ð4aÞ

Vi(tz1)~Vi(t){Vth, for Vi(t)§Vth ð4bÞ

where i, j1, j2 are indices of neurons, 1ƒi,j1, j2ƒN. N is the

total number of neurons, N~80|80~6400: H is the

Heaviside step function: H(x)~1 for x§0, and H(x)~0 for

xv0: In the simple model, not all the details of real spiking

behavior can be reproduced. To get spikes, the threshold Vth,
Vth~1:0 is used. The reason for using a threshold value is that

for real neurons, after their membrane potentials reach certain

threshold values, neuronal electrical activities are manifest as

short electrical pulses (spikes) [60]. W E
ij1

and W I
ij2

is the

corresponding excitatory and inhibitory coupling strength

from the j1th and j2th neurons to the ith neuron. A similar

model has been used to study the statistical properties of

interspike intervals [61]. In our study, a ‘‘Mexican-hat’’

coupling scheme is used:

Wij~CE exp (
{dij

2

dE

){CI exp (
{dij

2

dI

) ð5Þ

where dij is the Euclidean distance between two neurons on a

two-dimensional grid where the neurons occupy integer

coordinates, and CE~0:4, Ci~0:1, dE~14:0, dI~42:0.

Connections between neurons are confined to dijƒdm, dm~15,

and periodic boundary conditions are used in the study.

Some experimental studies have suggested that inhibitory

connections are more spatially restricted than excitatory ones

[62], and others have found that the opposite is true [63].

Based on these coupling parameters, in our model the range of

excitatory connections is spatially more restricted than

inhibitory ones.

For any ith neuron, from Eq. (5) we can obtain that when

dij
2
ƒ29:1, Wij§0, the input is excitatory and the neurons within

this distance range are denoted as j1 in Eq. (4a). The total

excitatory synaptic input to the ith neuron is W E
i ~

X
j1

Wij1 ;

Otherwise when dm
2
§dij

2
w29:1, Wijv0, the input is inhibitory,

and corresponding neurons in this range are denoted as j2 in Eq.

(4a). The total inhibitory synaptic inputs to the ith neuron is W I
i ,

W I
i ~

P
j2

Wij2 . The excitatory coupling strength W E
ij1

as used in

Eq. (4) is W E
ij1

~
WEWij1

W E
i

; the inhibitory coupling strength is W I
ij2

,

W I
ij2

~
WI Wij2

W I
i

. We used Iex~0:0504. The parameter WE was

varied within the range 1:12ƒWEƒ1:22, and WI was varied

within the range {2:04ƒWIƒ{1:76 to obtain different

spatiotemporal activity patterns. The network has been simulated

with random initial conditions. Some initial time steps have been

discarded until there is no significant change in the variability of

interspike intervals of individual neurons.

Coherent and incoherent patterns. The patterns consist of

the collective spiking activity of populations of neurons with clear

spatial structures, i.e., spatially localized structures in our case. To

quantify the spatial localization property, we used in our study the

following criteria: (1) for a cluster of neurons that are firing, the

distance between any two neurons within the cluster is smaller

than d1, d1~4:0; (2) the distance between the center-of-mass

position of this cluster of neurons and that of any others is larger

than d2, d2~7:0. These criteria allow us to detect clustered patchy

activity patterns that are spatially localized in terms of their spatial

separation with others. Furthermore, we can discriminate coherent

patterns and incoherent patterns, according to the statistics of their

internal geometrical organizations at the level of individual spikes.

The statistics can be obtained as follows. For a neuron within a

given localized spiking pattern, we firstly draw a line to link its

coordinate point where the neuron is located and the center-of-

mass position point of the whole group, and then calculate the

angle of the line related to the x-axis of the two-dimensional grid.

We can get the angles for all neurons within the pattern. Then the

angles are sorted into an ascending numerical order. For example,

a pattern that has j neurons in total, after sorting, the series of the

sorted angles is hi1 , hi2 , . . . hij , and the series of corresponding

neurons is : i1 , i2, . . . , ij . Then we calculate the distances

between two successive neurons in this series, for instance the

distance between the ij1 th and the ij1z1th neuron is dj1 . Finally, we

can obtain the standard derivation of these distances, which is sd .

From the procedure used to get the standard derivation, it is

apparent that this is a measure of the variability regarding how

individual spikes are geometrically organized around the

corresponding center-of-mass position; a smaller value means

that the spikes are spatially more organized around its center-of-

mass position. In our study we used the criterion that, a pattern is

coherent when its sdv0:7, otherwise it is incoherent.

Supporting Information

Figure S1 The mean value of the speeds of localized

propagating patterns as a function of excitatory coupling strength.

Found at: doi:10.1371/journal.pcbi.1000611.s001 (1.61 MB EPS)

Figure S2 The mean value of the sizes of localized propagating

patterns as a function of excitatory coupling strength.

Found at: doi:10.1371/journal.pcbi.1000611.s002 (1.15 MB EPS)

Video S1 The space-time behavior of two propagating coherent

activity patterns. Among several self-sustained propagating

patterns, for the purpose of revealing ongoing interactions between

them, only two localized coherent structures are shown in the

video.

Found at: doi:10.1371/journal.pcbi.1000611.s003 (0.11 MB

MOV)

Video S2 The ongoing behavior of several propagating,

coherent activity patterns.

Found at: doi:10.1371/journal.pcbi.1000611.s004 (0.19 MB

MOV)

Video S3 The ongoing behavior of several propagating,

coherent activity patterns.

Found at: doi:10.1371/journal.pcbi.1000611.s005 (0.12 MB

MOV)
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