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Abstract

The persistence of a spatially structured population is determined by the rate of dispersal among habitat patches. If the
local dynamic at the subpopulation level is extinction-prone, the system viability is maximal at intermediate connectivity
where recolonization is allowed, but full synchronization that enables correlated extinction is forbidden. Here we developed
and used an algorithm for agent-based simulations in order to study the persistence of a stochastic metapopulation. The
effect of noise is shown to be dramatic, and the dynamics of the spatial population differs substantially from the predictions
of deterministic models. This has been validated for the stochastic versions of the logistic map, the Ricker map and the
Nicholson-Bailey host-parasitoid system. To analyze the possibility of extinction, previous studies were focused on the
attractiveness (Lyapunov exponent) of stable solutions and the structure of their basin of attraction (dependence on initial
population size). Our results suggest that these features are of secondary importance in the presence of stochasticity.
Instead, optimal sustainability is achieved when decoherence is maximal. Individual-based simulations of metapopulations
of different sizes, dimensions and noise types, show that the system’s lifetime peaks when it displays checkerboard spatial
patterns. This conclusion is supported by the results of a recently published Drosophila experiment. The checkerboard
strategy provides a technique for the manipulation of migration rates (e.g., by constructing corridors) in order to affect the
persistence of a metapopulation. It may be used in order to minimize the risk of extinction of an endangered species, or to
maximize the efficiency of an eradication campaign.
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Introduction

In recent years, many studies in the field of biodiversity main-

tenance were focused on spatially structured populations [1–14]. Of

particular importance are Levins type metapopulations [1,2,15],

where distinct subpopulations occupy spatially segregated patches of

habitats connected by migration. The principle aim of our research is

to understand the effect of spatial structure on the persistence of the

population; this will allow one to predict the impact of habitat

fragmentation, to suggest systematic reserve design strategies [16],

and to forecast the effect of conservation corridors [3].

The population of an isolated patch is usually unstable, as

demographic and environmental fluctuations may drive the colony

to extinction. Migration among subpopulations allows recoloniza-

tion of vacant habitat patches (turnover events) and reduces the

risk of correlated extinction [2]. If the dynamic of a large, well-

mixed population is stable, spatial segregation is always harmful.

To avoid global extinction, one should increase the migration

among patches to allow for a maximal ‘‘rescue effect’’ [17,14].

Can one desire too much of a good thing? Greater mixing, or even

patch merging, is the optimal conservation strategy; this is the

fundamental assumption behind the reserve design guidelines of

Diamond [18], for example.

The situation becomes much more complicated if the local

dynamics of a large, well-mixed population is also extinction-

prone. In such a case, strong dispersal, which is equivalent to patch

merging, increases spatial coherence and leads to global

extinction. Many recent experiments on predator-prey [9–11,6],

host-parasite [5], and single species [12,13] systems suggest that

migration is a two-edged sword: it should not be too weak, so that

it could allow for recolonization of empty patches by their

neighbors, but if it becomes too large, the system synchronizes, the

effect of local refuges is reduced, and all the patches undergo

extinction together [3,4]. The typical outcome is the ‘‘bell shape’’

demonstrated in panels b,c of Figure 1, where the average lifetime

of a spatial stochastic system [the stochastic-logistic map, see

Materials and Methods] is plotted against the (density-indepen-

dent) migration rate. The left shoulder of the bell indicates an

increase in the persistence with dispersal due to the rescue effect;

along the right shoulder, migration becomes harmful as it leads to

coherence and correlated extinction. Similar observations have

been reported in several fields, ranging from evolutionary game

theory [19] to the way globalization induces coherence among

economic markets thus jeopardizing their stability [20].

There is a substantial literature on the two edges of the bell

shape: the extinction transition that takes place as migration

becomes too small [2,21–24] and the synchronization transition

when the mixing exceeds some threshold value [9,3,25,26]. Here

we intend to identify where the peak of the curve is, i.e., under

what parameters the system achieves maximum sustainability such
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that the chance of extinction is minimal. For this purpose, we have

developed a numerical technique that allows one to consider the

effect of demographic stochasticity and the possibility of extinction

for a spatially structured population. To demonstrate the scope of

our results, we have considered first the most studied system in the

field, namely, the logistic map, and then two other paradigmatic

systems: the Ricker map and the well-known Nicholson-Bailey

host-parasitoid dynamics.

Our main result is the identification of the conditions for

maximum sustainability. Surprisingly, it turns out that the optimal

point for the stochastic system has nothing to do with the stability

properties of the deterministic (noise-free) dynamics. Instead, it

always appears when the spatial system arranges itself in a

checkerboard pattern. In the following section, we show that the

maximal persistence time appears when the decoherence peaked,

as this is the underlying mechanism beyond stability. The three

different systems (logistic, Ricker, and Nicholson-Bailey) are

analyzed in detail, and we demonstrate consistently that in each

of them the maximum sustainability is associated with a

checkerboard pattern.

Along this paper we deal solely with demographic stochasticity.

However, it should be emphasized that our results hold in the

presence of other types of noise, like the environmental

stochasticity considered by [27,28,29] - see Text S1. The

checkerboard strategy breaks down only when the population

size is unrealistically high (in which case the system follows its

deterministic dynamics) or extremely low (where the question of

coherence among patches is irrelevant, see Materials and

Methods).

Results

The Logistic Map
First let us present the numerical technique used in order to

study the effect of demographic stochasticity on the sustainability

of a spatially segregated population. We demonstrate this

technique for the logistic system; the generalization of this method

to any other dynamics is presented in the Materials and Methods

section.

We consider a metapopulation with L local habitat patches,

where the carrying capacity of a patch is N0. The dynamics is

described by a discrete generation island model: local population

of size nt at time t produces ntz1 local individuals in the next

generation. Any agent may then decide to emigrate from its local

habitat with probability D; upon migration it chooses its

destination with equal probability among s possible habitat

patches.

Each of the n individuals in a local community produces r
offspring, but the chance of an offspring to survive local

competition is 1{n=N0, and thus the total population by the

time of the next generation is on average rn(1{n=N0). To consider

demographic stochasticity we utilized the fact that P(k), the

probability that k individuals (out of rnt) survive to the next

generation is given by the binomial distribution,

P(k)~B(k; rnt
i ,1{

nt
i

N0

) ð1Þ

where B(k;n,p) is the chance to get exactly k successes in n trials, if

the chance of success in an individual trial is p. To avoid the

possibility of an increase of the local community above N0 we

impose ntz1~min½k,N0�.
Indeed, N0 controls the strength of demographic stochasticity. If

the population density x is defined as the rescaled number of

Figure 1. Coupled Logistic map, two-patch system. The dynamic
is illustrated by a cartoon (upper panel). Intra-patch logistic growth is
followed by a migration step; the graphs indicate the average lifetime t
against the migration rate parameter D. (A): The orbit (bifurcation)
diagram for the deterministic system [Eq. (2)] with r~4. The total
population follows a chaotic trajectory for either high migration (red
region), where the patches synchronize, or for low dispersal rates (blue
region), where each patch oscillates independently. In the middle
region (green), a period-2 attractive ‘‘up-down’’ cycle appears, and the
deterministic dynamic becomes stable. In this panel the y axis
corresponds to all values x may take, which is, for the logistic map,
the (0,1) segment of the real line. (B) and (C): The average time-to-
extinction of the individual-based dynamics [Eq. (1)] of the same
system. The bell shape peaked at the values of D for which the up-
down period-2 orbit appears in the deterministic map. Here N0~100
(B) and N0~500 (C).
doi:10.1371/journal.pcbi.1000643.g001

Author Summary

No one can produce all his needs by himself. Personal
autarky poses a serious danger of collapse in cases of
illness, drought, etc. Trade reduces the impact of local
catastrophes, thus increasing economic stability. However,
the recent series of econo-crises revealed that globaliza-
tion induces coherence among markets and jeopardizes
their sustainability against global failures. Economists try
to identify the optimal tariff that balances between the
dangers of autarky and the risk of correlated failure. The
same problem appears in ecosystems with a population
divided among local habitat patches. ‘‘Optimal tariff’’ is
translated to optimal migration rate: how should one
manipulate connectivity among patches in order to
achieve maximum sustainability? Recolonization of habi-
tats that undergo extinction is essential for survival, yet a
too strong dispersal leads to coherence and correlated
extinction. Here we use individual-based models in order
to find the optimal migration rate. We show that this
optimum appears when the the system takes a spatial
‘‘checkerboard’’ pattern that maximizes the decoherence.
The insights gleaned allow for improved policies for
conservation of endangered species (optimizing the effect
of corridors, predicting the impact of habitat fragmenta-
tion) and, on the other hand, eradication campaigns (like
vaccination or pest control).

Sustainability via Checkerboard Strategy
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individuals, x:n=N0, it is clear that the map xtz1~r(xt{x2
t )

describes the dynamics of the average density for the stochastic

process (1). Moreover, since the variance is proportional to the

population size, the stochastic map converges to the deterministic

one in the limit N0??, with fluctuations that scale like
ffiffiffiffiffiffi
N0

p
[30].

The deterministic limit of the stochastic-logistic system corre-

sponds, thus, to the paradigmatic model of diffusively coupled

logistic maps, considered already in the context of population

dynamics [3]. In its spatially explicit form, this system obeys (here

xtz1 is the population density after the dispersal/migration step):

xtz1
i ~

XL

j~1

mijf (xt
j ) ð2Þ

where mi,j is the proportion of individuals from patch j that

disperse to patch i, where L is the number of patches,

f (x)~r(x{x2), and where r is the maximal intrinsic growth rate

(maximum fecundity) of the population. In this work, we have

considered only local dynamics, where mi,i~1{D and mi,j is zero

unless the i and the j sites are nearest neighbors, in which case

mi,j~D=s, where s is the connectivity of the ith site.

Note that this deterministic model per se may support chaotic

dynamics where the population assumes an arbitrarily small value,

but it never allows for extinction. To consider the possibility of

extinction, one must adds demographic stochasticity to the model,

i.e, use (1) instead of (2). For a small system, the average time to

extinction t may be estimated by averaging over many runs with

different initial conditions and different histories; this is the method

used to obtain the graphs presented in the next figures. For large

systems, or alternatively when the time to extinction is relatively

large, we have used other estimation techniques (see the Materials

and Methods section for the details of these techniques and a

comparison between them.)

Figure 1 exemplifies the situation for the simplest case, namely,

a two-patch system. In that figure, two models are presented: in

the upper panel the deterministic dynamic of a coupled logistic

map [Eq. (2)], and below it, two panels with different N0 of its

stochastic, agent based analog [described by Eq. (1)]. The orbit

diagram of the deterministic map shows that, for some

intermediate migration rate, the system supports an attractive,

period-2 orbit [31,32]. This orbit is characterized by an ‘‘up-

down’’ dynamic: when one patch is ‘‘up’’ (admits a larger

population) the second is ‘‘down’’ (in the low-density state) and

vice-versa. Interestingly, the peak of the bell shape for the

persistence time in the cases of the stochastic (agent-based) system

happens to be in that same ‘‘up-down’’ region.

Does this fact indicate that the peak should be attributed to the

features of the spatial deterministic dynamics, namely, to the

existence of an attractive manifold? Not really. Let us take a look

at Figure 2. Here plots are given for a four-patch system with

periodic boundary conditions (a square with no diagonal

connections). There are two regions in the orbit diagram presented

in the upper panel that correspond to period-2 attractive manifold.

The first is the ‘‘up-down-up-down’’ (UDUD) region (two up-

down patches attached to each other) and the second is an ‘‘up-up-

down-down’’ (UUDD) configuration, where diffusion is strong

enough to synchronize adjacent pairs. In the second panel, the

Lyapunov exponent of the orbits is presented, and one finds that

the UUDD is slightly more attractive than the UDUD region.

However, as can be seen in the third panel, the peak of the

persistence time is still found in the UDUD region, and the bell-

shape is smooth, completely unaffected by the appearance of the

UUDD periodic orbit. There is no direct correspondence between

the appearance of attractive orbits of the deterministic map and

the persistence of the stochastic system.

Figure 3 explains why the analysis of stability using Lyapunov

exponent is irrelevant for the prediction of the maximum

Figure 2. Coupled Logistic map, four-patch system with periodic boundary conditions. Here the deterministic (r~4) orbit diagram (A)
shows two stable regions that correspond to alternating (up-down-up-down, green, and up-up-down-down, black) spatial configurations. Panel (B)
shows the Lyapunov exponent l of the orbit: while the chaotic regions are characterized by a positive exponent indicating that the trajectories are
unstable, for the periodic orbits, l is negative. Yet, although the UUDD orbits are more attractive (more negative l), the lifetime of the stochastic
system (N0~200) peaks in the UDUD region, as shown in panel (C). The vertical arrow shows where the time to extinction is maximal; the horizontal
arrow points to a representative snapshot of the agent-based system in that optimal migration, while the colors represent density. Clearly, the
maximal sustainability (smallest chance for extinction) occurs in the checkerboard (UDUD) phase.
doi:10.1371/journal.pcbi.1000643.g002

Sustainability via Checkerboard Strategy
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sustainability point. The UDUD and the UUDD orbits are

indeed attractive, but their basin of attraction is narrow, and

small perturbations take the system to long excursions until it

reaches the stable manifold again. [In the theory of nonlinear

dynamics such systems are known as excitable [33], and the

excursion defines a homoclinic trajectory]. What determines the

chance of extinction is not the local stability properties of the

orbits but the probability of extinction during the excursion.

This chance is proportional to the minimum distance to default

along the excursion path.

These individual particle simulations show that for realistic

values of N0, up to 5000 agents per site, demographic stochasticity

is strong enough to kick the system occasionally from the attractive

orbit, sending it to a long excursion in phase space. It turns out

that since the underlying dynamics is chaotic, the kicked system

visits any possible point in phase space with almost equal chance.

There is no need to make a distinction between asymptotic states

of different initial conditions: what matters is the minimal total

population along the transient. Indeed one may simply average the

distance to default over many initial conditions of the deterministic

system to get roughly the same bell-shape obtained from the

individual-based simulations (see Materials and Methods and

Video S1).

The fractal basin boundary and the dependence of the

asymptotic behavior on initial conditions have already been

pointed out by Adler [34] for the Nicholson-Bailey map and by

Hastings [32] for Ricker and logistic systems. Indeed, it is this

feature of the deterministic model that makes stochasticity an

important factor. In general, one may guess that there is no

need to add stochasticity to the already random, erratic

dynamics of a chaotic system, and on the other hand, that the

effect of weak stochasticity on a system that admits an attractive

orbit is small. Here we find that these two arguments fail when a

stable orbit results from the interplay between chaotic

subpopulations: stochasticity is still important and its little affect

is amplified by the underlying chaotic motion that yield these

long excursions.

The Ricker Map and the Nicholson-Bailey Host-Parasitoid
Model

The Ricker map. Figure 4 shows the orbit diagram and the

persistence curves for a two-patch Ricker map where the local

dynamics obeys:

Fstoch(n)~B(ern,e
{ n

N0 ) ð3Þ

as described in the Materials and Methods section. In Figure 5, the

four-patch system stability is analyzed for the Ricker case, in

parallel with the analysis presented in the logistic case.

Figure 3. Effect of long excursions. The time evolution of total population (nT~n1zn2zn3zn4) vs. time for the four-patch system of
Figure 2 with individual based dynamics [Eq. (1)] (r~4 and N0~4000) for D~0:17 (UDUD region, left red) and D~0:35 (UUDD region, left blue).
Most of the time the system sticks to the population level that corresponds to the attractive orbit (indicated by an arrow), and these stability
periods are indeed longer in the UUDD case, in agreement with its stronger attractiveness. However, from time to time the demographic noise
drives the system out of the basin of attraction of the periodic orbit and then the system follows a long excursion until it again reaches the
attractive orbits. The chance of extinction has nothing to do with the stability of the attractive orbits. Instead, it is determined by the point of
lowest population during an excursion. In the right panel, this characteristic of the trajectory is demonstrated: for the deterministic two-patch
system with D~0:17, the period-2 orbit (xi takes alternately the values 0.48 and 0.89, marked by crosses) is attractive, but with different initial
conditions it undergoes completely different trajectories. The minimum value of the total population (Xm~min½x1(t)zx2(t)�) along the
excursion from any starting point to the asymptotic states (crosses) is color-coded (see color bar) and yields a fractal map [32]. A histogram of
Xm for the deterministic 4-patch configurations (middle panels) shows much larger support close to zero for the UUDD configurations, which
explains why the checkerboard arrangement is more persistent.
doi:10.1371/journal.pcbi.1000643.g003

Figure 4. Coupled Ricker map, two-patch system. (A): The orbit
diagram for the deterministic system [Eq. (7)] with r~2:833. In the low-
migration (blue) region the patches are independent; in the right (red)
region they are synchronized. The intermediate migration (green)
regime is characterized by up-down dynamics (not necessarily of
period-2!). The average time-to-extinction of the individual-based
dynamics [Eq. (10)] shows persistence peaks in this region for both
N0~20 (B) and N0~50 (C).
doi:10.1371/journal.pcbi.1000643.g004

Sustainability via Checkerboard Strategy
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The Nicholson-Bailey map. Figures 6 and 7 show the

stability properties of coupled Nicholson-Bailey maps:

Htz1~cHte
{cPt Ptz1~bHt(1{e{cPt ): ð4Þ

In the NB case we can show the orbit diagram for only a limited

region of the phase space, where generic initial conditions

converge to an attractive orbit, a phenomenon first pointed out

by Adler [34]. Simulation results are presented for c~0:1, b~1
and c~4.

In both the Ricker and the Nicholson-Baily maps, the system

achieves maximum sustainability in the ‘‘UDUD’’ region, similarly

to the case of the logistic map. Here too, the value of the Lyapunov

exponent turns out to be irrelevant for determining the maximum

sustainabilty point.

Discussion

The exceptional stability of the checkerboard pattern has to do

with the fact that in this state the decoherence among neighboring

habitat patches is maximal. To understand this we briefly review

some elements of previous studies.

A generic mechanism that leads to sustainability in spatially

structured populations has been discovered recently [35,8] in the

context of a two-patch system. The basic ingredients needed for its

applicability are migration, stochasticity and an unstable dynamic.

(Abta and Shnerb [8] have discussed other stabilization mecha-

nisms that depend on spatial heterogeneity of the local dynamic or,

for victim-exploiter systems, on the difference in the migration

rates of the species; these attributes do not exist in the models

discussed here).

In order to grasp the essence of the stabilizing mechanism, let us

look at Figure 8. For a simple victim-exploiter 2-patch system, this

figure emphasizes that if the oscillations on these two patches are

incoherent, then migration between patches drives the whole

system inward toward the coexistence fixed point, yielding

sustained oscillations. However, one should bear in mind that

dispersal itself tends to reduce population gradients and induces

synchronization. In order to gain stability, the migration among

patches should be weak enough to allow for noise-induced

desynchronization, yet strong enough to stabilize incoherent

patches. As discussed in [8], this general statement is valid for

any unstable model that supports oscillations close to the unstable

fixed point, these oscillations appear naturally in victim-exploiter

ecologies [36]. The logistic map (and other unimodular maps like

Figure 5. Coupled Ricker map, four-patch system. The orbit
diagram (A) presented together with the Lyapunov exponent l of the
attractive orbit (B), shows that the up-up-down-down orbits (black
region) are much more attractive than the up-down-up-down orbits
(green). Yet the persistence peaks in the checkerboard region for
N0~20 in (C).
doi:10.1371/journal.pcbi.1000643.g005

Figure 6. Nicholson-Bailey map, two-patch system. The orbit
diagram (A) is presented only for the narrow range of parameters where
the deterministic map [Eq. (11)] supports periodic orbits; in that region
the persistence curve (C) of the individual-based dynamics [Eq. (12)]
admits its maximum. In Panel (B), the population on patch 1 (P1) and 2
(P2) is given at different times for D~0:018, a value that corresponds to
the optimal sustainability [indicated by an arrow in (C)]. Clearly the
optimum corresponds to the up-down orbit.
doi:10.1371/journal.pcbi.1000643.g006

Figure 7. Nicholson-Bailey map, four-patch system. In the orbit
diagram (A), the black region corresponds to the UUDD orbits, and the
green to the UDUD. In the UDUD region the persistence curve (C) of the
individual-based dynamics admits its maximum. In Panel (B), the
population sizes on patch 1–4 is given at different times for D~0:018
(UDUD), a value that corresponds to the optimal sustainability, and for
D~0:03 (UUDD). The color bar indicates the number of agents for
panel (b).
doi:10.1371/journal.pcbi.1000643.g007

Sustainability via Checkerboard Strategy
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Ricker) also belong to the same class, as the population spirals out

of the unstable fixed point [37].

Stable orbits, thus, may appear due to the presence of noise.

The role of noise is to perturb the system from its fully

synchronized phase. Once this perturbation happens, the

differences between patches are amplified by the underlying

unstable dynamic. This yields an effective decoherence between

patches and, as a result, the dynamic stabilizes.

Based on this insight, we suggest that the optimal persistence is

always achieved at the point of maximum decoherence. The basic

unit is a two-patch model in the ‘‘up-down’’ phase, and the whole

system should be tiled with these dominoes in a checkerboard

array that allows for maximum rescue effect. As demonstrated in

Figure 9, this conjecture explains the optimal patterns for larger

arrays in one and two dimensions. The attractive up-down orbit of

the deterministic model and the optimal persistence of the

stochastic dynamics coincide, as both manifest the point of

maximum efficiency of the stabilizing mechanism [35,8].

As shown above, the very same result holds for different

dynamics that acquire stability through spatial structure, like the

Ricker map considered by [12] and the classic Nicholson-Bailey

model [38] for host-parasitoid dynamics.

The results of the Drosophila experiment [12] also support our

conjecture. Although global extinction has not been observed

during the experiment, the authors have quantified the constancy

stability of the metapopulations by measuring the amplitude of

fluctuation in population size over time. This is equivalent to the

second method for estimating persistence time explained in the

Materials and Methods section below. For the most persistent

scenario (optimal migration) the mean nearest neighbor cross-

correlation was negative, indicating that the system is indeed in the

checkerboard state.

All these considerations fail when the number of individuals per

site becomes extremely large (the system follows the deterministic

dynamics and the stability of an orbit is governed by the Lyapunov

exponent) or small (where synchronization is no longer important

and migration always helps). These limits are discussed below.

Within the general framework suggested by Earn, Levin and

Rohani [3], our results admit a wide scope of implications. Once

the density-dependent local dynamic of the population is known -

e.g., by estimating the maximum fecundity parameter or by

retrieving the recruitment curve for a well-mixed population (see,

e.g., the use of this technique in an annual plant metapopulation

experiment [13]) - one may use this deterministic, spatially explicit

dynamic to find out which migration rate corresponds to the

checkerboard state. This may be used for the design of

conservation corridors and for evaluating the impact of habitat

fragmentation. For the opposite effect, it may also help in the

eradication of infectious diseases. Even without any knowledge of

the local dynamics, tracing the patch density vs. time allows one to

recover the correlations between neighboring patches; sustainabil-

ity is optimal when neighbors’ correlation reaches its minimum

value.

The checkerboard solution manifests itself even if the topology

of the system does not allow for ‘‘perfect’’ partition, as in the case

of an odd number of patches or an imperfect lattice. As

demonstrated in the Video S2, the system develops a local defect

that ‘‘screens’’ the problematic region while the rest of the plane is

covered by a checkerboard pattern. We have already carried out a

preliminary study of other topologies, like equal coupling systems,

for which dispersing individuals are equally likely to move to any

Figure 8. Decoherence as a stabilizer on spatial domains. An
illustration of a two-patch system (up), where the intra-patch dynamics
on each follows the deterministic Nicholson-Bailey model, as described
by Eqs. 11. Here c~1:2, b~6:1 and c~0:3. When the system is initiated
close to the unstable fixed point, the orbit spirals out (bottom panel, P
is the parasite density and H the host density, where the values
correspond to NB map are represented by green circles. The dashed line
connecting consecutive generations). The amplitude of oscillation
grows until one of the species undergoes extinction. If the two patches
dynamic is incoherent it is possible to find patch (A) in the state
represented by the blue circle, while patch (B) is in the green state.
Under these conditions the density of both hosts and parasitoids is
larger on (B), thus density independent migration causes a net flow of
individuals from (B) to (A). As indicated by the arrows the local
communities grow on (A) and shrink on (B) as a result of migration, thus
the whole system flows inward towards the coexistence fixed point.
This caricature shows that migration is indeed a stabilizer if the time
evolution of adjusting spatial patches is incoherent. To avoid diffusion
induced synchronization, however, some source of noise is necessary.
doi:10.1371/journal.pcbi.1000643.g008

Figure 9. Checkerboards. Average time to extinction (lower right,
arb. units) vs. migration rate for one-dimensional array of 16 patches
(green) and for 4|4 configuration (red). The persistence time peaks are
close to each other, and the corresponding spatial configurations are
both of a checkerboard type. For an odd number of patches (see Video
S2 in the Text S1), the optimum is also in the checkerboard region, with
a single defect. In the high migration region, the one-dimensional
configuration is preferred, as the weaker coupling avoids synchroniza-
tion. A representative snapshot of the spatial arrangement is shown for
one dimensional (top) and two dimensional (left) arrays, both with the
optimal value of D indicated by the vertical arrow.
doi:10.1371/journal.pcbi.1000643.g009

Sustainability via Checkerboard Strategy
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of the other patches, random networks, triangular lattice etc. Our

results suggest that the persistence time is maximal when the

system reaches the most incoherent state, which in some aspect

resembles the checkerboard strategy; we will return to this issue

elsewhere.

Materials and Methods

Simulations
The numerical procedure used along this work is a generic

individual-based generalization of the deterministic approach for

coupled map lattice [39–41].

A very similar island model has been used by Hamilton and

May [42] who have considered the evolution of dispersal rates for

a population with spatial structure and kin competition. However,

the model of Hamilton and May, as well as other studies of the

persistence of a metapopulation, neglects the demography of the

local population: a habitat patch is either occupied or extinct.

Under these conditions; the stochastic dynamics is equivalent to a

contact process [22–24], and the persistence receives only benefit

from an increase of the migration rate. To say it another way,

simple extinct/occupied dynamics supports, in the deterministic

(large N0) limit, an attractive fixed point with a finite population

density. Such a system goes extinct in the presence of stochasticity

due to large fluctuations; since larger dispersal acts to decrease the

amplitude of these fluctuations it must be advantageous for its

persistence.

On the contrary, here we consider the case where in the

deterministic limit, the dynamics are unstable (chaotic or otherwise

extinction-prone), and thus stochasticity induces fluctuations, and

their interference with the spatial structure plays a crucial role in

the persistence of the population.

We assume a population dynamics with nonoverlapping

generations, where any generation involves two consecutive steps.

The first step involves the ‘‘local reaction’’ (birth, death,

competition etc., at which any patch is affected only by the local

population), and the second is the density independent ‘‘migra-

tion’’ (dispersal) step, where individuals are allowed, with a certain

probability, to leave their local community and migrate to another

patch. No ‘‘dispersal cost’’ is introduced, so any emigrant reaches

its chosen destination.

In the reaction step, the number of agents on a patch at the tz1
generation, ntz1, is determined by nt. If the numbers of agents are

very large (e.g., if one deals with a bacterial system), it is possible to

neglect the discrete character of the system, as the effect of

demographic stochasticity falls like 1=
ffiffiffi
n
p

. Under these conditions,

one can write down a simple map of the form:

xtz1~f (xt), ð5Þ

where x is the population density. Along this work we deal with

two particular examples of (5), namely, the logistic map:

xtz1~r(xt{x2
t ), ð6Þ

and the Ricker map:

xtz1~xte
r(1{xt): ð7Þ

Both maps are chaotic, and after a while the system reaches

population levels that are very close to zero. The deterministic

formalism has no problems with that: since x is always above zero,

the population survives forever. We know, however, that this is

wrong. As the population is made of discrete individuals, xt too

close to zero corresponds to no individuals at all, in which case the

dynamics should halt (this is the ‘‘absorbing state’’ in the stochastic

processes terminology). To consider the effect of extinction, one

should generalize the deterministic dynamics to include the effect

of demographic stochasticity. This is done here by using:

ntz1~Fstoch(nt) ð8Þ

where Fstoch is a stochastic process that converges to its

deterministic equivalence (5) in the large population limit. For

the logistic map:

Fstoch(n)~min½B(rn,1{
n

N0
),N0� ð9Þ

and for the Ricker map:

Fstoch(n)~B(ern,e
{ n

N0 ) ð10Þ

where B(n,p) stands here, for the sake of brevity, for a number

taken from a binomial distribution (i.e., for k where the chance to

get k successes from n trials is given by the binomial distribution).

In the large N0 limit, the fluctuations around the mean are

negligible, and since the mean of B(n,p) is pn, these maps converge

to their corresponding deterministic values. In order to facilitate

the numerics, we have chosen the value of r such that the first

argument of the binomial distribution will be an integer (r~4 for

the logistic map, r~ ln (17) for the Ricker), but it is easy to

generalize (9) and (10)) to the case of noninteger values of r.

After the reaction step, a migration step takes place. In the

deterministic limit, a fraction D~1{mi,i of ni (the population on

the i-th site) is subtracted from any site population, and is divided

between all possible destinations. In the individual-based model,

any individual on the i-th site is chosen to emigrate with a chance

D, and it then it chooses its destination randomly; for a one

dimensional chain it will arrive at the left or at the right

neighboring patches with probability 1/2. In order to avoid an

artificial drift, the migration takes place via a parallel update

scheme, and the site population is updated only after the whole

diffusion cycle is completed (failing to do so, one may choose an

individual to migrate from the first to the second site, then choose

again the same individual to jump from the second to the third

patch; this introduces a residual drift in the direction along which

the updates take place).

Another example we consider here is the non-chaotic (yet

extinction-prone) Nicholson-Bailey [38] model for host-parasitoid

interaction. Here there are two species, the host H and the

parasitoid P, that on a single patch satisfy the deterministic map:

Htz1~cHte
{cPt Ptz1~bHt(1{e{cPt ) ð11Þ

where e{cPt is the escape probability. In the model with

demographic stochasticity, Ht and Pt are integers. To simulate

the local dynamics the number of uninfected hosts, Hui
t , at a

certain generation is given by:

Hui
t ~B(Ht,e

{cPt ) ð12Þ

and the rest of the hosts are infected. Any uninfected host produces

c offspring in the next generation, while an infected host yields b
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parasitoids. The migration procedure is the one presented above

where it is now applied separately to the host and to the parasite.

Estimating persistence time
Along this work we have used three procedures in order to

estimate t, the persistence time of a system. As discussed in [35,8],

the distribution of lifetimes is exponential with an average t (see

Text S1). This has to do with the appearance of an attractive

manifold, as opposed to the broad distribution of lifetimes at

criticality as discussed in[43].

1. Direct measurement of t. If the system reaches

extinction on reasonable timescales, we can simply average over

the time to extinction obtained from repeated runs of the

simulation with random initial conditions and different histories.

The result is t, the average time to extinction.

2. Stability of the attractive manifold. To implement this

method, one assumes that the population fluctuates, more or less

normally, around nT , the total population that corresponds to the

attractive orbit (see Figure 3 above). The variance of these

fluctuations is s2, and the average time to extinction should be

proportional to the chance for the total population to be zero.

Assuming Gaussian fluctuations, this implies that the extinction

time scales exponentially with n2
T=2s2 [44,45,46]. This method

allows one to estimate the stability of a large system, when the time

to extinction is large.

3. Averaging over the deterministic dynamics. Here we

did not use the stochastic simulations at all. Instead, it is assumed

that the demographic fluctuations effectively kicked the system

away from the stable orbit, into a random location (picked with

uniform distribution among all possible states) in the phase space.

This chosen point becomes a new ‘‘initial condition’’ that flows, in

the deterministic limit, back to the attractive orbit along a transient

trajectory. The chance of extinction during this transient is

proportional to the minimum over time of the total population, Xm

(see caption of Figure 3) for these initial conditions. The time to

extinction is thus proportional to the average of Xm over the whole

phase space.

In Figure 10 these three technique are compared for the two-

patch logistic system with N0~500. Roughly speaking, one should

expect the time to extinction to scale exponentially with the size of

the minimal population xm, and/or with the overlap of the normal

distribution characterized by nT and s with the zero population

state [47] (these, of course, are only rough estimates, see [44,45,46]

for a more accurate treatment). Within this framework, the

estimated extinction times for the second method were calcu-

lated from t*A exp (B:n2
T=2s2), and for the third method

t*A’ exp (B’Xm), where the parameters A,B,A’,B’ were extracted

by fitting the data at two points from both sides of the peak. One

can see that the maximum persistence appears at the same

migration rate and that the deviations among graphs are of order

20%, which is way beyond what is expected from such a crude

estimate.

The Extreme Limits: Dense and Dilute Populations
There are two extreme cases of a too large and too small noise,

where the checkerboard strategy fails. In the weak noise limit (that

corresponds to the large N0 case of the agent-based system) the

dynamics is very close to the deterministic one and the results of

the deterministic modeling most hold. It turns out that the size of

N0 needed to reach this limit is huge, and any ecosystem (except,

maybe, bacterial colonies) is far from this extreme. In particular,

local extinction happens only if the deterministic dynamics takes

the population to very small values, between zero and 1=N0. This

is a relevant process only in the weak migration regime (the rate of

recolonization approaches zero) or in the fully synchronized case;

otherwise, extinction simply never happens in this regime.

The other limit, that of large noise, appears when N0 is very

small. In this case the rate of local extinctions is so high that the

real degrees of freedom of a habitat patch are simply occupied or

empty, and coherence among patches makes no difference. Our

island model with complex dynamics becomes equivalent, in the

strong noise limit, to a contact process. As explained above, in that

case the higher the migration rate, the more sustainable is the

metapopulation, and thus the optimal migration rate grows as N0

approaches one. This phenomenon is demonstrated in Figure 11.

Figure 10. Three methods for finding extinction times: a
comparison. The value of D which optimizes the time to extinction
shows a complete agreement between the methods. We have used the
exponent of Xm and nt=2s2 in order to put all curves on the same scale,
as explained in the text. Here A~529, B~1:64 A0~653, B’~0:22.
doi:10.1371/journal.pcbi.1000643.g010

Figure 11. The dilute limit: stronger migration - higher
persistence. The optimal migration rate (the one that yields the
maximal time to extinction) Dop, vs. N0 for the two-patch Ricker map.
For N0ƒ10 the optimal migration is not in the checkerboard region
anymore.
doi:10.1371/journal.pcbi.1000643.g011
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Supporting Information

Text S1 First, in the main only demographic stochasticity was

considered. Here we show that the same results hold for a system

subject to both environmental and demographic stochasticity.

Second, in the main part of the paper only the average time to

extinction was presented. Here we show the whole probability

function and confirm that it is exponential distribution.

Found at: doi:10.1371/journal.pcbi.1000643.s001 (0.09 MB PDF)

Video S1 As the migration parameter D increases, the fractal

map showing Xm for any possible initial condition of a two patch

system is changes (lower right). In the lower left panel the orbit

diagram is updated for any given D. the upper panel shows the

average of Xm over all possible initial states; it yields the bell-shape

with the peak at the optimal sustainability point, as explained in

the text.

Found at: doi:10.1371/journal.pcbi.1000643.s002 (8.58 MB

MPG)

Video S2 The individual based Ricker dynamic is simulated on

a 10610 lattice (periodic boundary conditions), with a ‘‘defect’’

(inaccessible sits, dark blue) in the middle. The movie present

consecutive snapshots of the density of particles, color coded as

indicated by the color bar, at the optimal migration point. One

realizes that the system reaches the checkerboard state, with a

single moving imperfection localized close to the defect.

Found at: doi:10.1371/journal.pcbi.1000643.s003 (5.82 MB

MPG)
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