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Abstract

Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that
harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein
interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins.
Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197
exhibit a statistically significant (p,0.01) overlap between ligand and protein binding positions. These ‘‘bi-functional
positions’’, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to
‘‘energetic hotspots’’ described previously, and are significantly less conserved than mono-functional and solvent exposed
positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of
domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule
modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand
binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of
sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate
developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of
structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource
for the rational design of interaction modulators.
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Introduction

Protein–protein interactions are a broad class of therapeutic and

chemical biology targets [1]. Traditionally these targets were

thought to be refractory to small molecule modulation. However,

recent efforts have led to interaction modulators that are valuable

tools in mapping signalling networks and are entering clinical trials

for therapeutic use [2]. Although natural substrates often serve as

guides for rational drug design, such information is rarely available

for protein–protein interfaces [3]. Here we attempt to provide such

a starting point through a structural analysis of known protein and

ligand binding sites. We posit that although ligands that are known

to bind to specific protein–protein interfaces are rare, examples of

ligands that bind to corresponding positions in homologous proteins

may be available. These homologous sites, and the ligands they

bind, may serve as starting points for rationally designing small

molecule modulators of protein interactions.

The physicochemical, geometric, and evolutionary properties of

ligand and protein binding sites have been extensively studied by

analyzing three-dimensional protein structures [4–6]. On average,

protein interfaces are relatively planar, more physically adaptable,

and much larger than the small, rigid, pockets that bind small

molecules [5,7]. Despite the large total surface area of protein

interfaces, a small subset of these residues, termed ‘hotspots’,

contribute disproportionately to the affinity of protein–protein

interactions [8–10]. Small molecules that target these hotspots

have been found to effectively compete against proteins in binding

events [11].

The computational methods developed for traditional rational

drug design, such as pocket detection and virtual screening, have

also been applied to identify small molecules modulators of protein

interactions. The methods are frequently adapted to the unique

properties of protein interfaces, such as their adaptivity in forming

small transient cavities that can bind small molecules [12]. This

property led to the use of molecular dynamics simulations to search

protein interfaces for transient pockets that are subsequently

targeted by virtual screening [13]. In this study, we take a

conceptually related approach that harnesses the conformational

(and chemical) space sampled by homologous members of a protein

family. The magnitude and direction of this evolutionary sampling

has been found to correlate with the conformational space sampled

physically by an individual member of a protein family [14–16].

Here, we perform a systematic analysis of structurally

characterized ligand and protein binding sites, with a central goal

of comprehensively identifying, enumerating, and describing those

positions in protein structure families where both ligands and
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proteins have been observed to bind. We first analyze the overlap

of these binding sites within protein families, characterizing the

composition and conservation of these ‘bi-functional’ positions,

and identifying the families in which they are more or less

prevalent than expected by chance. Next, we describe protein–

protein and protein–peptide interactions for which small mole-

cules were observed to bind at corresponding or homologous

positions in other protein structures. Finally, we describe known

interaction modulators recovered by the analysis, and illustrate its

predictive utility by suggesting structural mechanisms for the

observed effects of three small molecules.

Results

Ligand and protein binding sites
We began by assembling a comprehensive list of protein and

ligand binding sites. Protein–protein (inter-molecular domain–

domain, intra-molecular domain–domain, and domain–peptide)

binding sites were obtained from PIBASE (v200808) [17], based

on domain boundaries and classifications from SCOP (v1.73)

[18] (details in Materials and Methods). Peptide binding sites

were included in the analysis because the structures of protein

complexes are often solved with only the peptides that mediate

the interaction, rather than the full-length protein. Ligand

binding sites were obtained from LIGBASE [19], and mapped

onto SCOP domains using family alignments from the ASTRAL

compendium [20]. Binding sites that shared more than 90% of

their corresponding alignment positions were grouped together

and a representative was chosen randomly, yielding a final

dataset of 35,168 ligand binding sites, 2,332 peptide binding sites,

12,015 inter-molecular domain interfaces, and 4,290 intra-

molecular domain interfaces, for all of which the structure is

known (Table S3). This redundancy removal procedure (Mate-

rials and Methods) partially corrects the human bias in structural

coverage of proteins, protein complexes, and protein-ligand

complexes. Other aspects of bias can not be corrected and

therefore affect our observations; For example, the analysis is

limited to those proteins, ligands, and complexes that have been

structurally characterized.

Protein families with overlapping ligand and protein
binding sites

We first quantified the extent and significance of overlap

between all ligand and protein binding sites observed in each

protein family. The binding sites were mapped onto alignments of

domain families obtained from the ASTRAL compendium [20]

(Fig. S1B). This mapping procedure implicitly accounts for

redundant structures, as multiple structures of the same binding

site do not contribute any additional positions beyond those

protein-binding or ligand-binding positions identified by the first

structure. Of the 2,619 families that bind proteins, 1,028 also bind

small molecules, and 736 of these have at least 5 bi-functional

positions (Table S1). The overlap of ligand and protein binding

sites within each family was quantified using the numbers of

alignment positions at which ligands (nl ), proteins (np), or both

ligands and proteins (nb) were bound, as well as the number of

solvent-exposed positions (ns).

Overlap(family)~
nbns

nlnp

ð1Þ

An alignment position was considered solvent-exposed if at least

one of the domains in the family had a residue with side-chain

solvent exposure of greater than 7% at that position (MOD-

ELLER v9.4 [21]). The statistical significance (Fisher’s exact one-

tailed p-value) of the observed overlap for each family was assessed

against a null model in which the ligand and protein binding site

positions are randomly and independently placed at solvent-

exposed positions (R v2.5.1, http://r-project.org). We identified

197 families with significantly more (right-tail p-valv0.01), and

113 families with significantly fewer (left-tail p-valv0.01), bi-

functional positions than expected by chance (Fig. 1A, Table S2).

These two sets of families exhibit differences in the distribution of

functions as defined by SUPERFAMILY [22] (Fig. S1D). The

significance of the function propensity values were estimated by a

non-parametric bootstrap sampling procedure to compute 95%

confidence intervals (Table S4, Materials and Methods). Families

with significantly less overlap (p-valv0:01) than expected by

chance were enriched in Metabolism and depleted in Regulation

(a~0:05). In contrast, families with significantly more overlap (p-

valv0:01) than expected by chance were depleted in Metabolism

and enriched in Intracellular processes (a~0:05). For example, ten

of the overlapping families are involved in signal transduction

compared to none of the non-overlapping families.

Composition and conservation of bi-functional positions
We next asked whether the chemical or evolutionary properties

of bi-functional positions were different from other positions that

were part of only ligand or protein binding sites (mono-functional)

or solvent-exposed. The propensities of each amino acid residue at

mono-functional and bi-functional positions were calculated

relative to all exposed residues, and their significance estimated

by a bootstrap resampling procedure (Fig. 1B, Table S5, Materials

and Methods). The magnitudes of these propensities are within the

range reported in previous binding site analyses [4,23]. The

propensity of residue types that exist at the bi-functional positions

are generally intermediate between those of ligand-only and

protein-only positions, although they are more similar to the

ligand-only positions (Fig. 1B). In particular, bi-functional

positions have a higher propensity of tryptophan, histidine, and

phenylalanine residues relative to both protein-binding positions

and solvent exposed residues. In addition, bi-functional positions

Author Summary

Proteins function through their interactions with other
biological molecules, including other proteins. Often times,
these interactions underlie cellular processes that go awry
in disease. Therefore, modulating these interactions with
small molecules is an active area of research for new drugs
to treat diseases and new chemical tools to dissect cellular
interaction networks. However, targeting protein–protein
interactions has proven to be more challenging than the
typical drug targets found on individual proteins. Here, we
present a computational approach that aims to help in this
challenge by identifying regions of protein–protein
interfaces that may be amenable to targeting by small
molecules. Through a comprehensive analysis of all known
protein structures, we identify closely related proteins that
in one case bind a protein and in another case bind a small
molecule. We find that a significant number of protein–
protein interactions occur through surface regions that
bind small molecules in related proteins. These ‘‘bi-
functional’’ positions, which can bind both proteins and
ligands, will serve as an additional piece of structural
information that can aid experimentalists in developing
small molecules that modulate protein interactions.

Overlapping Ligand and Protein Binding Sites
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have a higher propensity for tyrosine, and slightly lower

propensities for alanine, isoleucine, leucine, and valine, than

either mono-functional or solvent-exposed positions.

Bi-functional positions are also significantly less conserved

than mono-functional or solvent exposed positions, as measured

by an entropy-based conservation score (Fig. 1C) as well as a

simple count of residue types (Fig. S1E). This lower conservation

was considered statistically significant (p-valv2:2 x 10{16) by

both Kolmogorov-Smirnov and Mann-Whitney tests (Materials

and Methods). Although it is difficult to precisely identify the

reason for the lower conservation of bi-functional positions, one

possible explanation is related to the definition of these

positions. We identified bi-functional positions because they

participate in different functions – ligand binding and protein

binding – in different family members. These different functions

might require different residue type compositions, resulting in a

lower conservation score for these positions. We also observed

minimal, although statistically significant (p-valv2:2 x 10{16),

differences in conservation between mono-functional and

solvent-exposed residues: ligand-only positions were more

conserved than all exposed residues, which in turn were more

conserved than protein-only positions. The small magnitude of

the difference in conservation between mono-functional and all

exposed residues is in agreement with previous findings that

conservation alone is of minimal predictive use for the

identification of binding sites [6].

Protein–protein interactions with overlapping ligand
binding sites

Having established that ligand and protein binding sites often

overlap within protein families, we aimed to determine the utility

of known ligand binding sites for targeting particular protein–

protein interactions. The ligand binding sites were mapped onto

individual domain–domain and domain–peptide interfaces, using

ASTRAL alignments as described earlier (Fig. S1C). The overlap

between each ligand binding site and protein interface was

characterized by the fraction of interface residues aligned to ligand

binding site residues.

Overlap(Interface,Ligand)~
jInterface\Ligandj

jInterfacej ð2Þ

When the ligand binding site aligned to both sides of a domain–

domain interface, the larger of the two overlap fractions was used

as the overlap score.

The ligand binding site coverage of each protein–protein

interface was summarized using two scores. First, a maximal

overlap score was used to quantify the maximum overlap observed

by any ligand for the protein–protein interface. Second, a

cumulative overlap score was computed by simultaneously aligning

all homologous ligand binding sites onto each protein–protein

interface and calculating the fraction coverage. This procedure is

conceptually related to fragment-based drug discovery techniques,

such as tethering [24].

The behavior of these overlap scores was examined as a

function of the sequence identity between the ligand binding site

and the corresponding positions in the interacting proteins (Fig. 2,

S2). As expected, the coverage of interfaces was reduced at higher

thresholds of sequence identity (Fig. 2A, 2B), and the distributions

of cumulative overlap scores (Fig. S2G, S2H, S2I) exhibit a higher

interface coverage than the corresponding distributions of

maximum overlap scores (Fig. S2A, S2B, S2C). In addition, the

domain–peptide interfaces have higher binding site overlaps

(Fig. 2B), on average, than domain–domain interfaces (Fig. 2A).

This observation is likely due to the smaller sizes of domain–

Figure 1. The overlap of ligand and protein binding sites
within protein families. (A) The distribution of overlap scores (Eqn 1)
is shown for all families that bind both ligands and proteins (grey;
n = 1,028), and the subsets of families with a statistically significant
overlap (pv0.01; solid; n = 197) or non-overlap (pv0.01; dashed;
n = 113). The highest overlap score observed is 10.83 (not shown). (B)
The residue type propensity (Eqn 3) and (C) conservation (Eqn 4) at
alignment positions that bind both ligands and proteins (black;
n = 102,436), bind ligands (cyan; n = 46,610), bind proteins (orange;
n = 491,723) in comparison to all solvent-exposed residues (grey;
n = 1,147,882). The statistical significance of the residue propensities
was estimated by a bootstrap resampling procedure (Table S5).
doi:10.1371/journal.pcbi.1000668.g001

Overlapping Ligand and Protein Binding Sites
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peptide interfaces, which are thus more readily covered by small

molecule binding sites.

Although the analysis suggests that most interfaces do not have a

homologous ligand binding site, as seen by the main peak over an

interface overlap of 0 (Fig. 2C), there are a significant number of

interfaces for which overlapping homologous ligand binding sites

do exist. In particular, a significant number of protein interfaces

overlap with homologous ligand binding sites of greater than 30%

sequence identity, previously determined to be a reliable threshold

for homology transfer of ligand binding sites [25].

The systematic alignment of ligand binding sites onto protein

interfaces generates a dataset useful for two primary purposes.

First, it serves as a comprehensive collection of structurally

characterized interaction modulators, in the cases where the ligand

binding domain is identical to the sequence involved in the protein

interaction (Table 1). Second, it serves as a set of predicted

interaction modulators, where the ligand binding site itself is

highly similar to the corresponding region in the target interaction,

but the overall domain is only homologous, rather than identical

(Table S6).

Recovery of known interaction modulators
To validate the accuracy of the mapping method, we checked

whether known protein interaction modulators were recovered by

the method. Indeed, all but one of the modulators discussed in a

recent review article [2] were identified by the method: Interleukin-

2 – Interleukin-2 receptor (PDB 2ERJ:A,D; 1PY2:FRH), MDM2–

p53 (1T4F:M,P; 1T4E:DIZ), HPV E2–E1 helicase (1TUE:A,B;

1R6N:434), ZipA–FtsZ (1F47:A,B; 1Y2F:WAI), and TNF-a
homotrimer (2TNF; 2AZ5:307). The interaction between Bcl-X–

BAD (PDB 2BZW) was missed by our analysis because the ligand

bound structure (2YXJ:N3C) was published too recently to be

classified in the current SCOP domain database. The nearly

complete recovery of known modulators suggests that the binding

site data used in the analysis and the procedure used to map them

operated correctly. We present additional examples of ligand

binding sites that overlap interfaces to demonstrate the diversity of

interactions for which ligand binding has been observed (Table 1).

Predicted interaction modulators
Having established the accuracy of the binding site mapping, we

next examined the results for their predictive utility in identifying

small molecule modulators of protein interactions. Those ligand

binding sites that mapped with a high sequence identity, in the

context of different protein sequences, represent high confidence

predictions where ligand binding may occur (Table S6). This kind

of prediction is an extension of the widely used homology-transfer

concept in protein function annotation [25].

Ligand binding sites that overlap protein interfaces
The ligands identified in the analysis fell into four broad

categories based on the kinds of protein–protein interactions that

Figure 2. Ligand-protein binding site overlap observed at protein–protein interactions as a function of sequence identity. The
maximum observed ligand binding site overlap (y-axis) for (A) inter-molecular domain–domain and (B) domain–peptide interactions, as a function of
the ligand binding site sequence identity (x-axis). The densities in these plots are represented by colors that range from yellow (no density) to blue
(maximum density). The (C) maximal and (D) cumulative overlap profile is shown at a minimum ligand binding site identity threshold of 30% for inter-
molecular (black), intra-molecular (orange) domain–domain, and domain–peptide (cyan) interactions. Tick marks indicate interfaces that exhibit a
particular level of interface coverage. The overlap score refers to the fraction of interface residues aligned to ligand binding site residues (Eqn 2).
doi:10.1371/journal.pcbi.1000668.g002

Overlapping Ligand and Protein Binding Sites
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they overlapped (Table 1, S6). The most frequently observed

category were synthetic enzyme inhibitors that overlapped with

the interfaces between enzymes and their protein or peptide

inhibitors. These interactions include carboxypeptidase, ribonu-

clease, trypsins, coagulation factors, and their protein inhibitors

(Fig. 3A). The high number of ligands identified in this class is not

surprising, as enzyme–inhibitor complexes are among the most

extensively structurally characterized and targeted by synthetic

inhibitors.

A related group of ligands overlapped with the interface of an

enzyme and its natural protein or peptide substrate. This class

includes ligands that bound at signaling complexes such as

MDM2–p53, farnesyltransfrease–h-ras, and histone acetyltrans-

ferase–p53. An example that is used therapeutically are HIV

protease inhibitors bound at the protease dimer in place of its

peptide substrate (Fig. 3B). We also include enzyme homodimers

in this group, such as the transketolase and the ornithine

decarboxylase homodimers (Table S6).

A third class of ligands overlapped with the interface of

structural or regulatory protein–protein interactions. These ligands

include natural toxins, such as kabiramide C bound at the actin–

gelsolin interface (Fig. 3C) and fusicoccin bound at the interface of

14-3-3 proteins (Fig. 4B). This class also includes synthetic

compounds such as ajulemic acid that bound at the interface of

peroxisome proliferator activated recpetor gamma (PPARG) and

the LXXLL coactivator (Table 1).

The fourth group of ligands were transferred from structures

where they were present at domain interfaces. Although it is

difficult to predict the effect of these ligands on the target interface,

this group of ligands may be more likely to sterically complement

protein interfaces than ligands in the other groups, which more

likely sterically hinder protein interactions. This group includes

elaidoylamide bound at the homodimeric interface of agkistrodo-

toxin Phospholipase A2 (PDB 1RGB), and bepridil bound at the

interface of Troponins C and I (1LXF; Fig. 3D). Ligands in this

class may be of potential use for designing chemically induced

dimerization systems [26]. This technique relies on the ability of

particular small molecules, such as Rapamycin and FK506, to

simultaneously bind two proteins, and has been extensively used to

study and control cell signaling processes. This group of ligands

also slightly overlaps with the second group, as HIV protease

inhibitors bind at the homodimeric protease interface (Fig. 3B).

Natural ligands such as ATP, GTP, GNP also often bind at

domain interfaces.

Table 1. Examples of ligand binding sites that align to protein–protein interfaces with identical or nearly identical sequences.

Sequence identity

Protein interaction Ligand Overlap bind site domain

Enzyme–protein inhibitors

1oo9:A,B (d) MMP-3 Catalytic Domain – N-TIMP-1 1caq:DPS 71% 100% 100%

1taw:A,B (d) Bovine trypsin – appi 1o2h:CR3 81% 100% 100%

1a8k:A,C (p) HIV-1 protease – ca-p2 analog 1mrw:K57 100% 100% 100%

1bzh:A,I (p) Protein-tyrosine-phosphatase 1b – inhibitor 1g7f:INZ 100% 100% 100%

1uk4:B,H (p) SARS proteinase 3clpro – peptide inhibitor 2alv:CY6 100% 100% 99%

1e8n:A,I (p) Prolyl oligopeptidase – peptide 1h2y:ZPR 80% 100% 100%

1rgb:A,B (d) Phospholipase A2 homodimer 1rgb:ELD (*) 100% 100% 100%

Enzyme–protein substrates

1m9d:A,D (d) Cyclophilin A – HIV Gag 1nmk:SFM 100% 100% 100%

1iid:A,O (p) N-myristoyltransferase – glyaskla 2nmt:MIM 100% 100% 100%

2bgn:C,Y (p) Dipeptidyl peptidase iv – HIV-1 tat peptide 2ajl:JNH 100% 100% 100%

1kzp:A,C (p) Protein farnesyltransferase – k-ras4b peptide 1n94:TIN 100% 100% 98%

1q2d:A,B (p) Histone acetyltransferase GCN5 – p53 peptide 1m1d:LYX 88% 100% 99%

1tjk:A,I (p) Group II Phospholipase A2 – FLSTK 1fv0:9AR 86% 100% 99%

Regulatory or structural interaction

1g73:A,D (d) XIAP - BIR3 2opy:CO9 100% 100% 91%

1h1v:A,G (d) Actin – gelsolin 1qz5:KAB 88% 100% 100%

2erj:A,D (d) Interleukin 2–receptor 1py2:FRH 55% 100% 97%

1b6c:C,D (d) TGF-b receptor – FKBP12 1bl4:AP1 76% 95% 99%

1rdt:D,E (p) PPARG – LXXLL motif coactivator 2om9:AJA 100% 100% 99%

1mxl:C,I (d) Cardiac troponin C–troponin I 1lxf:BEP (*) 60% 100% 100%

1g3f:A,B (p) SMAC Diablo – XIAP BIR-3 domain 1tfq:998 100% 100% 100%

1lcj:A,B (p) Lck SH2 domain – phosphotyrosyl peptide 1fbz:CC1 100% 95% 99%

1t4f:M,P (p) Mdm2 – p53 peptide 1t4e:DIZ 88% 100% 100%

1f47:A,B (p) ZipA – FtsZ fragment 1y2f:WAI 71% 100% 95%

The overlap (Eqn 2) between each ligand and protein interface is shown along with the sequence identity of the ligand binding site and the full-length domain
sequence. (d) refers to inter-molecular domain–domain, (p) refers to domain–peptide interactions, and (*) indicates ligands that were present at domain interfaces.
doi:10.1371/journal.pcbi.1000668.t001

Overlapping Ligand and Protein Binding Sites
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Another class of protein complexes with overlapping homolo-

gous ligand binding sites are antibody–antigen complexes. These

overlaps are an expected result of the diversity of the comple-

mentary-determining regions of immunoglobulins that enable

binding to virtually all proteins and small molecules.

The ligands that mapped to intra-molecular domain interfaces

included natural ligands such as ATP, GTP, and Heme groups, as

well as synthetic and natural toxins such as the Pulvomycin and

Kirromycin antibiotics (Table S7). Since we focus on direct

modulators of protein–protein interactions, we will not discuss

these ligands. However, ligands that bind at intra-molecular

domain interfaces may serve as logical switches in cellular

signaling networks [27].

Although we observed overlaps that occur in a variety of

functional classes, they can all contribute towards a structural

understanding of bi-functional positions. Irrespective of the natural

or synthetic source of the small molecule, or the particular

functional class of protein interaction, the resulting overlaps are

structurally informative for understanding what makes particular

interface regions amenable to targeting by small molecules. This

point can be further clarified by considering the known

modulators of protein interactions that we used to test the fidelity

of our mapping procedure. Although these examples involve

synthetic small molecules, they have been extensively character-

ized structurally to understand what makes their particular binding

sites amenable to targeting by small molecules [2]. Ignoring these

examples because of their synthetic source would discard useful

structural information.

Predicting structural mechanisms for the observed
effects of small molecules

The results also suggest possible structural mechanisms for the

observed effects of small molecules. We will describe three such

examples, each from a different ligand class: sanglifehrin A,

bepridil, and fusicoccin. Sanglifehrin A is an immuno-suppressant,

synthesized by an Actinomycetes species, that has been observed to

reduce HIV-1 virion production [28]. Our structural analysis

found that its binding site on cyclophilin A [29] overlapped

completely with the complex formed by cyclophilin A and the

HIV capsid [30] (Fig. 4A). This overlap suggests that sanglifehrin

A competes with the HIV protein for interaction with cyclophilin

A. This prediction is in agreement with biochemical evidence that

describes a reduction in virion production by sanglifehrin A

through a cyclophilin-dependent mechanism [28].

Fusicoccin is a toxin, synthesized by the fungus Fusicoccum

amygdali, that disrupts protein interactions mediated by plant 14-3-

3 proteins [31]. Here we observed that its ligand binding site is

nearly conserved in mammalian 14-3-3 proteins and overlaps with

the 14-3-3-f–Seretonin N-acetyltransferase and 14-3-3-f–R18

peptide interfaces (Table S6, Fig. 4B). This high level of binding

site similarity suggests that fusicoccin also modulates animal 14-3-3

interactions. In fact, this modulation has been observed experi-

mentally, with fusicoccin used as a tool to disrupt 14-3-3

Figure 3. Small molecule binding sites overlapped with four
broad classes of protein–protein interfaces. (A) Enzyme – protein
inhibitors: eg, 39-phosphothymidine (39–59)-pyrophosphate adenosine
39-phosphate (PDB 1U1B:PAX) overlapped with the ribonuclease
(orange, 2Q4G)–inhibitor (purple, 2Q4G) interface. (B) Enzyme–protein
substrate: eg, Kni-577 (cyan, 1MRW:K47) bound to the HIV-protease
dimer (grey backbone, 1MRW:A,B; orange, 1A8K:A,B) at the same
positions as its peptide substrate (purple, 1A8K:C). (C) Structural or
regulatory interfaces: eg, kabiramide-C (cyan, 1QZ5:KAB) bound to Actin
(grey backbone, 1QZ5:A; orange, 1H1V:A) at the same position as
Gelsolin (purple, 1H1V:G). (D) Several ligands complemented protein
interfaces: eg, bepridil (cyan, 1lxf:BEP) bound at the interface between
troponin C (orange, 1LXF:C) and troponin I (purple, 1LXF:I). Figure
produced by PyMOL (http://pymol.org).
doi:10.1371/journal.pcbi.1000668.g003

Figure 4. Overlapping binding sites suggest structural mechanisms for observed small molecule effects. (A) Sanglifehrin (cyan, PDB
1NMK:SFM) binds to cyclophilin A (grey, 1NMK; orange, 1AK4:A) at the same position that binds the HIV Gag capsid protein (purple, 1AK4:D). (B)
Fusicoccin (cyan, 1O9E:FSC) binds to a region of the plant 14-3-3 protein (grey, 1O9E) that is homologous to the 14-3-3-f (orange, 1A38:A) binding
site for phosphopeptides (purple, 1A38:P). (C) Bepridil (cyan and blue, 1LXF:BEP) binds to Troponin C (grey, 1LXF:C) at positions that are homologous
to the calmodulin (orange, 1K93:D) interface for anthrax edema factor (purple, 1K93:A). Troponin C aligns to both EF-hand motifs in calmodulin: The
binding site aligned with EF-motif 2 (cyan) exhibits greater overlap with the anthrax edema factor interface than EF-motif 1 (blue).
doi:10.1371/journal.pcbi.1000668.g004
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interactions involved in early left-right developmental patterning

in Xenopus [32].

Bepridil is an FDA-approved calcium channel blocker that was

until recently used to treat refractory angina. Recently it was found

to inhibit the cellular entry of two anthrax toxin components: the

edema and lethal factors [33]. Here we observed that the troponin

C binding site for bepridil [34] transfers with high sequence

identity to the calmodulin–anthrax edema factor interface [35].

The ASTRAL family alignment transferred the binding site to the

first calmodulin EF-hand that is not directly in contact with the

edema factor. In this alignment, the binding site overlap is

minimal (1 of 46 protein interface residues; Table S6, Fig. 4C) and

occurs at the periphery of the interaction. However, upon

visualization, it was found that the second EF-hand also aligns

well with troponin C, and in this alignment the bepridil binding

site directly overlaps with the edema factor interface (Fig. 4C).

This alignment suggests that bepridil may disrupt the calmodulin–

edema factor interaction by binding to calmodulin. This

hypothesis, based on structural data alone, is in agreement with

experimental findings that describe reduction in the lethality of

edema factor by bepridil [33].

Discussion

We presented a systematic analysis of protein structure families

that identified bi-functional positions that bind both small

molecules and proteins (Fig. 1, S1; Table S1, S2, S3). These

positions were found to be less evolutionary conserved, and exhibit

a different amino acid propensity, than mono-functional or other

solvent exposed residues (Fig. 1, S1; Table S4, S5). Families with

significantly more bi-functional positions than expected by chance

were functionally enriched in intracellular processes and depleted

in metabolism; families with fewer bi-functional positions were

functionally enriched in metabolism and depleted in regulation

(Table S4, Fig. S1D). Mapping ligands onto protein interactions

by homology transfer (Fig. 2, S2) identified known (Table 1; Fig. 3)

and predicted modulators of interactions (Table S6,S7), that fell

into four broad categories. We illustrated the utility of the results

by suggesting structural mechanisms for the observed effects of

three small molecules (Fig. 4). We will now discuss future

extensions to the method and its utility for modulating protein

interactions by small molecules.

Our results suggest that structural data might be harnessed in a

comparative fashion to characterize small molecules that target

protein-protein interactions. This approach is complementary to

recent computational studies that characterize known modulators

of protein interactions [36] and predict small molecule mimics of

interacting peptide motifs [37].

This preliminary analysis can be extended in several ways to

overcome limitations inherent to the current implementation.

First, the comparative basis of the method relies on the availability

of homologous ligand-bound structures. Although the structural

coverage of protein–ligand and protein–protein complexes

continues to increase, homologous ligand binding sites are not

available for the majority of protein interactions (Fig. 2, Table S3).

This coverage can be improved by transferring ligand binding sites

based solely on local structural similarity, rather than full-length

domain similarity, as was done here. Several tools have been

developed to identify local structure similarities and can be directly

applied to the mapping of ligand binding sites onto protein

interfaces [38–40].

Second, comparing the bi-functional positions to hotspot

residues, that disproportionately contribute to the free energy of

protein interactions, will illuminate their biophysical role [9].

Previous analysis found that hotspots are enriched in tryptophan,

arginine, and tyrosine [9]. The bi-functional positions we

characterize here also exhibit a strong enrichment of tyrosine

and tryptophan, although arginine abundance is similar to the

background of all solvent exposed positions (Fig. 1B). The bi-

functional positions also exhibited significantly lower conservation

than mono-functional or exposed residues (Fig. 1C). This is in

contrast to hotspot residues where previous analysis has shown

equivalent or slightly higher conservation than the rest of the

protein surface [41]. In addition to collections of alanine scanning

mutagenesis results [42], several computational techniques have

been developed to predict hotspots [41,43,44]. Direct comparison

of these datasets to bi-functional positions will help characterize

their biophysical role.

Finally, although we have focused on ligands that may directly

modulate, by complementing or sterically competing with,

protein–protein interactions, another relevant class of interactions

is allosteric regulation. Allosteric control refers to signal propaga-

tion between two distal binding sites through a network of residues

that traverses a protein [45]. A portion of the ligand binding sites

we found to directly overlap protein interactions may reflect

allosteric sites, binding at which regulates a distal site. For

example, a ligand designed to bind to the homodimeric interface

of caspase-1 was found to exert allosteric control over the distal

catalytic site [46]. A second potential source of allosteric

interactions in our analysis is the set of 113 families that exhibited

significantly less overlap than expected between ligand and protein

binding sites. Further analysis should illuminate whether this

observed separation between ligand and protein binding sites

reflects the distal action of allosteric signaling.

Designing small molecule modulators of protein–protein
interactions

We observed that several small molecule compounds, originally

designed for traditional medicinal chemistry targets such as

enzyme active sites, in fact target protein interfaces. These include

several FDA-approved drugs, such as bepridil that binds at the

interface between Troponins C and I, and HIV protease inhibitors

that bind at the dimer interface. Although these examples involve

fairly small protein interfaces, this observation suggests that

protein–protein interactions are not completely novel targets for

medicinal chemistry, and that the chemical, biophysical, and

computational experience that has been developed in traditional

rational drug design may also be applicable to interaction targets.

As protein interaction networks are resolved with greater

accuracy and coverage [47], small molecules become important

perturbation tools to examine their functional significance. In

addition, a therapeutic application that is becoming increasingly

relevant is the targeting of host–pathogen protein interactions,

which have been the subject of recent investigations using high-

throughput experimental [48,49] and computational [50,51]

methods. These interactions may be a valuable alternative to

traditional targets for the increasingly difficult challenge of

antibiotic development [52,53]. We expect our results, available

in PIBASE (http://pibase.janelia.org), to serve as a structural

resource to aid in the rational design of small molecule modulators

of protein–protein interactions.

Materials and Methods

Obtaining protein and ligand binding sites
Residues in domain–domain and domain–peptide binding sites

were obtained from PIBASE v200808 [17] based on domain

boundaries and classifications from SCOP v1.73 [18]. Peptides

Overlapping Ligand and Protein Binding Sites
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were defined as those chains at least 5 amino acid residues long

that were not classified by SCOP or were classified in the ‘‘peptide

or fragment’’ SCOP class. Binding sites were defined as residues

containing at least one non-hydrogen atom within 5 Å of the

interacting domain or peptide. Domain–domain interfaces were

filtered using a threshold of at least 500 inter-atomic contacts at a

distance threshold of 5Å (*500 Å2 buried surface area), to remove

small interfaces that are often crystallographic artifacts. A

minimum domain participation of 5 residues was also imposed

on domain–peptide interactions to remove small interfaces. This

procedure identified 24,717 inter-molecular domain–domain,

13,228 intra-molecular domain–domain, and 6,911 domain–

peptide interactions involving 2540, 1485, and 534 domain

families, respectively.

Ligand binding sites were obtained from LIGBASE [19],

defined as residues with at least one non-hydrogen atom within 5Å

of the ligand. The analysis was restricted to PDB HETERO

groups with molecular weights between 250–1000 Daltons, as this

range removes crystallographic buffers and small ions present in

many PDB entries, and also encompasses most orally administered

drugs. MDL and CIF formatted descriptions of the ligand

structures were obtained from the MSD Ligand Chemistry

dictionary [54]. This procedure identified 39,085 binding sites

on domains from 1,131 families.

Removing redundant binding sites
Redundant binding sites were identified by single-linkage

clustering of binding sites that shared more than 90% of their

residues as measured by: (alignment positions shared by the two

binding sites)/(positions in either binding site). This reduced the

number of ligand binding sites from 39,085 to 35,168; peptide

binding sites from 4,937 to 2,332; inter-molecular domain

interfaces from 40,791 to 12,015, and intra-molecular domain

interfaces from 17,863 to 4,290. The redundancy removal was

performed with respect to the alignment positions, rather than

amino acid sequence identity, because the binding site projection

procedure relied on the alignment positions. This redundancy

removal procedure aimed to reduce the effect of PDB bias in

structural coverage of proteins, protein complexes, and protein-

ligand complexes.

Computing alignment position properties
The propensity of residue types in each class of position (ligand-

only binding, protein-only binding, or bi-functional) was computed

relative to all solvent exposed positions by counting the frequency

of the 20 standard amino acid residue types:

propensity(aminoacidi)~
ntype(i)

ntype

=
nexposed (i)

nexposed

ð3Þ

Residue types that occur more frequently at a particular binding

site type than in all solvent exposed positions receive a propensity

score of greater than 1, while less frequently occurring types

receive a score of less than 1. The statistical significance of the

propensity values was estimated by a bootstrap resampling

procedure to compute 95% confidence intervals, implemented in

R (http://R-project.org). Propensity values were considered

significant (a~0:05) if the corresponding 95% confidence interval

did not include the value of 1 [23].

The conservation of each alignment position was quantified

using two scores. The first was simply the number of residue types

that occurred at the position. The second was a Shannon entropy-

like score that captured how non-uniform the distribution of

residue type frequencies was at the position.

conservation(position)~1{
X20

i~1

naa(i)

nall

log20

naa(i)

nall

ð4Þ

Alignment positions that contain only one kind of amino acid

residue receive a conservation score of 1, while those with a

uniform distribution of residue types receive a score of 0. The

distributions of conservation scores for each kind of alignment

position (bi-functional, ligand-only, protein-only, or all exposed

residues) were compared using the Kolmogorov-Smirnov and

Mann-Whitney tests, as implemented in R (http://R-project.org).

Computing function propensities
Each family was assigned one of seven broad functions by

SUPERFAMILY [22]: General, Information, Metabolism, Not

Annotated, Other, Extracellular processes or Intracellular process-

es. The function propensities of families with significantly greater

or fewer bi-functional positions than expected by chance were

computed relative to the frequency of functions in all families.

propensity(set,funci)~
nset(funci)

nset

=
nall(funci)

nall

ð5Þ

Functions that occur more frequently in a particular set of

families than in all families, receive a score of greater than 1. The

significance of the function propensity values was estimated by a

non-parametric bootstrap resampling procedure to compute 95%

confidence intervals, implemented in R (http://R-project.org).

Propensity values were considered significant (a~0:05) if the

corresponding 95% confidence interval did not include the value

of 1.

Supporting Information

Table S1 Summary of protein and small molecule binding sites

in families of protein structures. The numbers of protein families

with at least 5 bi-functional positions are shown for each kind of

protein interface. Bi-functional positions refer to alignment

positions that bind both small molecules (250–1000 Da) and

proteins.

Found at: doi:10.1371/journal.pcbi.1000668.s001 (0.03 MB PDF)

Table S2 The ten families with the most significantly (p,0.01)

higher or lower number of bi-functional positions than expected

by chance. Bi-functional positions refer to alignment positions that

bind both small molecules (250–1000 Da) and proteins. The

significance of the overlap (Text Eqn 1) is assessed by the Fisher

exact test (http://r-project.org).

Found at: doi:10.1371/journal.pcbi.1000668.s002 (0.04 MB PDF)

Table S3 Summary of protein interactions and their overlap

with aligned ligand binding sites from homologous structures. The

numbers of protein interfaces with at least 20% cumulative or

maximal overlap with homologous ligand binding sites are shown

for each kind of protein interface. The overlap score refers to the

fraction of interface residues aligned to ligand binding site residues

(Text Eqn 2).

Found at: doi:10.1371/journal.pcbi.1000668.s003 (0.03 MB PDF)

Table S4 The function propensities of families with significantly

(p,0.01) higher or lower number of bi-functional positions than
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expected by chance. Bootstrap resampling was performed to

compute 95% confidence intervals of the function propensities

(Text Eqn 5). Propensities are considered significant (asterisk) at

the alpha = 0.05 level if their confidence intervals do not include

the value 1.

Found at: doi:10.1371/journal.pcbi.1000668.s004 (0.03 MB PDF)

Table S5 The residue type propensity at alignment positions

that bind both ligands and proteins, bind ligands, or bind proteins

in comparison to all solvent-exposed residues. Bootstrap resam-

pling was performed to compute 95% confidence intervals (CI) of

the residue type propensities (Text Eqn 3). Propensities are

considered significant (asterisk) at the alpha = 0.05 level if their

confidence intervals do not include the value 1.

Found at: doi:10.1371/journal.pcbi.1000668.s005 (0.03 MB PDF)

Table S6 Examples of ligand binding sites that align to

protein–protein interfaces with a high sequence similarity. The

overlap (Text Eqn 2) between each ligand and protein interface is

shown along with the sequence identity of the ligand binding site

and the full-length domain sequence. (d) refers to inter-molecular

domain–domain interactions, (p) refers to domain–peptide

interactions, and (*) indicates ligands that were present at domain

interfaces.

Found at: doi:10.1371/journal.pcbi.1000668.s006 (0.04 MB PDF)

Table S7 Examples of ligand binding sites that align to intra-

molecular domain–domain interfaces. The overlap (Text Eqn 2)

between each ligand and domain interface is shown along with the

sequence identity of the ligand binding site and the full-length

domain sequence.

Found at: doi:10.1371/journal.pcbi.1000668.s007 (0.03 MB PDF)

Figure S1 Protocol for quantifying binding site overlap,

functional, and evolutionary properties. (A) Ligand and protein

binding sites obtained from LIGBASE and PIBASE, respectively,

were mapped onto domain family alignments from the SCOP

ASTRAL compendium. (B) The square labeled A is a cartoon

representation of a protein domain family upon which ligand

(diamonds) and protein (grey ellipses) have been mapped. These

binding sites are mapped onto the ASTRAL alignment of the

family and the cumulative overlap of ligand and protein binding

positions is quantified. (C) The ligand binding sites are also

mapped directly onto individual protein interfaces, in this case the

interaction between domains A and B, and the overlap quantified.

(D) The distribution of function propensities (Text Eqn 5) for

significantly overlapping and non-overlapping families, as anno-

tated by SUPERFAMILY. Function propensities were considered

significant (asterisk) at the alpha = 0.05 level if the 95% confidence

interval estimated by bootstrap resampling did not include the

value 1 (Table S4). (E) Residue conservation of bi-functional

alignment positions. The number of amino acid types observed at

alignment positions that are involved in binding only ligands

(dashed; n = 46,610), only proteins (double dashed; n = 491,723),

or both proteins and ligands (black;n = 102,436). The distribution

for all solvent exposed residues (grey; n = 1,147,882) is shown for

comparison.

Found at: doi:10.1371/journal.pcbi.1000668.s008 (0.34 MB

TIF)

Figure S2 Maximum and cumulative ligand-protein binding site

overlap observed at protein–protein interactions as a function of

sequence identity. The maximum and cumulative observed ligand

binding site overlap (y-axis) for (A,G) inter-molecular, (B,H) intra-

molecular domain–domain, and (C,I) domain–peptide interac-

tions, as a function of the ligand binding site sequence identity (x-

axis). The densities in these plots are represented by colors that

range from yellow (no density) to blue (maximum density). The

overlap profiles are shown at minimum ligand binding site identity

thresholds of (D,J) 30%, (E,K) 50%, and (F,L) 90% for inter-

molecular (black), intra-molecular (orange) domain–domain, and

domain–peptide (cyan) interactions. Tick marks, arranged as ‘rug

plots’, represent interfaces of each type that exhibit a particular

level of interface coverage. The overlap score refers to the fraction

of interface residues aligned to ligand binding site residues (Text

Eqn 2).

Found at: doi:10.1371/journal.pcbi.1000668.s009 (1.87 MB TIF)
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