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Abstract

Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model
these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual
molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we
found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we
modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that
secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration
gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes
of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn
will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells.
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Introduction

One hurdle to the computational modeling of cellular systems is

the lack of adequate tools. If one assumes that molecules inside

cells are well-mixed, and that they behave deterministically, then

one can model the chemical reactions that cells use to operate with

differential equations (recently reviewed by Alves and coworkers

[1]). However, these assumptions are frequently inadequate.

Firstly, most cellular processes depend at least to some extent on

intracellular spatial organization. For example, cell signaling

systems transmit signals across significant distances within

subcellular compartments and across intracellular membranes,

such as the nuclear envelope. Also, cell division systems segregate

one cell into two and regulate the partition of molecular

components. Secondly, many cellular outputs exhibit substantial

random variation [2], which must arise from random differences

in molecular collisions. Examples range from the random

switching of swimming Escherichia coli bacteria between so-called

running and tumbling states [3] to cell-to-cell variation in the

operation of cell signaling systems [4,5]. More generally, stochastic

behavior is likely to affect the outcomes of essentially all cellular

processes. Representation of this complexity requires algorithms

and programs that model cellular processes with spatial accuracy

[6], and that model the chemical reactions by which they operate

with stochastic detail [7].

Computational biologists have pursued four main approaches to

simulating biochemical systems with spatial and stochastic detail.

These differ in how they represent space, time, and molecules

(Table 1), which in turn affects the classes of biological systems that

they can simulate appropriately. (i) The spatial Gillespie method [8] is

based on Gillespie’s stochastic simulation algorithms [9]. It divides

the simulation volume into a coarse lattice of subvolumes, each of

which contains many molecules of interest. This method can be

computationally efficient because it tracks the total number of

individual classes of molecules per subvolume, rather than

individual molecules [10]. However, the lattice structure it uses

to divide space into subvolumes does not work well for realistic

membrane shapes, which require special treatment [11]. (ii) The

microscopic lattice method subdivides space into a much finer lattice, so

that each volume can contain zero or one molecule. In this

method, molecules diffuse by hopping between sites and can react

with molecules in neighboring sites. It naturally lends itself to

studies of oligomerization and complex formation [12], and of the

effects of macromolecular crowding on reactions [13]. It has not

found wide use for studying cell-sized processes due to the facts

that it has high computational demands and specific lattice

structures affect simulated reaction rates differently [14], although

recent techniques may circumvent these challenges [15]. (iii)

Particle-based methods, the primary focus of this article, are the most

widely used spatial stochastic methods [7]. These represent

individual molecules with point-like particles that diffuse in

continuous space over fixed time steps; molecules can react when

they collide. The fact that these models use continuous space

makes realistic membrane geometries relatively easy to repre-

sent [16], avoids lattice-based artifacts, and offers high spatial

resolution. The need to track individual molecules, however,
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imposes high computational demands, so particle-based methods

are about a factor of two slower than spatial Gillespie methods

[10]. Finally, (iv) Green’s function reaction dynamics (GFRD) methods [17]

enable especially accurate particle-based simulation. GFRD

methods step the simulation from the exact time of one individual

reaction to the exact time of the next. This makes these methods

ideal for systems that can have long delays between individual

reactions, but very computationally intensive for most cellular

processes [10].

The dominant particle based simulators are ChemCell [18],

MCell [19,20], and Smoldyn [21,22] (see also Table 2). These

programs have many common features, but differ in other features

and in the quantitative accuracy of their simulations. Of the three,

ChemCell has the fewest features, but is particularly easy to use

and is the only simulator that supports both spatial and non-spatial

simulations. MCell, the oldest program [23], has been used the

most, produces the highest quality graphics [16], and has a

number of features that make it particularly well suited to

simulating cellular processes involved in synaptic transmission [19]

(for example, using MCell, it is easy to release agonist and

antagonist ligands onto a cell using pulse trains). Smoldyn is a

relative newcomer, but yields the most accurate results and runs

the fastest (see Text S1). Smoldyn also has a number of attributes,

listed in Table 2 and below, which make it well suited to modeling

a wide range of cellular processes.

This article focuses on the latest version of Smoldyn, Smoldyn

2.1. Smoldyn 1.0 embodied several algorithms that were based on

Smoluchowski reaction dynamics [21]. It and subsequent versions

were used to investigate a spatial version of the classic Lotka-

Volterra chemical oscillator [24], diffusion on hair cell membranes

[25], protein sequestration in dendritic spines [26], diffusion in

obstructed spaces, and intracellular signaling in E. coli chemotaxis

[27–29] (Figure 1). Smoldyn 2.1 preserves the original focuses on

accuracy and efficiency but offers significantly improved function-

ality. In particular, it can represent realistic membrane geometries,

simulate diffusion of membrane-bound molecules, and accurately

simulate a wide variety of molecule-membrane interactions [30]. To

make it as general a simulator as possible, Smoldyn 2.1 also supports

spatial compartments, rule-based reaction network generation

[31,32], molecules with excluded volume, conformational spread

interactions, and over fifty run-time commands for system

manipulation and observation. We anticipate that Smoldyn will

be particularly useful for (i) investigating cellular systems, such as

signaling, division, and metabolic systems, (ii) studying basic

biophysical phenomena, such as the effects of macromolecular

crowding on molecular diffusion, and (iii) helping to quantify

microscopy data [33], such as diffusion rates investigated by FRAP

(fluorescence recovery after photobleaching, which is based on the

time it takes fresh fluorophores to diffuse into the bleached volume).

Results

Design philosophy
The algorithms that Smoldyn uses, and the program’s name,

derive from a biophysical description of space and chemical

Table 1. Biochemical simulation methods that account for spatial and stochastic detail.

Simulation method Simulation programs Space representation Time treatment Molecule representation

Spatial Gillespie MesoRD [68] coarse lattice event-based populations

SmartCell [69]

GMP [70] a

Fine lattice GridCell [71] fine lattice fixed steps individuals

Spatiocyte [15]

Particle-based ChemCell [72] continuous fixed steps individuals

MCell [20] b

Cell++ [73] c c

Smoldyn (this work)

GFRD E-Celld continuous event-based individuals

aGMP is event-based for reactions and uses fixed time steps for diffusion.
bMCell uses an event-based scheduling system in which short steps are used for fast processes and long steps for slow processes.
cCell++ represents small molecules, such as metabolites, as concentrations on a coarse lattice and large molecules, such as enzymes, as individual particles in continuous
space.

dGFRD is in process of being added to E-Cell.
doi:10.1371/journal.pcbi.1000705.t001

Author Summary

We developed a general-purpose biochemical simulation
program, called Smoldyn. It represents proteins and other
molecules of interest with point-like particles that diffuse,
interact with surfaces, and react, all in continuous space.
This high level of detail allows users to investigate spatial
organization within cells and natural stochastic variability.
Although similar to the MCell and ChemCell programs,
Smoldyn is more accurate and runs faster. Smoldyn also
supports many unique features, such as commands that a
‘‘virtual experimenter’’ can execute during simulations and
automatic reaction network expansion for simulating
protein complexes. We illustrate Smoldyn’s capabilities
with a model of signaling between yeast cells of opposite
mating type. It investigates the role of the secreted
protease Bar1, which inactivates mating pheromone.
Intuitively, it might seem that inactivating most of the
pheromone would make a cell less able to detect the local
pheromone concentration gradient. In contrast, we found
that Bar1 secretion improves pheromone gradient detect-
ability: the local gradient is sharpened because phero-
mone is progressively inactivated as it diffuses through a
cloud of Bar1. This result helps interpret experiments that
showed that Bar1 secretion helped cells distinguish
between potential mates, and suggests that Bar1 helps
yeast cells identify the fittest mating partners.

Detailed Simulations of Cell Biology with Smoldyn
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reactions that von Smoluchowski defined in 1917 [34]. In his

description, each molecule of interest moves by mathematically

ideal Brownian motion [35], which implicitly arises from its

collisions with solvent molecules and other non-reacting molecules.

Bimolecular chemical reactions occur when two reactants diffuse

to within a distance called the encounter radius [36], or binding

radius [21]. With the Smoldyn algorithms, all simulated dynamics

approach those of the Smoluchowski model (within computer

round-off error) as the simulation time step is reduced towards

zero.

Workflow
Smoldyn reads a configuration file that describes the system or

cellular process under study. This file lists the system dimension-

ality, initial numbers of molecules, membrane locations, chemical

reactions, and the rules for molecule-surface interactions. It also

contains directives for a virtual experimenter, a software agent

under the direction of the human researcher, which can measure

and manipulate the system during its simulation. For example, at

any given point during the simulation run, the virtual exper-

imenter can count the number of particular molecules or add a

new surface to represent intrusion of a membrane vesicle into the

simulated space. After calculating simulation parameters, Smoldyn

performs the simulation with fixed-length time steps, typically set

by the researcher to be shorter than characteristic reaction or

diffusion timescales (0.1 ms time steps often work well [27–29], but

see [22] for a more thorough discussion). At each time step,

Smoldyn diffuses simulated molecules, performs chemical reac-

tions, processes molecule-membrane interactions, and outputs

quantitative data to one or more text files. Smoldyn can display

the simulated system to a graphics window as it is computed, or it

can work in a text-only mode for more efficient operation.

Molecules and surfaces
Smoldyn represents molecules and surfaces. Molecules can be in

free solution, such as cytoplasmic proteins, or bound to surfaces,

such as ion channels or peripheral membrane proteins. Surface-

bound molecules can bind to the front or back of the surface, or

can be transmembrane with an ‘‘up’’ or ‘‘down’’ orientation. The

latter two states can differentiate the two orientations of

transmembrane proteins, such as whether the ligand-binding

portion of a receptor faces the intra- or extracellular medium.

Surfaces, which might represent biological membranes or the

sides of a reaction vessel, are modeled as being infinitely thin and

locally smooth. Each surface is composed of panels. Panels can

be rectangular, triangular, spherical, hemispherical, cylindrical, or

Table 2. Comparison of current particle-based simulators.

Feature ChemCell MCell3 Smoldyn 2.1

Simulation methods ODE, Gillespie, particle particle particle

Time steps fixed adaptive fixed

System dimensionality 3 3 1, 2, 3

System boundaries reflective, periodic reflective, absorbing, transparent reflective, absorbing, periodic,
transparent

Geometry primitives triangles, spheres, boxes,
planes, cylinders

triangles triangles, rectangles, spheres, cylinders,
hemispheres, disks

Surface molecule states transmembrane integral states: top-front, top-back integral, peripheral states: up, down,
front, back

Accuracy of diffusion volume: exact volume: exact volume: exact

surface: approx surface: approx. surface: approx.

Accuracy of reactions in solution order 0: none order 0: none order 0: exact

order 1: exact order 1: exact order 1: exact

order 2: approx. order 2: approx. order 2: exact

Accuracy of reactions on surfaces order 0: none order 0: none order 0: exact

order 1: exact order 1: exact order 1: exact

order 2: not quantitative order 2: approx. order 2: not quantitative

Dissociation reaction product
placement

at reactants, not quantitative stochastic, for microscopic reversibility fixed separation, for accurate reaction
rates

User can fix molecular concentrations no near surfaces on surfaces, in compartments

Location-specific reactions no surfaces surfaces, compartments

Surface interactions adsorb: not quantitative adsorb: not quantitative adsorb: exact

desorb: exact desorb: exact desorb: exact

permeable: not quantitative permeable: not quantitative permeable: exact

Parallel processing MPI MPI POSIX threads

Graphics post-run with pizza.py post-run with DReAMM during simulation

Source code open, GPL license closed open, GPL license

Benchmark run time 99 s 120 s 47 s

Computer systems Mac, Linux Mac, Linux, Windows Mac, Linux, Windows

Please see Text S1 for details and other comparisons.
doi:10.1371/journal.pcbi.1000705.t002

Detailed Simulations of Cell Biology with Smoldyn
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disk-shaped. Of course, one only needs triangles to model

arbitrarily complex surfaces [37] and for that reason triangle-

based meshes are widely used for experimentally-derived mem-

brane geometries (reviewed by O’Rourke [38]). However, the

other panel shape options can simplify membrane definitions and

improve computational efficiency. For example, Smoldyn can

represent a nuclear membrane as a sphere rather than as an

icosahedron. Two utility programs, distributed with Smoldyn,

simplify surface definitions: one (wrl2smol) converts triangle data

from the Virtual Reality Modeling Language format, which is

widely used for microscopy, to Smoldyn format, and the other

(SmolCrowd) generates fields of random non-overlapping circles

or spheres for investigating macromolecular crowding.

Algorithms
We summarize the core algorithms here and in Figure 2. For

more detail, see [21,22,30] or the Smoldyn user’s manual (supplied

with the program).

(i ) To simulate diffusion, Smoldyn moves each molecule at each

time step using Gaussian-distributed random displacements along

each x, y, and z coordinate [21]. If the molecule was surface-

bound, Smoldyn then deposits it back upon the surface along the

local normal vector (an exact method for planar surfaces because

orthogonal projections of 3-dimensional Gaussian probability

densities are 2-dimensional Gaussian probability densities; for this

to be accurate for curved surfaces, the radius of curvature needs to

be much larger than the length of the average diffusive step).

Smoldyn can also simulate molecular drift, for example arising

from a flow of solvent molecules, and anisotropic diffusion.

(ii ) To simulate interactions between solution-phase molecules

and membranes, Smoldyn simulates impermeable membranes

with ballistic reflections [21], partially permeable and adsorbing

membranes [39] using interaction probabilities that are exact at

steady-state and very accurate away from steady-state [30], and

periodic (or toroidal) boundaries with so-called jump surfaces, with

which molecules that diffuse out of one side of the system

immediately diffuse into the opposite side. These jump surfaces

can also be used to add holes to otherwise impermeable surfaces.

In addition, ‘‘unbounded-emitter’’ surfaces cause molecular

concentrations to equal those that would be observed if the

system were unbounded, by absorbing molecules with probabilities

based on the emitter positions [30].

(iii ) To handle transitions from surface-bound states, Smoldyn

assigns these reactions a probability computed as described below

for first order reactions. Smoldyn then displaces desorbed

molecules away from the surface using probability densities that

account for diffusion that occurs between the time of desorption

and the end of the time step in which desorption occurred (the

density is an error function if desorption is reversible and combines

a Gaussian and an error function if desorption is irreversible [30]).

(iv ) To handle reaction products without the respective

reactants, Smoldyn simulates ‘‘zeroth’’ order chemical reactions.

This allows Smoldyn to represent, for example, protein expression,

as the de novo appearance of protein in the reaction volume.

Smoldyn adds a Poisson-distributed random number of product

molecules to random locations in the simulation volume, or within

a smaller compartment (such as a cell nucleus), at each time step

[21].

(v ) To handle first order reactions, such as protein conforma-

tional changes, Smoldyn performs each reaction with probability

1–exp(–kDt), where k is the reaction rate constant and Dt is the

time step, at each time step. Smoldyn uses an expanded version of

this equation if a single reactant can undergo any of several

reactions [19,21].

(vi ) Smoldyn performs second order reactions, which have the

form A + B R C, when two reactants diffuse closer together than

their ‘‘binding radius.’’ Smoldyn computes these distances from

reactant diffusion coefficients, reaction rate constants, and the

simulation time step [21], with results that are typically similar to

the sums of the physical radii of the reactants (e.g. reactants with

10 mm2s21 diffusion coefficients and a 106 M21s21 reaction rate

constant have a binding radius of 3.4 nm when a 0.1 ms time step

is used). Tournier et al. [40] showed that this method is

indistinguishable from a more accurate one in which the reaction

probability varies as a function of the inter-molecular separation.

Although Erban and Chapman recently extended our method to

include a fixed reaction probability, so that binding radii would be

larger [41], Smoldyn does not support their extension because it is

Figure 1. Example Smoldyn models. (A) Model of Escherichia coli
chemotaxis, adapted from work by Lipkow and Odde [29]. Receptors
are clustered at the left cell pole, unphosphorylated CheY messenger
proteins are shown in black and phosphorylated CheY are in red. This
simulation showed that the combination of a spatially segregated
kinase-phosphatase system and phosphorylation-dependent diffusion
coefficients can create stable protein gradients. (B) Simulated track of a
diffusing lipid molecule, which is on a membrane that is divided into
‘‘corrals’’ by underlying actin filaments, shown with black lines. The
track is shown in red, then green, blue, and yellow to illustrate that
lipids tend to fully explore individual corrals before hopping to adjacent
corrals. Actin data are from Morone et al. [74]. (C) Model of a dendritic
spine, showing GFP-tagged calcium calmodulin dependent kinase II
proteins (CaMKII) in green and molecules of the postsynaptic density at
the spine tip in yellow, adapted from work by Khan et al. [26]. The
authors used these simulations to analyze fluorescence microscopy
data and to investigate CaMKII sequestration upon synaptic excitation.
doi:10.1371/journal.pcbi.1000705.g001

Detailed Simulations of Cell Biology with Smoldyn
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less computationally efficient and it does not account for reversible

reactions. Neither Smoldyn nor Smoluchowski theory directly

simulate reactions with orders that are greater than two or non-

integer, but rather decompose these into individual bimolecular

reactions.

(vii ) Smoldyn typically deposits reaction products at the reaction

location. However, it places them elsewhere in three important

cases. (a) If two reaction products can react with each other,

Smoldyn separates them by a distance called the unbinding radius

[21] (typically similar to the binding radius for these molecules),

which produces accurate reaction rates by reducing the probability

of product recombination [42]. (b) If the reaction simulates

conformational spread, in which allosteric changes in protein activity

are transmitted by direct contact between neighboring proteins

[43], then Smoldyn places the products at the same locations

previously occupied by the reactants. For conformational spread,

the typical reaction notation is A + B R A’ + B, with the

interpretation that B converts A to A’ through direct contact.

Smoldyn simulates conformational spread reactions with first

order reaction rates if the reactants are within a pre-defined

interaction distance. (c) If the reaction is used to give molecules

excluded volume, then Smoldyn separates the products by a

distance that is slightly larger than the binding radius and places

them on the line that connected the reactants. While this method is

not as accurate as ballistic reflection methods, it is still useful; for

example, it can assure that molecules cannot pass each other in

pores and it can be used to separate molecules by realistic

distances.

(viii ) So that the user does not need to enumerate the

‘‘combinatorial explosion’’ [44] of individual species and reactions

that result when proteins form multimeric complexes or are post-

translationally modified (e.g. phosphorylation), Smoldyn generates

species and reactions automatically from lists of interaction rules.

These rules include molecule binding sites, modification sites, and

allosteric interactions. Smoldyn performs this reaction network

expansion as new species and reactions arise in a simulation [45]

using the libmoleculizer software module [32] (derived from

Moleculizer [31]).

Taken together, this set of algorithms allows Smoldyn to

represent most biochemical processes that take place among

proteins and small molecules, in 1, 2, or 3 dimensional space and

on surfaces and membranes. For example, this capability will bring

most cell signaling systems within reach of particle-based

modeling. Currently absent, however, from Smoldyn and nearly

all comparable simulators are algorithms that specifically address

moving or distorting membranes, and the dynamics of biopoly-

mers (including microtubules, actin filaments, and most conspic-

uously, DNA).

Figure 2. Algorithms used in Smoldyn. The bottom-right panel is a key. The front and back sides of surfaces are noted with ‘F’ and ‘B’,
respectively. (A) Diffusion for solution and surface-bound molecules; note that there is no excluded volume. (B) From left to right, interactions
between molecules and surfaces are: reflection, absorption, transmission, adsorption, desorption, and surface-state conversion. (C) Zeroth order
chemical reaction. (D) First order chemical reaction. (E) In these sequential association and dissociation reactions, ab is the binding radius and au is the
unbinding radius. The last frame shows two possible scenarios, which are the geminate recombination of the dissociation products (dashed arrows)
or diffusion of these products away from each other (solid arrows). (F) Conformational spread reaction with interaction distance rc.
doi:10.1371/journal.pcbi.1000705.g002

Detailed Simulations of Cell Biology with Smoldyn
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Accuracy and efficiency
Figure 3 shows that simulation data for several of the core

Smoldyn algorithms agree well with analytical theory for wide

ranges of rate constants, and that this holds for both cumulative

results and fluctuations. Using Pearson’s x2 test, we found no

statistically significant differences between data and theory (see

Text S2). These agreements, along with additional tests presented

in Text S1, the Smoldyn user’s manual and theoretical work in the

algorithm derivations [21,30], show that individual Smoldyn

algorithms are quite accurate both at and away from steady state.

In addition, Smoldyn simulations that combine multiple algo-

rithms become exact as time steps are reduced towards zero. On

the other hand, Smoldyn simulations with multiple processes and

finite time steps are necessarily approximate, in part because

individual simulated molecules can only take part in a single

reaction or adsorption events during single time steps.

Smoldyn simulation run times scale linearly with the number of

simulated molecules (Text S3). However, the number of chemical

reactions minimally affects Smoldyn run times because the

Smoldyn algorithms iterate over molecules rather than possible

reactions. In contrast, spatial Gillespie methods scale linearly with

the number of reactions [10], or logarithmically if they use the

Gibson-Bruck algorithm [46].

We compared the run times for ChemCell, MCell, and

Smoldyn using identical models of a Michaelis-Menten reaction.

These models comprised 10,000 molecules (10% enzyme, 90%

substrate initially) and ran for 10 s of simulated time in 1 ms time

steps. As Table 2 shows, Smoldyn took 47 s to run this test (on a

MacBook Pro laptop with a 2.33 GHz Intel Core 2 Duo processor

and OS 10.4.11, and with single-threaded operation), which was

more than a factor of 2 faster than either ChemCell or MCell. All

simulated results agreed well with mass action theory (Text S1). To

Figure 3. Tests of Smoldyn accuracy. Each panel presents simulation results with points and theoretical results for the same parameters with solid
lines. Where present, different shape points represent simulation data for different rates. Inset panels present fluctuations of the same simulation data
shown in the main panels, with parameters that are reduced so as to highlight the fluctuations and provide meaningful comparisons between data sets.
Here, solid lines represent theoretical expectation values and dashed lines are drawn one standard deviation, analytically calculated from theory, above
and below the expectation values. Configuration files and analytic calculations are included with Text S2. (A) Mean square displacements of three
populations of freely diffusing molecules that have the listed diffusion coefficients. (B) First order decay reactions (A R Ø) of three populations of
molecules that have the listed reaction rate constants. The reduced reaction rate is the reaction rate per molecule per unit of reduced time. (C)
Bimolecular association and decay reaction between A and B molecules (A + B R Ø), using the same parameters that are presented in Figure 7 of
Andrews and Bray [21]. The reduced reaction rate is the reaction rate per A molecule. (D) Adsorption of molecules that are uniformly distributed initially
to planar surfaces with the listed adsorption coefficients. The inset panel shows fluctuations in the k = 5 mm s21 simulation data.
doi:10.1371/journal.pcbi.1000705.g003

Detailed Simulations of Cell Biology with Smoldyn
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give a sense of scale, there are 11,200 molecules in Figure 1A [29],

about 40,000 protein molecules that regulate chemotaxis in a

single E. coli [47], and about 40,000 proteins in the core

pheromone response system in a single Saccharomyces cerevisiae. This

comparison is likely to be representative of typical simulations

because bimolecular reaction simulation comprises most of the run

time for Smoldyn, and likely for the other simulators as well.

Smoldyn also supports multiple program threads although these

do not provide substantial speed improvements at present.

Example: the effect of Bar1 on yeast signaling
We used Smoldyn’s capabilities to explore a simple model.

When haploid Saccharomyces cerevisiae of opposite mating types

(MATa and MATa) are in proximity, they can mate and form a

diploid [48]. MATa cells detect a pheromone (a-factor), secreted

by MATa cells, and use the concentration and gradient of the

pheromone to grow toward and discriminate among potential

MATa partners [49,50]. Exposure to pheromone also increases the

rate at which MATa cells secrete a pheromone-degrading

protease, Bar1 [51,52]. Barkai et al. showed that a uniform

concentration of Bar1 would attenuate a-factor signals coming

from distant MATa cells more than from close cells, thus helping

MATa cells locate the closest potential mating partners [53].

However, this result does not apply to low densities of MATa cells.

Here, the Bar1 concentration should be highest near MATa cells,

both because Bar1 binds to cell walls [54] and because Bar1

dissipates as it diffuses away. This is precisely the experimental

setup in partner discrimination assays, such as that shown in

Figure 4A. In these assays, MATa cells are surrounded by MATa
cells that secrete different amounts of a-factor. Jackson and

Hartwell found that MATa cells usually choose the strongest

pheromone emitter, and make this choice most accurately when

the MATa cells express Bar1 [50,55]. We modeled this experiment

with Smoldyn.

Figure 4A shows a snapshot of the Smoldyn simulation. There are

two kinds of MATa cells: one cell secretes a normal level of a-factor

(the ‘‘target’’ cell) and other cells secrete 5% of the normal a-factor

level due to mutations in mfa1 MFa2 [50]. These cells surround a

central MATa cell. Onto the surface of the MATa cell we

introduced 6622 stationary Ste2 receptor molecules [56] which

bound a-factor according to experimentally measured rates [57]. In

some simulations, the MATa cell secreted Bar1. We chose the Bar1

secretion rate, and its catalytic proteolysis reaction rate, so that Bar1

would increase the receptor occupancy EC50 by about a factor of 5

(Figure 4B), which is a conservative estimate for the experimental

shift [57]. The simulations shown here did not permit Bar1 to bind

to cell membranes for simplicity, but agree well with others (not

shown) that permitted binding. Finally, we estimated diffusion

coefficients with the Stokes-Einstein equation, using the assumption

that the extracellular viscosity is similar to that of mammalian

cytoplasms [58]. (See Text S4 for further details.)

We simulated systems at each of nine a-factor secretion rates.

During the first 100 s of each secretion rate, the systems

equilibrated to a nearly steady state, which we assessed using

time-dependent concentrations and concentration gradients of all

simulated molecular species. Every 2 s for the next 400 s, Smoldyn

recorded the number and the mean position of receptor molecules

bound to a-factor. We defined the vector that pointed from the

MATa cell center to one of these mean positions, which we label r,

to be the ‘‘position signal’’ that the MATa cell received. Each

vector represented the cell’s instantaneous measurement of the

local 3-dimensional a-factor gradient. Next, we defined the

‘‘GPCR-a gradient’’ as the component of r that points towards

the target MATa target cell, divided by the radius of the MATa

cell. This created a simple metric that could range from –1 to 1; it

is 0 if a-factor binds randomly to receptors, and is 1 if a-factor only

binds the receptors closest to the target MATa cell.

Figure 4C shows GPCR-a gradient values, averaged over all

time points of each a-factor secretion rate. It shows that Bar1

substantially increased the measured gradient of receptor-bound

pheromone over a wide range of a-factor secretion rates. This

occurred because Bar1 degraded a-factor molecules as they

Figure 4. A model of the effect of the Bar1 protease on yeast
signaling. (A) A snapshot of the system shown at steady state and with
a target cell release of about 46104 a-factor molecules per second. It is
surrounded by a triangulated spherical boundary which absorbs
molecules with Smoldyn’s ‘‘unbounded-emitter’’ method. The central
sphere is a MATa cell, light grey spheres are challenger MATa cells, and
the dark grey sphere on the right is the target MATa cell. Blue dots are
unliganded GPCRs, red are GPCR-a complexes, green are Bar1 molecules,
and black are a-factor molecules. Model details are presented in Text S4.
(B) Average receptor occupancy for Bar1+ and Bar1– cells (see legend).
These data fit well to Hill functions with unit cooperativity but with a 5-
fold difference in their EC50s. (C) Average gradient of GPCR-a complexes
across the surface of the MATa cell. It is scaled so that 0 represents no
gradient and 1 represents the maximum possible gradient. (D) Angle
difference between vectors that point from the MATa cell center to (i) the
average position of the GPCR-a complexes and to (ii) the target cell
center, averaged over all time points. This figure shows that although
Bar1 decreases a-factor binding to the MATa cell, it increases the MATa
cell’s ability to locate the target MATa cell.
doi:10.1371/journal.pcbi.1000705.g004
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diffused past the MATa cell, which steepened the local a-factor

concentration gradient. Figure 4D shows a related but likely more

physiologically relevant quantity: it shows the average absolute

angle between the r vectors and the direction to the target cell.

Again, the average is over all time points of each a-factor secretion

rate. This figure shows that Bar1 decreased the MATa cell’s

angular measurement error, again over a very wide range of a-

factor secretion rates. We believe that this improvement arose

from the steeper concentration gradients. These effects are

consistent with Jackson and Hartwell’s finding that MATa cells

choose the MATa cell that produces the highest level of

pheromone from among potential mating partners [50]. In further

simulations, we surrounded a MATa cell with 3 target and 3 low-

secreting MATa cells and found that Bar1 had the same

discrimination enhancing effect. Again, this paralleled experimen-

tal results [50].

Many features of Smoldyn facilitated the above investigation.

The simulations used nearly diffusion-limited reaction rates for the

Bar1 protease reaction, which Smoldyn handles accurately; they

tracked up to 190,000 molecules at a time, which required high

computational efficiency; and they used system boundaries that

absorbed molecules so that the distribution of molecules in the

bounded system roughly matched the distribution if space extended

indefinitely [30]. In addition, Smoldyn’s real-time graphics helped

us design the simulation and the ability to use spherical cells

simplified model building and accelerated simulation run time. We

could have used rule-based modeling to automatically generate the

receptor-ligand complex species and its reactions, but declared them

explicitly instead to make the model simpler.

Discussion

Many aspects of the biochemical reactions that animate cellular

processes are inherently spatial. These include diffusion in

complex spaces, sub-cellular localization, and transient membrane

associations. Additionally, important cellular processes often rely

on molecular species present in low numbers. Computer models

that ignore these spatial and stochastic aspects of biological

function clearly cannot offer insights into them. For example, non-

spatial, non-stochastic models of the E. coli chemotaxis signaling

network were invaluable for elucidating the basic system

architecture [59] but could not aid investigation in the variation

in signals received by different individual flagellar motors [28], the

localization of molecules of the CheZ phosphatase [27,60], or the

formation of intracellular concentration gradients of the CheY

signal transmitting protein [29]. Moreover, predictions about the

behavior of systems where space and stochasticity are factors are

approximate at best and may be qualitatively incorrect [61]. For

example, a simple chemical oscillating system executes nearly

sinusoidal oscillation when simulated without spatial or stochastic

detail but exhibits intermittent boom and bust cycles when space

and stochasticity are included [24]; also, spatial correlations can

cause distributive multiple phosphorylation mechanisms, in which

kinases release their substrates between phosphorylations, to lose

ultrasensitivity to the substrate concentration [62].

We devised Smoldyn 2.1 to help address the need for accurate

and efficient spatial stochastic simulation software. We designed it to

simulate molecules and membranes, and events including diffusion,

chemical reactions, adsorption, and desorption. We demonstrated

the capabilities of Smoldyn with a model of signaling between yeast

cells through a diffusible pheromone. The model suggested that, by

degrading pheromone, the protease secreted by MATa type yeast

cells steepened the local pheromone concentration gradient, which

helps cells locate and choose among potential mating partners.

On a contemporary laptop computer (2006 MacBook Pro)

Smoldyn can perform useful simulations involving assemblages of

more 100,000 molecules with relative ease. This power is sufficient to

investigate many biochemical systems, including the E. coli

chemotaxis signaling system and signaling between neurons.

Extrapolating computer power with Moore’s law, Smoldyn should

be able to simulate all 2.6 million proteins in an E. coli cell [63] (or a

mitochondrion or yeast nucleus, which are roughly the same size)

within 5 years, still on a single laptop computer. Using more powerful

computers, such as Beowulf clusters [64] or the current NVIDIA

Tesla [65], Smoldyn should be able to simulate entire populations of

complete cells over many generations, within a decade.

However, many challenges to simulations of entire cells and

populations remain. First, neither Smoluchowski dynamics nor

Green’s Function Reaction Dynamics are wholly adequate. For

that reason, researchers will need to develop new physical theories

for reactions and diffusion in crowded cytoplasms, the mechanical

interactions between cytoskeletal filaments and cell membranes,

and the functions of extended macromolecular complexes. These

theories, which may be partially empirical, need to isolate the

essential behaviors of these processes so that they can be modeled.

Second, these theories will need to be embodied in algorithms so

that modelers can account for the corresponding processes in their

cellular models. Third, not all aspects of cellular processes require

attention to spatial and stochastic detail (for example, there are

likely to be over a million ATP molecules in an E. coli cell [63],

probably with weak spatial gradients), so multi-level algorithms,

such as those that combine stochastic and deterministic methods

[66], will be valuable. Fourth, although it is possible that there

might be increasingly standardized and quantitative experiments

that assist modeling of some cellular processes, almost by

definition, the experiments on newly explored cellular processes

will be diverse and incomplete. Any modeling effort that expects to

contribute to the understanding of newly articulated cellular

phenomena will require simulation software that can work with

diverse and incomplete experimental results.

Methods

We wrote the core portion of Smoldyn in the C programming

language. This core is linked to the OpenGL library for graphics, the

libtiff library for saving tiff format images, the libmoleculizer library

for rule-based reaction network generation [32], the POSIX library

for threaded operation, and the SIMD-oriented fast Mersenne

Twister library [67] for random number generation. The combined

program compiles and links on Macintosh OS X or Linux systems

with the gcc compiler. Windows versions are cross-compiled from

Macintosh using the mingw compiler. We used Valgrind to check for

memory leaks and gprof for code profiling. All source code, makefiles,

executable applications, example configuration files, utility programs,

and documentation can be downloaded for free from www.smoldyn.

org. The code is licensed under the Gnu General Public License.

Supporting Information

Text S1 Additional information for Table 2

Found at: doi:10.1371/journal.pcbi.1000705.s001 (0.53 MB PDF)

Text S2 Details for Figure 3

Found at: doi:10.1371/journal.pcbi.1000705.s002 (0.61 MB PDF)

Text S3 Runtime scales linearly with the number of molecules

Found at: doi:10.1371/journal.pcbi.1000705.s003 (0.12 MB PDF)

Text S4 Bar1 model details

Found at: doi:10.1371/journal.pcbi.1000705.s004 (0.15 MB PDF)
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