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Abstract

Rates of hospital-acquired infections, such as methicillin-resistant Staphylococcus aureus (MRSA), are increasingly used as
quality indicators for hospital hygiene. Alternatively, these rates may vary between hospitals, because hospitals differ in
admission and referral of potentially colonized patients. We assessed if different referral patterns between hospitals in
health care networks can influence rates of hospital-acquired infections like MRSA. We used the Dutch medical registration
of 2004 to measure the connectedness between hospitals. This allowed us to reconstruct the network of hospitals in the
Netherlands. We used mathematical models to assess the effect of different patient referral patterns on the potential spread
of hospital-acquired infections between hospitals, and between categories of hospitals (University medical centers, top
clinical hospitals and general hospitals). University hospitals have a higher number of shared patients than teaching or
general hospitals, and are therefore more likely to be among the first to receive colonized patients. Moreover, as the
network is directional towards university hospitals, they have a higher prevalence, even when infection control measures
are equally effective in all hospitals. Patient referral patterns have a profound effect on the spread of health care-associated
infections like hospital-acquired MRSA. The MRSA prevalence therefore differs between hospitals with the position of each
hospital within the health care network. Any comparison of MRSA rates between hospitals, as a benchmark for hospital
hygiene, should therefore take the position of a hospital within the network into account.
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Introduction

Pathogens that typically cause hospital-acquired infections have

an opportunistic nature. These organisms are usually part of the

normal bacterial flora of humans and only cause disease when

reaching body sites that are normally free from bacterial

colonization e.g. when anatomical barriers are breached due to

trauma or medical/surgical interventions. For this reason, severe

problems with nosocomial pathogens are mainly seen in the very

young and elderly and most frequently in institutions such as

hospitals and long-term care facilities where patients are treated

for acute or chronic conditions.

Methicillin-resistant Staphylococcus aureus (MRSA) is an antimicro-

bial resistant variant of S. aureus, a common bacteria frequently

colonizing healthy humans and animals. Emergence of MRSA is due

to the acquisition of a large DNA fragment, which seems to be rare

[1,2]. The expansion of a limited number of MRSA clones that

characterizes the current epidemic in hospitals worldwide is therefore

believed to be the result of between patient transmission and only to a

minor extent due to the ‘de novo’ emergence in patients exposed to

antibiotics. MRSA has therefore become the marker with which the

success or failure of hospital infection control [3].

The prevalence of the MRSA differs considerably within and

between countries [4,5]. Currently about 30% of the S. aureus

causing bloodstream infections in the UK is resistant to

methicillin, against only 1% in the Netherlands and Scandinavian

countries [6]. Although in high endemic countries MRSA

infections are frequent in all hospitals, the proportions are highest

in large teaching (tertiary care) hospitals [4,7], which also report

the highest frequency of newly occurring MRSA clones [8–11].

The severity of underlying medical condition of the patients, as

well as higher antibiotic use and frequency of invasive procedures

have been proposed as the main reasons for this difference [3].

Patients can carry MRSA, asymptomatically, for a long time [12].

When readmitted, they may introduce the pathogen acquired dur-

ing a previous admission into a new hospital [13]. Failure of one

hospital’s infection control measures can therefore affect the

prevalence in hospitals with which it shares patients [14]. Patients

are referred to hospitals at different rates depending on the function

of hospitals within the health-care system, which likely affect the

prevalence at different institutions. These referral patterns might

therefore offer an explanation for high MRSA incidence in hospitals

of the tertiary referral level [7]. But can referral patterns account for

differences in spread between hospitals, and for differences in

observed prevalence? To answer these questions, we have been

mapping the health care network based on a large national medical

registry, and evaluated the occurrence of hospital-acquired infections

in different care categories under simulated epidemic conditions.

PLoS Computational Biology | www.ploscompbiol.org 1 March 2010 | Volume 6 | Issue 3 | e1000715



Results

In 2004, hospital care in the Netherlands was provided through

71 general hospitals, 19 top clinical hospitals and 8 university

medical centres (Figure 1A). During the observation period of one

year (2004) 1,676,704 patients were admitted from the population

of 16.7 million. These patients were admitted for a total of

2,611,452 times, the majority of patients were hospitalised once.

The frequency with which patients were readmitted showed a

right-skewed distribution (Figure 1B), with still 86 patients being

readmitted for more than 52 times. Patients stayed on average 4.3

days per hospital admission, patients who had less hospital

admissions stayed longer per admission (Figure 1C), and those

who had four hospital admissions had on average the longest (5.6

days) episodes of hospital admission. Moreover, these patients had

the highest rate of readmission in different hospitals (Figure 1E&F),

whereas patients who were readmitted more frequently tended to

return to the same hospital. These frequent attendees were also

most likely to stay for only one day.

The individual-based model emulated the dynamics of patient

referrals and allows us to assess the spread of hospital-acquired

infections. Colonized patients from one hospital spread the

pathogen to nearby hospitals within days, but it takes more time

–5 to 10 years– before all hospitals encounter it (Figure 2A). The

median time to first infection (TFI) for university medical centers

(UMCs) was 755 days, the TFI for top clinical hospitals was 1,087

days and the TFI for general hospitals was 1,346 days. At any

stage of the epidemic the expected prevalence in UMCs was

higher than in general and top clinical hospitals (Figure 2C).

We reconstructed the Dutch national network of hospitals

(Figure 3A) with respect to the potential spread of hospital-acquired

infections, using patient referral patterns taken from national

medical registration (LMR [15]). Within this network, the UMCs

show a higher degree of connectedness than the general and top

clinical hospitals (Figure 3B). General hospitals had a higher

outdegree than indegree, whereas the reverse was true for UMCs,

resulting in an 8-fold difference in the indegree between both types of

institutions. Top clinical hospitals assumed an intermediate position

and showed little difference between indegree and outdegree.

Moreover, the indegree relative to the total number of admissions

(including patients admitted directly from the community) was much

higher in the UMCs compared to the general hospitals. The patient

flow through the network was thus directed towards the UMCs.

In order to determine the effect of the directionality of the

network, we repeated the analysis of the individual-based model

using a dataset with alternative direction. We created a dataset in

which all referral probabilities to hospitals were set equal. In the

resulting network, both the indegree and outdegree of the UMCs

were higher than the other hospital categories, but the outdegree is

now higher than the indegree (Figure 4A, B & C). The relative

indegree was higher for the general hospitals compared to the

other two categories, although there was only a small difference

between UMCs and top clinical hospitals. These simulations

resulted in slightly higher prevalence in the general hospitals,

compared to the top clinical hospitals and UMCs. The differences

between the hospitals in connectedness and prevalence are caused

by the different hospital sizes, the only parameter that varied

between hospitals in this model. This suggests that the short time

to first infection of UMCs is due to their absolute high degree of

connectedness, while their high relative indegree causes the higher

prevalence in UMCs relative to other hospital categories.

We also used two other networks with alternative directions, to

test if our observation holds under different conditions. First, we

reversed the direction of the network by reversing time in the

original dataset, the patients who first visited a general hospital

and then a UMC now do the opposite. In this dataset the UMCs

still have a higher relative indegree, compared to the general

hospitals, although their outdegree is now higher than their

indegree (Figure 4D, E & F). These simulations reduced the

difference in prevalence between hospitals, with still the highest

prevalence in the UMCs. This exact reversion had almost no effect

on the TFI of all hospital categories.

Second, we increased the reversed direction in order to decrease

the relative indegree of the UMCs to a level below the relative

indegree of the general hospital, while keeping both the absolute

degree of the UMCs (both indegree and outdegree) above the

degree of the general hospitals. These simulations resulted in a

lower prevalence in the university medical centres compared to the

hospitals of other care categories, whereby the top clinical

hospitals had the highest prevalence, reflecting their highest

relative indegree (Figure 4G, H & I). This reversion of direction in

the network had, just like the previous ones, little effect on the

order of TFI for the hospital categories. The results of all three

simulation studies with alternative directions, when taken together,

strongly suggest that the high prevalence in UMCs relative to

other hospital categories is due to directionality of referral

patterns, reflected by their high relative indegree.

Discussion

This study sets a precedent by using data about all hospital

admissions obtained from the National Medical Register (LMR

[15]) to explore the potential spread of hospital-acquired infections

through the Dutch national network of hospitals and describing

the effect of nationwide referral patterns on the spread of

nosocomial infections like MRSA. This method shows properties

of hospitals, such as connectedness within the network, that on the

level of a single hospital would not be visible.

In the Netherlands, 98 hospitals provide various forms of

specialist care. Within the category of general hospitals, there are

considerable differences from hospital to hospital, with some

smaller hospitals providing only basic hospital care. Therefore,

patients who need advanced medical treatment need to be referred

Author Summary

The prevalence of hospital acquired infections is widely
believed to reflect the quality of health care in individual
hospitals, and is therefore often used as a benchmark.
Intuitively, the idea is that infections spread more easily in
hospitals with a poor quality of health care. This assumes
that the rate at which admitted patients introduce new
infections is the same for all hospitals. In this article, we
show that this assumption is unlikely to be correct. Using
national data on patient admissions, we are able to
reconstruct the entire hospital network consisting of
patients referred between hospitals. This network reveals
that university hospitals admit more patients that recently
stayed in other hospitals. Consequently, they are more
likely to admit patients that still carry pathogens acquired
during their previous hospital stay. Therefore, the preva-
lence of infections does not only reflect the quality of
health care but also the connectedness to hospitals from
which patients are referred. This phenomenon is missed at
the single hospital level; our study is the first to address
the connectedness between hospitals in explaining the
prevalence of hospital acquired infections. Our findings
imply that interventions should focus on hospitals that are
central in the network of patient referrals.

Hospital Infections in Health Care Networks
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to so-called top clinical hospitals or university medical centres.

Top clinical hospitals are large institutions that provide a wide

range of clinical specialities and are involved in specialists training

and education of doctors and other health care workers. In

contrast to university medial centres they are not affiliated with

universities and do not include the same comprehensive spectrum

of specialities. Within the health care system, the university

medical centres occupy a special place as leading hospitals with

advanced specialist and final referral functions.

In the Netherlands the hospital admission rate is rather low

compared to international standards with 15.6 admissions per 100

inhabitants [16] and an average stay of only 4.3 days. This figure is

low, as it also includes day care treatment when patients occupied

a bed but do not stay overnight. The majority of patients (73%) are

admitted only once to any hospital. Few return twice (17%), three

times (5%), or more (5%). Importantly, patients who are admitted

twice or three times in a one year period not only have the longest

per admission treatment episodes, but are also more frequently

readmitted to different hospitals. In this way, all hospitals in the

Netherlands become connected and form a network consisting of

referred patients who form a bridge between hospitals and provide

a path that can facilitate the spread of hospital-acquired infections,

such as MRSA, between hospitals.

The individual-based model which emulates the referral

characteristics recorded in the LMR, describes the spread of

nosocomial infections among hospitals on an individual patient

level. It shows that patients who are admitted only two or three

times contribute significantly to the inter-hospital spread of the

infection and suggests that the prevalence is directly related to the

referral level of different hospital categories. This model is,

however, unable to provide a mechanistical explanation for the

predicted differences in prevalence between hospital categories.

For this reason, a simplified model of the hospital network was

created. This model weights the contact pattern between hospitals

on the basis of average patient referrals between any two hospitals

without taking individual referrals and catchment populations into

consideration. Despite being a coarse simplification, the hospital

network model provides excellent heuristic value as it is able to

demonstrate the directionality of the entire network, which is the

driving force behind the difference in prevalence between different

hospital categories.

Our methods rely on three key assumptions that should be

addressed. First, all of our methods do not take account of

transmission outside of the hospitals. If community transmission of

hospital-acquired infections become a significant factor, the

dynamics of the epidemic will ultimately change and the effect

of patient referrals between hospitals will be diluted. Community

transmission of MRSA is mainly seen in families [17], among

military recruits [18], in relation with competitive sport activi-

ties [19] and among children in day-care centres [20]. Typical

community-acquired (CA-) MRSA is a phenomenon widely

described in the USA [21–24] but still rather uncommon in

Europe. Although CA-MRSA has been identified in Europe in

countries with high as well as low MRSA prevalence, it so far

remains much less prevalent than health-care associated (HA-)

MRSA. Indeed a recent comprehensive study among patients

consulting general practitioners in the Netherlands could not find

any CA-MRSA in this population [25]. For MRSA, our models

will lose validity when CA-MRSA becomes widespread in the

general population and the prevalence in the population reaches

levels comparable with those in hospitals.

Second, we have assumed a specific measure of connectedness

to create the network. However, the construction of hospital

networks can be done based on other measures than the one we

used, like weighting the contact between two hospitals by the

number of patients these hospitals share, or by taking only

subsequent admissions into account. These measures would

slightly alter the difference in connectedness between the hospital

types, but the differences between referral levels would remain

(data not shown). However, we feel that exclusion of data about

the length of stay and time between admissions would disguise the

true utilization patterns that govern the spread of HA-MRSA.

Third, both the individual based model and the measure of

connectedness assume homogeneous mixing within the hospital

and leave out any ward structure. However, because the medical

condition of a patient determines both the ward of admission and

Figure 2. Spread of hospital-acquired infection between
hospitals in absence of interventions, according to our
individual-based model results using the recorded health care
utilization patterns. The thick lines show the mean and shaded areas
show all runs between the 5th and 95th percentile. A) Time to encounter
of the first colonized patient. B) Prevalence of colonization among
admitted patients.
doi:10.1371/journal.pcbi.1000715.g002

Figure 1. Health care utilization in the Netherlands in 2004. A) Map of the Netherlands showing the location of the university medical centers,
top clinical and general hospitals. Patients were stratified based on the number of admissions in one year, and per stratum we measured: B) the
number of patients and the distributions of C) the length of stay, D) time between admissions, E) number of different hospitals visited and F) the
number of changes between hospitals, i.e., the number of admissions in a different hospital than the previous one.
doi:10.1371/journal.pcbi.1000715.g001
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his/her health-care use, patients with a certain utilization pattern

may mainly meet patients with comparable utilization patterns.

This assortative behavior of patients [26] can potentially alter the

dynamics of the epidemic, and especially the rate of growth of the

epidemic. However, although the different wards may show

different dynamics with the different patients they admit, the

general direction of the referred patients will still be towards the

university hospitals. We therefore expect the difference between

hospital categories to still hold in the long run, despite some likely

transient effects during the growth of the epidemic.

A higher prevalence of health care-associated infections has

been repeatedly demonstrated for tertiary referral centres such as

university and teaching hospitals, which also witness the majority

of outbreaks of these types of infections. As a conventional

explanation, the severity of underlying conditions, more invasive

diagnostic and therapeutic procedures and higher rates of

antibiotic prescription have been incriminated for this difference.

Our model predictions based on the observed admission pattern in

the Netherlands, however, suggest a more parsimonious explana-

tion. In the Dutch health care network, the university medical

centres admit a large number of referred patients from other

hospitals, much more than the top clinical hospitals (Figure 3B).

Each university medical centres is therefore connected to a large

number of general hospitals as well as a number of top clinical

hospitals. This central position within the hospital network puts

these hospitals at higher risk of encountering colonized patients.

Moreover, the flow of infectious patients through the hospital

network is directed towards the university medical centres and we

could show that as a direct result of this directionality, prevalence

in these hospitals is predictably higher relative to the other

categories.

These observations can have important implications concerning

hospital infection control. When hospital infection control fails

within a single hospital, hospital-acquired infections will start to

spread between hospitals, with the most connected ones at the

highest risk of both acquiring and spreading the disease.

Differentiation of intervention measures over hospital categories,

for instance by making the university medical centres the focal

point, could then be considered. The exact implementation of

such a differentiation is, however, beyond the scope of this paper

and should be the focus of further research. Furthermore, our

results suggest that differences in prevalence of nosocomial

infections between hospitals do not necessarily reflect the success

of the hospital infection control measures of individual hospitals.

Direct comparisons of infection rates between hospitals may

therefore give a distorted view of hospital standards, if national (or

regional) health care utilization patterns are not considered. The

use of such comparisons, for benchmarking, may therefore lead to

a false conclusion about a hospitals effort to reduce nosocomial

infections.

Figure 3. Patients referred between hospitals in the Netherlands. A) The reconstructed Dutch health care network based on the potential
infection rate between hospitals, red squares denote university medical centers, blue triangles the top clinical and black circles the general hospitals.
B) Inward (blue), outward (red) and relative inward (black) degree of connectedness per hospitals category, calculated from the Dutch medical
registration. The relative indegree is the indegree divided by the total number of admissions. Solid lines show mean degree per category and the
dashed line shows the overall mean degree. University medical centers take a clear central position, in the sense that they have a high degree of
connectedness. The network is directional towards the UMCs as they have a higher indegree than outdegree.
doi:10.1371/journal.pcbi.1000715.g003
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In summary we predict that (1) Hospital-acquired infections can

spread rapidly from index hospitals to the next referral level. (2)

Secondary and tertiary referral hospitals must be prepared for

rapid response. (3) High connectedness and the directionality in

the health care network towards the university medical centres

cause a local build-up of nosocomial pathogens, such as MRSA,

and thus a higher prevalence in these hospitals. This should be

taken into consideration for benchmarking and the design of

national control strategies.

Materials and Methods

Generating a simulated dataset
We used the Dutch national medical register from 2004

(Landelijke Medische Registratie LMR [15]), which contains the

data about all individual hospital admissions for the total of Dutch

hospital organizations of that year. We stratified patients in the

LMR based on the number of admissions, s, in the one year of

data. Per stratum we counted the number of patients, fd (s), and

measured the distribution of the length of stay, gd (s,l), the time

between admissions, hd (s,a), number of hospitals visited, id (s,h),
and the changes between hospitals, jd (s,c). We defined a change

between hospitals as an admission to a hospital different from the

hospital of the previous admission. For each hospital i we counted

the number of next admissions in other hospitals j to determine the

referral probability, rij , and counted the the number of admissions

per hospital to determined the size, si.

For reasons of privacy protection, we were not authorized

to use the data at individual record level for detailed analysis.

We therefore generated a simulated dataset based on the recorded

Figure 4. Impact of directionality of the hospital network on the spread of hospital acquired infections. We created three networks with
alternative directions. One with equal referral probabilities to all other hospitals (A, B & C), one exact reversion of the original network (D, E & F) and one
with an exaggerated reversion of the direction (G, H & I). A, D & G show the time to encounter of the first colonized patient, B, E & H show the prevalence
among admitted patients and C, F & I show the indegree (blue), outdegree (red) and relative indegree (black). Reversion of the network direction leads to
a lower prevalence in university medical centers, while they are still the first to encounter the infection, showing that the relative indegree, the indegree
divided by the total number of admissions, relates to the found prevalence and the high absolute indegree relates to the time to first encounter.
doi:10.1371/journal.pcbi.1000715.g004
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frequencies which describes the individual patient referral

patterns that is consistent with the observed patient characteris-

tics in the LMR. This also enabled us to expand the simulated

dataset beyond the recorded single year in the LMR to 20

years.

We assumed that each patient’s health-care use comes in

sequences of a given number of hospital admissions, s, and that the

time between these sequences, i.e. between the moment of

discharge of the last admission in the sequence and first admission

in the next sequence, is exponentially distributed. Patients were

assigned a hospital of initial admission from the hospital size

distribution, kd (h), and a number of admissions in this sequence s

from distribution fd (s). The number of changes between hospitals

during these admissions was picked from the distribution

jd (cDs~s). If the number of changes was larger than 0, the same

was done for the number hospitals visited, picked from the

distribution id (hDs~s). We assumed that the moment of changing

between hospitals was distributed uniformly over the admissions

and the choice for the new hospital was based on the current

hospital’s referral distributions. The length of stay was picked from

distribution gd (lDs~s) and time between admissions from

distribution hd (aDs~s) for all sequential admissions.

We picked the rate of initial admission, l, based on over 1.6

million admitted patients for an entire population of 16 million

individuals, at 1/3650 day21. After the last admission in the

sequence, the time to next admission is therefore picked from an

exponential distribution with mean l. Because the average time

between admission sequences is much longer than the average

length of colonization, we thus assumed that the colonization

status of an individual at the start of an admissions sequence does

not depend on this individuals colonization status in the previous

admission sequence. We created a dataset for 20 years to allow the

epidemic to reach equilibrium level.

Individual based model
Using the individual entries of the simulated dataset we

subsequently created a mathematical model that describes the

effect of individual patient movements through the hospital

network on the spread of hospital-acquired infections. These

individuals can either be susceptible or infected. No distinction was

made between colonization and clinical infection for the sake of

simplicity. Infected individuals (I ) infect susceptible individuals (S)

within the same hospital during one day with rate bS=N, where N

is the total number of patients in the hospital. Therefore, each

susceptible has a probability of bI=N of getting infected per day.

We assume that infectious patients spread the infection to a

random sample of the patients within the hospital, and take no

ward structure into account. Individuals lose the infection with

rate c and the mean duration of colonization 1=c was set at 365

days [12].

In order to explore the dynamics, we infect 10% of the patients

that are admitted to an index hospital on a randomly chosen

starting date, and monitor how the infection spreads to other

hospitals. The number of colonized individuals at each time step

and the time to first encounter of a colonized patient in each

hospital (time to first infection, TFI) was recorded. For each index

hospital we perform 200 simulations, sequentially repeating these

sets of simulations for each 98 hospitals as index hospital, thus

performing a total of 19600 simulations. In further analysis, we

only include simulation runs resulting in an outbreak larger than a

threshold of 1000 colonized persons, to exclude runs that resulted

only in small local outbreaks. The results are not sensitive to the

exact value of this threshold.

Contact matrix
In order to reduce the complexity inherent to the individual-

based model, we created a hospital network model assuming

transmission parameters between hospitals. All transmission

parameters were based on the patient characteristics as observed

in the LMR. Thereby, we calculated the infection rate, mij , from

hospital i to hospital j, using the probability that any referred

patient transmits the infection after referral. This probability

depends on the patient’s length of stay in both hospitals and the

rate of losing colonisation between admissions. The infection rates

between all hospitals form a 98|98 matrix, M~fmijg, which

describes the national network of hospitals in terms of potential

transmission.

For each admission we calculate the probability that the patient

transmits the infection from the referring hospital to the admitting

one, xij . This probability can basically be divided into three

separate probabilities: contracting the infection in a referring

hospital, ui, still being colonized on readmission, vij , and spreading

the infection in the admitting hospital, wj :

xij,n~ui|vij|wj : ð1Þ

The probability of being colonized depends on the length of

stay in each referring hospital, li, the number of colonized patients

in each of these hospital, Ii, and the transmissibility of the

pathogen, b; ui~1{e{bIi li . If we assume that both the infectivity

and the number of colonized patients are at a fixed low level, we

can simplify this to ui~cli, where c encompasses the transmissi-

bility and low prevalence in the hospital. Because we assume the

transmissibility and prevalence are equal in all hospitals, and

because the matrix scales linearly with c we can leave c at unity:

ui~cli: ð2Þ

The probability of introduction in the admitting hospital, wj , in

turn depends on the length of stay in the admitting hospital, lj , the

number of susceptible patients, S, and the transmissibility of the

pathogen, b; wj~1{e{bSj lj . Here, we can assume that the

number of newly infected patients is not dependent on the size of

the hospital, because ward size is generally not related to hospital

size. Therefore, the probability of transmission is directly related to

the basic reproduction number per admission, RA, and becomes

wj~1{e{RAlj=l
. Where l denotes the average length of stay in the

dataset. Just as before, we assume that the number of colonized

patients is low, and the process is not limited by the number of

available susceptible individuals:

wj~1{e
{RAlj=l : ð3Þ

The probability that a patient is still colonized upon

readmission, vij , depends on the time between discharge and

admission, DTij , and the recovery rate, c; vij~e
{c(DTij )

. Although

overlapping admissions do occur in the data –patients can for

instance be moved to another hospital for a specific procedure

without being discharged from the initial hospital– we simplify by

only taking sequential admissions into account. Any overlapping

admission is treated as having a time between admissions, DTij , of

0, thus with vij~1:

vij~e{cDTij : ð4Þ

Hospital Infections in Health Care Networks

PLoS Computational Biology | www.ploscompbiol.org 7 March 2010 | Volume 6 | Issue 3 | e1000715



mij~
P

n xijn=Td gives the infectious referral rate, per day,

between hospitals, where Td denotes the time span of the dataset.

zij~1{e
mij now denotes the probability that any patient will

transmit the disease from hospital i to j within one day. All

admissions of all patients combined result in the national hospital

network M.

mij~

P

n

xij,n

Td

ð5Þ

M~fmijg ð6Þ

The degree with which hospitals connect with the rest of the

hospital network through referrals of patients can be divided into

two parts. These consist of the indegree kin,j~
P

i mij , reflecting

the total of introductions a single hospital receives from the rest of

the hospital network, and the outdegree kout,j~
P

i mji which

reflects the total amount of colonized patients a single hospital

exports to the rest of the hospital network. Because the matrix M is

asymmetric, kin,j and kout,j may differ.

Alternative direction datasets
In order to determine the effect of the difference between

inward and outward degree of connectedness, we created a

number of datasets with alternative directions. One of these has no

direction, the other two have reversed directions. In all three

alternatives the university medical centers still have a high degree

of connectedness, consistent with the LMR-based network, but a

higher outdegree than indegree, contrary to the LMR based

network.

We first created a dataset without direction, by setting all

referral probabilities in the referral matrix equal, but leaving all

other parameters the same as the original simulated dataset. We

then created a reverse dataset by reversing the time of the original

simulated dataset. The new date of admission of a patient, T�A, is

simply calculated as T�A~TE{TD, where TE is the end date of

the dataset, in our case day 7300, and TD is the discharge date of

the patient. This then gives the exact reversion of the original

simulated dataset.

In order to reverse the direction of the dataset even further, we

created another dataset in the same way as the generated dataset

with the characteristics of the LMR, in which we set all referral

probabilities to university medical centers, in the referral matrix, to

zero. This, however, also lowered the overall degree of

connectedness of these hospitals. In order to raise the degree we

increased the size of the university medical centers 7 fold. The

university medical centers now have a higher outdegree than

indegree, while their indegree is still higher than the outdegree of

the top clinical hospitals.

Furthermore, we created a number of small datasets of only five

hospitals, in which we varied network properties such as

directionality and hospital size (See Text S1).

Supporting Information

Text S1 Analysis of networks consisting of five hospitals in which

network properties, such as directionality and hospital size, are

varied.

Found at: doi:10.1371/journal.pcbi.1000715.s001 (7.71 MB PDF)
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