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Abstract

Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven
distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually
fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new
protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A
recently uncovered a-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a
projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only
92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To
unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a
possible mechanism by which the knot forms in a single loop flip.
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Introduction

In the last decade, our knowledge about structure and

characteristics of proteins has considerably expanded. The ability

of proteins of small and medium size to fold into native structures

is attributed to a minimally frustrated free energy landscape, which

allows for fast and robust folding [1,2]. In recent years, however, a

new class of proteins with knotted topologies emerged [3,4,5,6,7]

that broadened the scope of possible folding landscapes.

Not withstanding our daily experiences with shoelaces and

cables, knots are mathematically only properly defined in closed

loops, and not on open strings. In proteins, however, this issue can

be resolved by connecting the termini (which are usually located

on the surface) by an external loop [3,4,7]. This approach actually

corresponds to a more practical definition of knottedness in which

we demand that a knot remains on a string and tightens when we

pull on both ends. After such closure, mathematical algorithms like

the Alexander polynomial [8] can be employed to determine the

type of knot (a topological invariant). Knots are usually classified

according to the minimum number of crossings in a projection

onto a plane. Most knotted proteins discovered to date are quite

simple. Out of the seven distinctly knotted folds discovered to date

(see Table 1), four are simple trefoil knots (31) with 3 crossings, two

are figure-eight knots (41) with 4 crossings, and only one fold is

made up of five crossings (52). Most of the knots in protein

structures, however, were initially undetected from their structures

since finding them by visual inspection is fairly hard, requiring a

computational approach.

Even though some pioneering experiments [9,10,11,12,13] have

began to shed some light on how these peculiar structures fold and

unfold, still little is known about the exact mechanisms involved.

Recently, this subject was addressed with simulations of structure-

based coarse-grained models [14,15] that suggested for the first

time potential folding mechanisms and unfolding pathways

[14,15,16,17,18,19] for knotted proteins. It has been suggested

that folding of knotted proteins may proceed through an unfolded

but knotted intermediate by simulations which include non-native

contacts [14], or by formation of slipknot conformations [15]

(segments containing a knot which disappears when protein as a

whole is considered) in conjunction with partial folding and

refolding (backtracking) events [20]. The slipknot conformations

allow the protein to overcome topological barriers in the free

energy landscape which might otherwise lead to kinetic traps

[21,22,23]. In a more general context, it is also intriguing to ask if

the folding of complex knots can be reconciled with the folding

funnel hypothesis [1,2] or nucleation mechanisms [24].

In this paper we present the most complex and also the smallest,

knotted proteins known to date. To shed some light on potential

folding routes of the former, we undertook molecular dynamics

simulations with a coarse-grained model which only includes

native contacts. Even though it is intrinsically difficult to fold such

a large protein with a simple structure-based model, a small

fraction of our trajectories (6 out 1000) folded into the knotted

native state. Based on these simulations we propose a new

mechanism by which this complex protein knot may fold in a

single flipping movement. The proposed mechanism differs from
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mechanisms suggested before as it involves the flipping of a large

loop over a mostly folded structure rather than folding via mostly

unstructured knotted intermediates [14].

Results

Analysis of the protein data bank
The most complex protein. By systematically analyzing

structures submitted to the PDB [25] up to August 2009, we

discovered an imposing knot in an a-haloacid dehalogenase DehI

[26]. DehI is a member of a large family of dehalogenases,

microbial enzymes that catalyze the breakdown of organic

pollutants by cleaving the carbon-halogen bond, and are of

interest for bioremediation. The homodimer DehI shares no

sequence or structural similarity to other dehalogenases and has a

novel fold. A reduced representation of the protein in fig. 1a

reveals six crossings belonging to a so-called Stevedore knot (61) –

a type of stopper knot used by stevedores to prevent large blocks

from running through the line while raising cargo. The resulting

knot is quite deep and will not vanish if a few amino acids are cut

from either side. In fact one could cleave more than 20 amino

acids from the C-terminus and around 65 residues from the N-

terminus without destroying the knotted topology. The DehI

monomer consists of two regions (,130 a.a. each) that share

about 20% sequence identity (Needleman-Wunsch sequence

alignment with Blosum62 matrix, gap opening = 7, gap

extension = 1), have very similar structures [26], and are likely

to result from a tandem sequence duplication. The structure of

each fragment is unknotted, but their assembly into the whole

DehI structure creates a knot. The two regions are connected by

a proline-rich loop that goes around the protein forming a large

arc (fig. 1a).

The smallest knotted protein. While DehI constitutes the

most complex knot found so far, another protein was detected by

our algorithm as having the smallest known knot. The backbone of

an uncharacterized protein MJ0366 from M.jannaschii, solved by

Structural Genomics/Proteomics Initiative [27] has only 92 amino

acids (of which 82 are resolved in the pdb structure, 2EFV) and

forms a novel fold with a trefoil knot (fig. 1b). A visual inspection

reveals that around 10 amino acids (including unstructured amino

acids missing in the pdb-file) can be cleaved from the C-terminus

and around 20 amino acids from the N-terminus before the knot

disappears. During the review process we learned that the knot in

MJ0366 was also discovered independently by Alexey Murzin

soon after the structure was released in August 2007 (MK first

presented 2efv and 3bjx in a seminar at MIT in May 2008). It is

also listed in the current version of SCOP [28] (1.75, June 2009).

The protein belongs to the ribbon-helix-helix (RHH) superfamily

of DNA-binding proteins and is the first knotted protein of its kind.

The subunit is similar to the dimeric folds of typical RHH

proteins, like the Arc repressor, and likely resulted from a gene

duplication/fusion event. Two RHH motifs are connected with a

linker and the specific locations of N- and C- termini in the

dimeric RHH folds suggest that the addition of the linker may

have created this knot. Note that gene duplication/fusion events

may have contributed to the origin of knotted proteins, too.

We also discovered two additional knotted DNA binding

proteins. VirC2 (virulence protein from a plasmid of Agrobacteria)

[29] is also made up of a duplicated RHH motif and folds into a

trefoil (as noted in SCOP 1.75) which is almost identical to the one

Table 1. Proteins with knotted backbones.

protein family pdb chain start-stop knot type knotted core

RNA methytransferase (a/b knot) 1ns5 1–153 31 69–121

Carbonic anhydrase 1lug 2–260 31 31–257

SAM synthetase 1fug 1–383 31 33–260

Transcarbamylase fold 1js1 1–324 31 169–267

Zinc-finger fold 2k0a 21–107 31 18–78

Ribbon-helix-helix superfamily 2efv 6–87 31 19–66

CII Ketol-acid reductoisomerase 1yve 83–595 41 321–533

Chromophore binding domain* 1ztu 5–325 41
* 41–298

Ubiquitin Hydrolase 2etl 1–223 52 10–216

a-haloacid dehalogenase I 3bjx 214–296 61 71–268

For each fold an example pdb code is given. Chain start-stop refers to the first and the last amino acid, which are resolved in the structure. The knotted core is the
minimum configuration which stays knotted after a series of deletions from either terminus as given by our web server [37]. This ‘‘knot size’’ is determined by an
automated procedure [7,37], and results should only be regarded as a guideline.
*There are several missing (unresolved) amino acids in 1ztu – the complete structure will likely contain a figure-eight knot. Slipknots are not listed in this table, which (of
course) also contain knots in their backbone.

doi:10.1371/journal.pcbi.1000731.t001

Author Summary

Knots are ubiquitous in many aspects of our life, but
remain elusive in proteins. The multitude of protein
structures archived in the Protein Data Bank can be
grouped into several hundred patterns, but only a handful
are folded into knots. Combing through the recently
added structures we found several novel knotted proteins.
A microbial enzyme that catalyzes the breakdown of
pollutants is the most complex protein knot encountered
so far (similar to a knot used by stevedores for lifting
cargo). The smallest knotted protein on the other hand
consists of only 92 amino acids. The existence of these
complex motifs demonstrates that the ability of self
assembly goes far beyond normal expectations. Aided by
computer simulations we present evidence which sug-
gests that the Stevedore protein knot, despite its
topological complexity, may actually form in a single
flipping movement.

Discovery and Folding

PLoS Computational Biology | www.ploscompbiol.org 2 April 2010 | Volume 6 | Issue 4 | e1000731



observed in MJ0366. Intriguingly, the two share only 9% of their

sequence. Finally, we noted a knotted zinc-finger, which was

already discussed in Ref. [30].

Folding simulations of DehI
It is difficult to imagine how proteins can actually fold into

topologically elaborate structures like the 61 knot displayed in

fig. 1a. Complex knots, however, are not necessarily difficult to tie.

There are actually quite a few rather complicated knots, including

the Stevedore knot in DehI, which can be transformed into

unknots by removing a single crossing. Likewise, these knots can

typically be formed in a single movement which simplifies the

folding of these peculiar structures considerably. Recently, Taylor

[31] predicted that complex protein knots discovered in the future

will most likely belong to this class which is corroborated by the

discovery of the Stevedore knot in DehI. As indicated in [31],

knots of arbitrary complexity can be obtained by twisting a loop in

a string over and over again before threading one end through the

loop. Even though this way of creating knots may appear as an

attractive protein folding scenario due to its simplicity, our results

suggest a somewhat different potential mechanism, which is able to

reduce topological constraints and fold DehI in a single movement.

Two loops are crucial for the formation of the 61 knot in DehI: a

smaller loop which we call S-loop containing amino acids 64 to

135 and a slightly bigger loop termed B-loop ranging from amino

acid 135 to 234. Note that the latter includes the proline rich

unstructured segment mentioned earlier. The analysis of the

crystallographic B-factor (see fig. S1) reveals that the center of the

S-loop, the beginning and the end of the B-loop, as well as the

unstructured proline rich segment, are particularly mobile. In

addition, a very mobile unstructured segment around amino acid

240 provides additional flexibility to the C-terminus. Note that if

the B-loop is flipped over to the other side of the protein, the

Stevedore knot disentangles in a single step.

In an attempt to elucidate the folding route of DehI, we

undertook molecular dynamics simulations with a coarse-grained

structure based Go-model [1,32,33] of DehI which does not

include non-native interactions. With this model we were able to

fold six trajectories (out of 1000) into the 61 knot (with more than

90% of native contacts). We emphasize that this number should

not be associated with experimental folding rates. Folding large

knotted proteins with a generic structure-based model without

non-native interactions is extremely difficult as the protein has to

undergo a series of twists and threading movements in correct

order while collapsing. As demonstrated in Ref. [14] the addition

of non-native interactions will increase the folding rate substan-

tially, however, at the cost of introducing a bias. There is also a

strong dependence of successful folding events on protein size. For

example, in Ref. [15] a rather simple and short trefoil knot in an

RNA methyltransferase, folded successfully in only 2% of all cases

with the same underlying model. On the other hand we succeeded

in folding 2efv with 100% success rate [34]. For comparison the

number of amino acids in 2efv is roughly two times smaller than

the number of amino acids in the methyltransferase, which again is

roughly two times smaller than the number of amino acids in the

dehalogenase. While acknowledging such limitations of coarse-

grained models, we are still confident in deducing a potential

folding pathway from the analysis of the successful trajectories, in

particular because all six trajectories are very similar.

Fig. 2 shows an actual folding trajectory. The S-loop is colored

red, the B-loop green and the C-terminus blue. Two very similar

potential folding routes were observed in our simulations. In both

routes, the two loops form in the beginning by twists (fig. 2a) of the

partially unfolded protein such that B- and S-loop are aligned

(fig. 2b). In the first route, the C-terminus is threaded through the

S-loop (which needs to twist once again – fig. 2c) before the B-loop

flips over the S-loop. In the second route the steps are

interchanged: the B-loop flips over the S-loop and the C-terminus

(shaded in light blue in fig. 2c). A figure-eight (41) knot forms as a

result before the C-terminus manages to thread through the S-loop

to reach the native state. In both cases, the C-terminus moves

through the S-loop via a slipknot conformation (fig. 2c). Note that

Figure 1. Protein crystal structure. a: Crystal structure of a-haloacid dehalogenase DehI (PDB code 3bjx). The chain is composed of two
homologous regions that form a pseudodimer and are connected by a proline-rich arc. The insert shows a reduced schematic representation of the
protein. b: Crystal structure of the smallest knot discovered in an uncharacterized protein (PDB code 2efv). Both pictures were prepared with VMD
[38].
doi:10.1371/journal.pcbi.1000731.g001

Discovery and Folding
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loop flipping and threading are typically accomplished with

backtracking events [20] for topologically frustrated proteins [21].

Similar conformational changes during folding mechanisms have

been observed in other topologically non-trivial structures. The

rotation of a proline rich loop was also observed in a big

slipknotted protein, Thymidine Kinase [15]. Slipknot intermedi-

ates appear in the folding mechanism for the trefoil knot in

Methyltransferase [15] as well.

Unfortunately, the size and complexity of the protein does not

allow us to study the full thermodynamic process and reconstruct

the free energy profile along a reaction coordinate. However,

kinetic data allow us to distinguish some characteristic times from

which we can deduce a likely folding mechanism.

In fig. 3 we investigate the rate-limiting step in the folding of the

Stevedore knot. On the left panel, we plot the time it takes to

thread the C-terminus through the S-loop (tc) against the time it

takes to flip the B-loop over the S-loop. Solid symbols are

trajectories associated with route I (0R61), and open symbols are

trajectories associated with route II (0R41R61). In the first

pathway, the flipping of the B-loop takes longer than the threading

of the C-terminus in two out of three cases. In the second pathway

(and the third trajectory associated with route I), the threading of

the C-terminus through the S-loop occurs shortly after the flipping

of the B-loop. In both scenarios, the flipping of the B-loop over the

S-loop is the rate-limiting step. Once this is achieved, the protein is

essentially folded (fig. 3b). The flipping of the B-loop can therefore

be associated with an entropic barrier in the folding free energy.

From an analysis of the order at which contacts occur (fig. S2) it is

possible to deduce the occurrence of a first small barrier, which is

associated with the formation and twisting of B- and S-loop before

the B-loop flips. Hence, we believe a three-state folding scenario is

more likely than a two-state scenario.

In order to study the unfolding pathway, we raised the

temperature above the folding temperature. Even though some

Figure 2. Snapshots taken from a folding trajectory of DehI (0R61). The S-loop (amino acids 64 to 135) is colored red, the B-loop (amino
acids 135 to 234) green and the C-terminus blue. a: B- and S-loop form in the beginning by twists of the partially unfolded protein. b: B- and S-loop
align. c: the S-loop twists once again, the C-terminus threads through the S-loop (in slipknot conformation) and the B-loop flips over the S-loop. In the
alternative folding scenario (0R41R61), the B-loop flips over the (twisted) S-loop before the C-terminus (indicated in light blue) threads through the
S-loop (41), shortly after the C-terminus threads through the S-loop in slipknot conformation. d: Native state without slipknotted C-terminus.
doi:10.1371/journal.pcbi.1000731.g002

Figure 3. Folding times. a: tB time (in units of MD-time steps) of flipping the B-loop over the S-loop versus time of threading the C-terminal
through the S-loop (tc). Solid symbols are trajectories associated with route I (0R61), open symbols are trajectories associated with route II
(0R41R61). b: tf – folding time (at which 90% of native contacts have been established) versus maximum of tB or tc.
doi:10.1371/journal.pcbi.1000731.g003

Discovery and Folding

PLoS Computational Biology | www.ploscompbiol.org 4 April 2010 | Volume 6 | Issue 4 | e1000731



native contacts are lost at higher temperatures, the global

mechanism is by and large reversed as compared to the folding

routes (see fig. S3).

To check how topological complexity restricts the free energy

landscape the protein topology was changed from 61 to 41 (by

eliminating a crossing, as previously performed with a different

protein in Ref. [35]). This slight modification increases the folding

ability of DehI substantially to 11%, suggesting that complexity of

the knot is an important parameter in determining the foldability

of a protein.

Discussion

Our analysis of the Protein Data Bank revealed the most

complex protein knot in a-haloacid Dehalogenase DehI and the

shortest (so far unclassified) knotted protein known to date. This

discovery underscores that knots in the backbone of proteins are

significant structural motifs that appear at different levels of

protein complexity and might offer new insight in the under-

standing of protein folding mechanisms. The finding of the

smallest knotted protein (which is almost half the size of all

previously known protein knots) may eventually enable us to study

the folding of knotted proteins with more sophisticated all-atom

simulations.

We investigated the folding route of the most topologically

complex protein knot with molecular dynamics simulations of a

structure-based model. The analysis of successful folding trajecto-

ries suggests that the Stevedore (61) knot in DehI folds via a simple

mechanism: a large twisted loop in the protein flips over another

previously twisted loop, thus essentially creating the six-fold knot in

a single movement. Thus, the topological complexity of the

Stevedore knot in DehI can be overcome and explained in the

context of classical theories of protein folding [1,2,36]. The

flipping of a loop over a mostly folded structure constitutes a new

scenario in the folding of knotted proteins which differs, e.g., from

the folding of knots via partially unstructured knotted intermedi-

ates [14]. Our mechanism also includes previously observed

elements like the threading of slipknot conformations through

loops [15]. These mechanisms can be essential for folding into

topologically challenging structures and provide a general

framework for the understanding of knotted proteins.

Methods

Knot topology
The programs used to detect knots are identical to those used in

our previous work [7]. To determine whether or not a structure is

knotted, we reduce the protein to its backbone, and draw two lines

outward starting at the termini in the direction of the connection

line between the center of mass of the backbone and the respective

ends. The knot type is determined by computing the Alexander

polynomial, which is also implemented on our protein knot

detection server (http://knots.mit.edu.) [37]. For a detailed

discussion of our methods, the reader is referred to Ref. [7].

Molecular dynamics simulations
Note that this class of structure based models was not created

with protein knots in mind and is very prone to fold into

topologically frustrated states. Even though Go-models can be

adapted to enhance the formation of knots [14] we refrained from

this approach because we did not want to impose any bias. We

applied a structure based coarse-grained model with only native

contacts [32,33]. In total we folded 1000 trajectories of DehI at

temperature T = 0.48 out of which 6 folded into a 61 knot.

Furthermore, we observed 737 unknotted conformations, 85

trefoil (31), 167 figure-eight (41) and five 52 knots. Higher and

lower temperatures resulted in a lower rate of 61 formation. After

the structure was simplified to a figure-eight knot, 11% of all

configurations folded into the native state (with more than 95%

native contacts.)

Supporting Information

Figure S1 Structural elements of DehI and B-factors

Found at: doi:10.1371/journal.pcbi.1000731.s001 (0.18 MB PDF)

Figure S2 Order of contact formation for the folding of DehI

Found at: doi:10.1371/journal.pcbi.1000731.s002 (0.10 MB PDF)

Figure S3 Unfolding routes which lead to unknotted conforma-

tions

Found at: doi:10.1371/journal.pcbi.1000731.s003 (0.06 MB PDF)
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