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Abstract

Through combinatorial regulation, regulators partner with each other to control common targets and this allows a small
number of regulators to govern many targets. One interesting question is that given this combinatorial regulation, how
does the number of regulators scale with the number of targets? Here, we address this question by building and analyzing
co-regulation (co-transcription and co-phosphorylation) networks that describe partnerships between regulators controlling
common genes. We carry out analyses across five diverse species: Escherichia coli to human. These reveal many properties of
partnership networks, such as the absence of a classical power-law degree distribution despite the existence of nodes with
many partners. We also find that the number of co-regulatory partnerships follows an exponential saturation curve in
relation to the number of targets. (For E. coli and Bacillus subtilis, only the beginning linear part of this curve is evident due
to arrangement of genes into operons.) To gain intuition into the saturation process, we relate the biological regulation to
more commonplace social contexts where a small number of individuals can form an intricate web of connections on the
internet. Indeed, we find that the size of partnership networks saturates even as the complexity of their output increases.
We also present a variety of models to account for the saturation phenomenon. In particular, we develop a simple analytical
model to show how new partnerships are acquired with an increasing number of target genes; with certain assumptions, it
reproduces the observed saturation. Then, we build a more general simulation of network growth and find agreement with
a wide range of real networks. Finally, we perform various down-sampling calculations on the observed data to illustrate the
robustness of our conclusions.
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Introduction

Regulating the spatial and temporal activity of genes is essential

to the smooth functioning of biological processes in the cell. The

two primary processes for mediating this regulation are transcrip-

tion and phosphorylation. As a part of the former type of

regulation, certain proteins called transcription factors (TFs) bind

to specific places in the genome and regulate the expression of

target genes (TGs). Similarly, under phosphorylation, a specific set

of proteins (collectively called kinases) add phosphate groups to

certain amino acids, thus regulating the activity of the protein in a

post-translational manner. These sets of regulatory interactions

can be represented as a directed graph with edges directing from

regulators to target genes [1,2,3]. Many previous studies have

focused on the topological properties of molecular networks and

have uncovered some design principles, such as the scale-free

topology [4,5], modularity [6,7,8], disassortativeness [9], and

enrichment in certain network motifs [10,11,12,13]. Many of these

properties, in addition to others, are thought to promote

robustness [4,9,14,15,16].

The regulators (both TFs and kinases) perform their function

mostly in combination with other regulators under different spatial

and/or temporal conditions. This is referred to as combinatorial

regulation and allows for a sophisticated response to multiple

conditions in the environment, integration of multiple signaling

inputs, and generation of highly specific outputs with the help of a

relatively small number of regulators. Many structural and

biochemical studies have revealed several key features of the co-

regulatory partnerships between different TFs such as modular

organization of different kinds of hubs [17] and existence of a

distributed architecture behind the scale-free transcriptional

regulatory network [18]. There has been progress towards finding

and reconstructing aspects of the cellular program of combinato-

rial transcriptional control [19,20,21,22,23], their integration with

diverse data [24,25] and their robustness to rewiring [26]. The

genome-scale principles of the partnerships between transcription

factors, however, remain largely unexplored, with the exception of

a few earlier studies which focused on certain aspects of these

principles towards different aims such as the design of in-silico

transcriptional logic gates using an evolutionary algorithm [27]

PLoS Computational Biology | www.ploscompbiol.org 1 May 2010 | Volume 6 | Issue 5 | e1000755



and the integration of metabolic and transcriptional regulatory

networks [28].

Such partnerships to manage common subordinates are also

readily seen in many commonplace social contexts. For example,

in an academic institution (say a high school), there are multiple

teachers supervising the same set of students and hence they have

partnership interactions amongst themselves. One interesting

question in this regard is, both in commonplace social settings

and in molecular networks, how the size of the governing body

scales with that of the governed population.

To address this question, we generate partnership networks

from transcriptional networks for five species spanning a large

evolutionary period and a phosphorylation network for yeast. To

bolster our observations, we also perform the same analysis for

human modification network that includes many other kinds of

post-translational modifications such as acetylation, carboxylation

and nitration (included in the supplementary text). These

networks, which we call ‘partnership’ networks, describe pairings

between regulators to regulate common targets. We analyze both

regulatory and co-regulatory connectivity of different regulators

and reveal an exponential saturation relationship between the

number of partners and the number of targets. This relationship

indicates that the number of partners increases exponentially with

the number of targets but eventually saturates, indicating that only

a limited number of partners are required to regulate an increasing

number of targets. Mapping of similar behavior in social settings

provides some intuition about the regulatory apparatus active in

the cell. To this end, we analyze some directed social networks and

find that they exhibit an exponential saturation relationship

between the number of ‘supervisors’ and their output. A simple

model that explains this relationship and fits the framework is also

presented.

Results

Five evolutionarily diverse species were chosen for the analysis

(E. coli, yeast, mouse, rat and human) as transcriptional regulatory

data is most plentiful for them (Table 1, see Materials and

Methods). However, the phosphorylation network was analyzed

only for yeast as the data for other species is very sparse (Table 1).

Beginning with the regulatory network, we built the co-regulatory

network by first placing an edge between two regulators (TFs or

kinases) if they regulate the same target gene (figure 1). By

comparison to 1,000 control networks of the same degree

distribution as the original network, only those co-regulatory

associations that were more frequent than random ones were kept

(see Materials and Methods).

Connectivity of the partnership network
Previous studies have shown that regulatory networks show

inhomogeneous connectivity [4,5,9] where very few proteins have

a disproportionately high number of links and a large number of

proteins have very few links. Under an inhomogeneous architec-

ture, the connectivity distribution P(k) falls exponentially with the

connectivity, k, i.e., p(k),k2c for some c.0. We find that co-

regulation networks (both co-transcription and co-phosphoryla-

tion), on the other hand, display homogeneous connectivity (apart

from E. coli, further discussed below) i.e., P(k) is rather evenly

distributed across different values of k (the number of partners,

Figure 2). Although, rat and mouse display a negative correlation

between P(k) and k, the relationship does not follow a power-law

(R2 = 0.07 and 0.3 for rat and mouse, respectively). Earlier, a

similar distributed architecture has been reported for yeast [18].

While such architecture makes the network more sensitive to

random removal of a large fraction of nodes, it increases the

robustness against targeted attacks on highly connected nodes.

The absence of a power-law-like distribution also suggests that

there are no hubs in the partnership network. This means that

there is no single regulator (or very few regulators) that most

regulators partner with, rather there is a uniform distribution of

partnerships among regulators.

Author Summary

A regulatory network consists of regulators such as
transcription factors or kinases that control the expression
or activity of their target genes. Almost always, there are
multiple regulators partnering together to control their
targets. Compared to more commonplace contexts, these
regulators can be thought of as managers in a social or
corporate setting controlling their common subordinates.
One interesting question that we address here in this study
is how the number of governing regulators scales with the
number of governed targets. We build and analyze co-
regulation (co-transcription and co-phosphorylation) net-
works that describe partnerships between regulators
controlling common genes. We use a simple framework
across five species that demonstrate a wide range of
evolution: Escherichia coli to human. The analysis reveals
many properties of partnership networks and shows that
the number of co-regulatory partnerships follows an
exponential saturation curve with the number of targets.
To gain more intuition, we explore more commonplace
contexts and find that exponential saturation relationship
also exists in several social networks. Finally, we propose a
simple model to explain this relationship that also exists in
a simulated evolutionary environment.

Table 1. The sizes of the regulatory networks (transcription and phosphorylation) for each species.

Network type Species Number of regulators Number of targets Number of interactions

Transcription E. coli 160 1,420 3,123

Transcription Yeast 157 4,410 12,873

Transcription Mouse 144 1,092 2,403

Transcription Rat 91 461 1,092

Transcription Human 156 3,032 6,896

Phosphorylation Yeast 87 1,337 4,083

Modification Human 518 1,218 2,782

doi:10.1371/journal.pcbi.1000755.t001

Scaling of Co-Management Partners with Targets
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Connectivity of regulation vs. co-regulation networks
To investigate the relationship between regulatory and co-

regulatory interactions, we plotted the number of targets for each

regulator (the connectivity in the regulatory network) vs. the

number of its partners (the connectivity in the co-regulatory

network, Figure 3). We find that for E. coli, the number of co-

regulatory partners increases linearly with the number of target

genes. The relationship was retained when the outliers, those

proteins with a high number of partners and targets, were

excluded from the analysis. To investigate whether this behavior is

found in other bacteria as well, we examined B. subtilis and found

that the same relationship holds (Figure 3g), suggesting that this

might be a general feature of the bacterial kingdom.

Notably, this relationship is different in other species for which the

number of partners initially increases exponentially with the number

of targets but saturates at a certain value for large numbers of targets.

In addition to phosphorylation network in yeast, the same

relationship is also found in modification network for human (Figure

1 in text S1 and Materials and Methods for details). This relationship

can be fitted with the exponential saturation curve, f(x) = a(12e2bx),

where a and b are non-negative numbers. a equals the saturation limit

of f(x) and b determines how quickly f(x) approaches a. Interestingly,

for all four species, the limiting number of partners, a, equals roughly

half the total number of potential regulators, meaning that these

regulators only partner with at most half the number of partners

available in the network.

Different behavior in bacteria
As shown above, E. coli, along with another bacterium, B.

subtilis, demonstrates a linear relationship between the number of

targets and the number of partners, unlike other species that

display an exponential saturation relationship. However, we

believe that there is indeed no anomaly; a linear relationship is

seen because the saturation tail of the relationship is not reached

due to insufficient coverage or sampling so only the beginning of

the exponential curve is seen (which is nearly linear). In other

words, number of partners does not reach its saturation limit (the

tail of the exponential curve) so only the beginning linear part is

manifested. We further reason that this is due to the arrangement

of several genes into operons which are regulated by the same

promoter region in bacteria. Arrangement into operons reduces

the ‘effective’ number of distinct genes available. More specifically,

in the context of the exponential saturation equation, for smaller x

(target genes), e2bx roughly equals 2bx and a(12e2bx) approxi-

mates to a(1+bx) hence giving a linear equation in x which is what

we observe. If the difference is indeed due to the presence of

operons, one would see the same relationship in other bacteria

species if genes, with recalibration, were grouped together by

operons. Indeed, we observe that the lagging tail part of the

exponential saturation relationship between the number of

partners and the number of operons shows up (Figure 4) for both

E. coli and B. subtilis. The same observation is obtained when

points on the upper right corner of the plot are removed for E. coli

Figure 2. Connectivity of the partnership networks in several organisms. (a–e) The transcription network of five species, (f) the
phosphorylation network in yeast. With the exception of E. coli, which shows inhomogeneous connectivity (only a few regulators with a large number
of partners and large number of regulators with a few partners), all other species display homogenous connectivity.
doi:10.1371/journal.pcbi.1000755.g002

Figure 1. Obtaining a co-regulation network from a regulatory network. We first placed an edge between two TFs (or kinases) if they co-
regulated (or co-phosphorylated) at least one common target gene. 1,000 random networks of the same degree distribution were then generated. A
co-regulation coefficient (CC) for each pair of regulators was defined as the ratio of the average number of genes co-regulated in real network versus
random networks. Only those edges with CC.1 were retained (solid green lines in the last network). In this paper, we study the scaling of partners of
each regulator (green edges) with the number of targets (outgoing gray edges).
doi:10.1371/journal.pcbi.1000755.g001

Scaling of Co-Management Partners with Targets
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for which the relationship seems a little weaker in Figure 4a

(Figure 2 in text S1). This indicates that only the linear behavior

is manifested in the case of E. coli due to arrangement of genes

into operons as the tail part of the exponential part is not

reached.

Comparisons to social networks
The World Wide Web creates an infinitely rich network

between users with various kinds of interactions: exchange of

emails, friendships on social networking sites, commenting on

blogs and on photo-sharing sites like flickr and other interactions

(such as rating videos and becoming a fan) on YouTube. Some of

these are directed networks provide easy templates for compar-

isons to biological networks. To gain more intuition into the

saturation phenomenon, we examined two directed social

networks for the same relationship. We studied a blog linkage

network that consisted of inter-linked blog entries where blogs are

nodes, links to them are edges between them and a ‘co-link’ occurs

when two blogs link to a common blog (Figure 5a). We also studied

an email network obtained using a set of emails exchanged

amongst users that share a ‘co-send’ partnership if they send an

email to a common user. We found that both these networks

displayed the same kind of exponential saturation relationship

between the output (the number of out-going links or email

Figure 3. The number of partners vs. the number of target genes for each regulator. (a–e) The transcription network of five species, (f) the
phosphorylation network in yeast, (g) the transcription network of B. subtilis and (h) the generative model. Black and gray lines correspond to real and
random networks respectively. Random networks were generated by shuffling the edges in real networks while maintaining the in- and out-degree
of each node. The best fit line and corresponding R2 value is indicated for each sub-graph.
doi:10.1371/journal.pcbi.1000755.g003

Scaling of Co-Management Partners with Targets
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recipients) and the number of partners (co-linkers or co-senders)

(Figure 5b). This suggests that in social networks as well, the size of

partnership network saturates at a certain value even as the output

of the group gets exponentially complex, highlighting the

similarities between the organizational structure of social and

biological networks.

A limit on the size of the social network an individual can

develop has been reported previously as well. It has been suggested

before that a human brain allows a stable network of about 150

(known as the ‘Dunbar number’) [29]. Similarly, the average

number of ‘‘friends’’ on social networking sites like Facebook has

been observed to be 120 [30]. These observations and our results

above are indirectly related: setting a cap on the number of

individuals one interacts with loosely limits the number of other

individuals (the partners) that interact with the same group.

Comparisons between real and random networks
We performed various comparisons between random and real

networks, and present two models to describe this process: we

build a simple theoretical model that reproduces the real networks

with certain assumptions and for a range of parameters and then

follow with a more general simulation of network growth to match

in a wider range.

First, we investigated randomized networks of the same

topology by generating control networks, maintaining the same

in- and out-degree of each node in the model organism networks.

In each case, the saturation limit for real networks was lower than

that for random networks (Figure 3b–f), indicating that fewer

pairings between regulators are possible in real scenarios than

random. This might be due to the fact that in real networks all

regulators have specific co-targets and thus partner only with

certain other regulators. For example, most of the regulators are

active only in specific tissues and thus can only partner with other

regulators that are active in the same tissues. Another plausible

reason for this might be that certain co-regulators are more likely

to partner with each other; for instance, several TF complexes are

formed by proteins of specific structural classes, such as homeo-

domains or bZIPs. Similarly, the finite length of the regulatory

region of the DNA might also explain a lower limit in real

transcriptional networks – binding of a protein physically occludes

other regulatory sites on the DNA and thus limits the number of

partners regulating the same DNA. This highlights the specificity

of regulatory interactions in the cell.

A simple theoretical model to describe the saturation
process

Now, we present a simple model that describes the growth of co-

regulation partnerships with certain assumptions resulting in an

exponential saturation relationship. For simplicity, we consider a total

of m regulators and N available targets. On average, each regulator

has n targets making a total of nm regulated targets (Figure 6a). For a

specific regulator, i, the number of targets is ki, so ,ki. = n averaged

over all i, i = 1 to m. We assume that the pool of targets is large,

resulting in the number of genes regulated by two or more regulators

being small. We further assume that during the course of evolution,

regulators acquire target genes randomly. Let fi be the number of

partners for the regulator i. In the subsequent discussion, although we

talk about a specific regulator (i) acquiring partners, we drop the

subscript. Now, for a regulator with no partners the expected increase

of co-regulatory partners acquired, Df , upon adding a new gene, Dk,

equals the fraction of targets that are already being regulated, i.e.,
Df

Dk
D
Df ~0

~
nm

N
(Figure 6b). For regulators with one partner, a co-

regulatory partner will be acquired only if the new gene it targets is

not yet regulated by its existing co-regulatory partners (there are

(m21)n of them), i.e. .
Df

Dk
D
Df ~1

~
m{1ð Þn

N
. Recall that we assume that

only a few genes are regulated by multiple regulators hence we can

neglect any co-regulation between regulators. Continuing in the same

way, the expected number of co-regulatory partners acquired given it

already has f partners is
m{fð Þn

N
. Therefore, the rate of increase of

new co-regulation partners with respect to the number of targets

when averaged over many genes becomes
Lf

Lk
~

m{fð Þn
N

where k is

the number of target genes. Solving this differential equation gives the

solution f ~m 1{e{n=Nk
� �

~a 1{e{bk
� �

, where a = m (the limiting

number of partners) and b = n/N (the fraction of total genes regulated

by each regulator on an average). This equation represents the

exponential saturation relationship observed above for all networks.

Since we dropped the subscript above, this generalized derivation is

applicable for all regulators. It should be noted that this model has a

number of assumptions and limitations; it is one of a number of

models that can fit this framework.

Figure 4. The number of partners vs. the number of target operons. (a) E. coli and (b) B. subtilis. The exponential saturation curve (in red)
shows a slightly better fit than the linear curve (in black) for both species.
doi:10.1371/journal.pcbi.1000755.g004

Scaling of Co-Management Partners with Targets
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Simulation of the network expansion by generative
network models

To explore the saturation process in a more general

framework, we also simulated a generative network model to

see if the same co-regulatory characteristics appeared in a

computed evolutionary environment. The model was built

using a probability-based move set derived from the cur-

rent understanding of gene regulation network formation

[1,4,15,16,17,31,32,33]. The model contained two node varieties:

regulators (say a transcription factor, TF) and targets (say a target

gene, TG). Allowed move types included: 1) the addition of a new

node (either TF or TG), 2) the duplication of a node with partial

edge inheritance (an inheritance rate of 30% was used for both

TFs and TGs), 3) the transformation of a TF into a TG (identified

as TF-TG), which becomes regulated by another TF but still

maintains all current regulatory interactions, 4) the addition or

deletion of an edge between a TF and a TG, and 5) the deletion

of a node (TF or TG). The model began with one TF and one

TG. For each of a total of 10,000 iterations, a move was chosen

on the basis of a random probability. If the move involved an

action on an existing TF or TG (which included all moves except

the addition of a new node), one was chosen at random from the

available nodes in the network. The resulting generative network

model used in this analysis contained 160 TFs and 2073 TGs.

The co-regulatory network derived from this model (figure 3h)

showed a similar trend to that in the model organisms. At a

certain point, the number of regulatory partners began to level off

even as the number of regulated targets increased, leading to the

characteristic saturation curve. This indicates that the saturation

curve seen in these co-regulatory networks could be a product of

evolutionary development, during which regulators gain and lose

interactions with targets over time.

Controls to test robustness to methodology and
incompleteness of data

One of the issues with studies dealing with the regulatory data is

incompleteness. Currently, the data for many species, especially

rat and mouse, is far from being complete in two respects. It is

Figure 5. A comparison using directed social networks. (a) A schematic of the process of analyzing the number of targets and partners for a
node of interest (black node, labeled c). It can be a gene and its targets are the genes it regulates and its partners are other regulators that control at
least one common target. In social contexts studied here, a node can also be a blog with other blogs that it links to as its targets, and the other blogs
that link to same target blogs as its partners. Similarly, it can also be an email user whose targets are the users he/she sends an email to and her/his
partners are other users that email at least one common user. We study the scaling of partners (y-axis) with the number of targets (x-axis). (b) The
number of blogs a user links his/her blogs to (x-axis) vs. the number of blogs which point links to the same blogs (y-axis). Each data point corresponds
to a blog in the blogs network (Left panel). The number of recipients a user sends an email to vs. the number of other users who email the same
recipients (Right Panel). Each data point corresponds to a user (who sends an email) in the email network.
doi:10.1371/journal.pcbi.1000755.g005

Scaling of Co-Management Partners with Targets
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short of regulatory nodes (there are many novel regulatory factors

that are expected to be discovered) and regulatory edges (more

regulatory interactions between the current set of nodes are

expected). We tested the robustness of the relationships reported

above to both kinds of incompleteness by taking smaller random

samples from the current data and repeating the analysis. In three

separate trials, 20% and 40% of the nodes were randomly

removed each time from the current network, as were 20% and

40% of the edges in separate runs. We found that in almost all

cases, the relationship between the number of target genes and the

number of partners was retained (Figures 3 through 14 in text S1).

Slight deviations were observed for rat (See legend to Figure S3 in

text S1). We believe that this slight disagreement is due to the fact

that the information for this species is already very scarce and

further removal of portions of the data makes it even scantier and

thus disturbs the relationship. This is corroborated by the fact that

the exponential saturation relationship as observed for the full

dataset is observed for 80% of the data. It is, however, lost when

only 60% of the data is retained. We also used another strategy to

select statistically significant edges: we used z-score which for each

pair was calculated as z = (x2m)/s where m is the mean of the

number of partners jointly co-regulated by the pair in 1,000

simulation of randomized networks of the same degree connec-

tivity and s is the standard deviation of this number. In another

run, we used all the edges in the co-regulation network (no edges

were removed). In both these cases, we obtained the results as

above (Figures S15 and S16 in text S1). The above analysis shows

that our results are more or less robust to the current

incompleteness of the regulatory data.

Discussion

A partnership network describes the associations made between

two regulators that co-regulate at least one common target gene.

In this study, we have revealed the topological properties of two

kinds of biological partnership networks (co-transcription and co-

phosphorylation) generated from the regulation network across

five different species spanning a large evolutionary period. With

regards to the relationship between regulatory and co-regulatory

interactions, we observe differences between E. coli and other

higher organisms. While E. coli shows a linear increase in co-

regulatory partners as the number of target genes increases, other

organisms show an exponential saturation relationship between

the two quantities. We demonstrate that this apparent dissimilarity

is also present in another bacterium, B. subtilis, and occurs because

the saturation part of the curve is not reached only achieving the

initial part which is linear. We believe that this is due to the

differences between the architecture of the transcription programs:

in bacteria, many genes are regulated by the same set of regulatory

elements due to the presence of operons and this reduces the

number of distinct ‘genes’ available. We have also presented a very

simple model that describes the growth of these networks and

explains the observed patterns.

The relationship present in the co-regulatory networks is also

observed in social networks, highlighting the similarities

between the architecture of social and regulatory networks.

Interestingly, the above findings are more or less consistent

across all five species in spite of large evolutionary distances and

difference in the size/complexity of the regulatory networks.

Figure 6. A model describing the growth of co-regulation networks. (a) Initially, there are no co-regulatory interactions between regulators.
(b) Upon growth, the new regulator must (shown in green) begin regulating an already regulated gene (the yellow box marked with a cross) in order
to gain a co-regulation partnership (dashed line). (c) In order to gain another partnership, a regulator must regulate genes regulated by other
regulators (the left yellow box marked with a cross) besides its partners. The number in each box represents the current number of targets for that
regulator.
doi:10.1371/journal.pcbi.1000755.g006

Scaling of Co-Management Partners with Targets
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This suggests that the above properties are inherent in

regulatory and co-regulatory networks of all living species. To

show that our results are robust to the incompleteness of

available data, we have carried out the analysis presented in this

study on smaller subsamples, leading to similar observations.

This demonstrates that the conclusions drawn here are unlikely

to change when more data becomes available or when different

values of the parameters are used.

The analysis presented in this study can be pursued further in

various directions in future work. First, in addition to analyzing the

co-regulatory networks using a static perspective for the five

species as done here, it would be of great interest to perform the

same analysis in a dynamic framework, e.g. under different

conditions and stages of the cell cycle, similar to previous works

that have revealed some interesting properties of the dynamic

regulatory network of yeast [11]. Second, it would also be

interesting to extend the analysis to add RNA interference (RNAi)

where microRNAs (miRNA) at specific DNA regions to control

the amount of proteins produced in the cell which would involve

two types of nodes (microRNA and the proteins). There are also a

number of other directions that could be pursued. We have started

with the preliminary work on some of these that are sufficiently

straight-forward. In particular, we performed a similar analysis as

above at the target level, i.e. we created a ‘co-regulated’ network

by inferring an edge between two targets if they have the same

regulator. We found that there is no clear and consistent

relationship between the number of partners and the number of

regulators; the relationship between the two is rather noisy (Figure

S17 in text S1). We also carried out an examination of the

correlation between co-regulatory edges and protein-protein

interactions (PPI). However, we found that there is no enrichment

of co-regulation edges in the PPI network (Table S1 in text S1).

Nevertheless, we believe that it might be worthwhile to pursue

these directions more closely in the future when more data

becomes available.

In summary, we have carried out an analysis of the co-

regulatory associations made between regulators across five

different species in order to analyze the organization and growth

of co-regulation networks. The results presented here define the

basic elements of the co-regulatory networks and given the fast

computations of the quantities presented herein, we hope that the

framework presented here aids in the directed investigation of the

co-regulatory network in the future in order to gain deeper insight.

Materials and Methods

Dataset
We chose five species for the analysis: E. coli, yeast, mouse, rat

and human. These specific species were chosen for two reasons.

One, these species are evolutionarily diverse, which lends more

confidence to an observation if it is true for all these species. Two,

the data for these species is most plentifully available. Transcrip-

tion regulatory data for E. coli was obtained from regulonDB

version 6.2 [34]. For yeast, it was the same as used in previous

similar studies [17,18]. This data was collected from the results of

genetic and biochemical experiments [2,10,35,36,37]. For rat,

mouse, and human, regulatory interactions were obtained from

the TRED database (as of June 2008) [38]. Human TF list in

various annotations is available at http://wiki.gersteinlab.org/

pubinfo/Human_TF_List. Phosphorylation data for yeast was

obtained from a large scale proteome chip experiment [39].

Human modification network was obtained from HPRD that

contained more than 30 kinds of post-translational modifications

such as acetylation, alkylation,, carboxylation, demethylation,

glycation, hydroxylation and nitration [40]. The sizes of the

networks are provided in Table 1.

As for the social networks, we analyzed two types: blog and

email. We obtained a network of blogs written over the period of

two months preceding the U.S. Presidential Election of 2004 [41]

where bloggers hyperlinked their blogs to others. This data was

comprised of 1225 blogs and 19090 hyperlinks between them. The

email network was obtained by analyzing the email communica-

tion within a medium sized university between 1669 users of

various designations [42].

Network transformation
We built the co-regulatory network from the regulatory network

in the following way. First, an edge was placed between two

regulators if they regulated the same target gene. Then we

generated 1,000 random networks of the same degree distribution

as the original regulatory network. In these null-networks, all

proteins had exactly the same connectivity as in the original one,

whereas the choice of their interaction partners was totally

random, thus maintaining the in- and out-degree of each node.

For every pair of regulators, we calculated the ratio of the number

of target genes regulated in the real network and the average

number of target genes regulated in random networks. To keep

only those co-regulatory associations that are more frequent than

random ones, edges with a ratio .1 were retained. As used in

previous studies, this strategy removes those edges that are less

probable than random [17,18].

Supporting Information

Text S1 Supplementary text and figures

Found at: doi:10.1371/journal.pcbi.1000755.s001 (0.60 MB

DOC)
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