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Abstract

Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic
bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the
folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to
unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to
selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime
where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC
usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is
robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that
small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations
evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory
intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT.
The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we
estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos
Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the
population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to
species with no bias, which supports our prediction.
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Introduction

The quantitative modeling of molecular evolution is of key

importance for reconstructing evolutionary histories, as well as for

understanding how the properties of natural macromolecules are

influenced by their evolution. Already for a long time population

size has been recognized as a crucial factor that influences both the

evolutionary process and the stability that macromolecules can

attain. On the other hand, even if mutation bias in prokaryotes

varies from extreme GC rich to extreme AT rich, its influence on

the evolutionary process, the stability of evolving macromolecule,

and on the fitness of the population has received much less

attention. Here, we simulate an evolutionary model that combines

population size, GC mutation bias, and protein folding stability,

and we show the deep interplay between these variables.

Kimura’s neutral model [1,2] is still one of the most influential

models of molecular evolution. This model considers all viable

macromolecules as equally fit and all the others as nonviable.

Within this neutral model, the functional properties of the evolving

macromolecules, in particular their folding stability, are indepen-

dent of population size and, by entropy arguments, they are

expected to coincide with the minimal properties compatible with

viable molecules [3]. If mutations with small fitness effects are

included in the model, population size N becomes a key variable

of the evolutionary process, since slightly deleterious mutations are

more likely to be fixed in small populations [4–6]. This study has

been pioneered by Ohta, who showed that population size can

provide a possible explanation for empirical observations such as

the generation time effect [7,8]. Obligate intracellular lifestyle,

such as that of endosymbiotic or parasitic bacteria, implies a strong

reduction in effective population size due to bottlenecks upon

transmission from one host to another. Inspired by Ohta’s theory,

computational studies have compared bacterial species displaying

an obligate intracellular lifestyle with their free living relatives,

suggesting that the genes of intracellular bacteria evolve faster as a

result of relaxed selection [9] (but Itoh et al. [10] give a different

PLoS Computational Biology | www.ploscompbiol.org 1 May 2010 | Volume 6 | Issue 5 | e1000767



interpretation) and that their structural RNAs [11] and their

proteins [12] are less stable than the orthologous macromolecules

of free living bacteria. Evolution experiments with virus and

bacteria confirm the influence of small population size, demon-

strating fitness loss in populations evolving under repeated

bottlenecks [13,14], and show that such a loss can be partly

compensated by over-expressing chaperones that assist protein

folding [15]. These findings support the idea that fitness is reduced

in small populations as a consequence of the reduction of protein

folding stability. Recent theoretical work has shown that, in the

appropriate limits, the statistical properties of population genetics

are formally equivalent to a statistical mechanical system, so that

there is an exact analogy between the reduction of fitness for small

populations and the increase of entropy for large temperature

[16,17]. In the present study, we will exploit this correspondence

to get analytic insight into non-neutral evolution.

Another key evolutionary variable, which however has received

little attention, is the nucleotide spectrum. In prokaryotic genomes,

it varies from extreme adenine plus thymine (AT) content in

obligatory intracellular bacteria to extreme guanine plus cytosine

(GC) content, for instance in actinobacteria. These differences in

GC content are prevalently thought to be due to mutation bias

[18,19]. They are strongest at the third codon position, where GC

content barely affects the amino acid composition of the protein,

but also influence the coding positions [20,21]. Due to the

structure of the genetic code, a mutation bias favoring thymine at

the nucleotide level favors the incorporation of hydrophobic

amino acids in the translated protein [12,22]. Hydrophobicity is a

key property for protein folding [23]. Proteins that are too

hydrophylic tend to be naturally unfolded, whereas proteins that

are too hydrophobic tend to misfold and aggregate [24]. This

qualitative trade-off between unfolding and misfolding was

confirmed by a computational study of the properties of

homologous proteins in the proteomes of several bacterial species,

using a model of protein folding stability that correlates well with

experimentally measured unfolding stabilities [12]. In previous

work, two of us and colleagues investigated the relationship

between unfolding stability, misfolding stability and mutation bias

using a protein evolution model with a realistic genotype (DNA

sequence) to phenotype (folding stability) mapping in a neutral

fitness landscape in which all proteins with stabilities above

thresholds have the same fitness. We found that the mutation bias

modulates the trade-off between the two kinds of stability, making

proteins evolving under AT mutation bias more stable against

unfolding but less stable against misfolding [25].

Interestingly, the two aspects discussed above, small population

size and mutation bias towards AT, are strongly correlated in

nature. In fact, most bacterial and eukaryotic lineages that adopted

an intracellular lifestyle, with consequent reduction of their

effective population size, also shifted their mutation spectrum

towards AT [26], as indicated by the strong correlation between

reduced genome size, which is a signature of intracellularity, and

the AT bias [9,12]. In this work, we investigate the association

between population size and mutation bias, studying its conse-

quences through a model that takes into account all of the relevant

features of protein evolution discussed above: folding stability with

respect to both unfolding and misfolding, population size,

mutation bias, and neutrality, i.e. the relationship between folding

stability and fitness.

Results

Model
We adopt the Moran model [27], which describes an evolving

haploid population with N individuals that reproduce asexually

and stochastically under mutation and selection. The model can

be easily extended to diploid populations. We assume here that the

product of population size times mutation rate is small, Nm%1, so

that the population is monomorphic, i.e. the time scale for

appearance of a new mutant in the population is large and at most

one single mutant genotype is competing with the wild-type for

fixation each time. This assumption is justified for small and

intermediate populations when considering an individual protein

coding gene, but not an entire genome (see Discussion). However,

for large populations the assumption Nm%1 is violated even for an

individual gene, and we can not apply the model to this case. In

this monomorphic limit, the probability that a mutation arising as

a single individual is fixed in the whole population can be exactly

computed as [27]

Pfix(i?j)~

1{
fi

fj

1{
fi

fj

� �N
, ð1Þ

where fi is the exponential growth rate of the phenotype associated

to sequence i, which will be called fitness in the following. This

analytic result enormously simplifies the numeric study of the

system allowing the systematic exploration of its parameter space.

In our simulations, we randomly generate a mutated sequence,

evaluate its fitness with respect to the wild type, and accept the

new mutation according to the above probability.

We model mutations at the DNA level through the HKY

process [28], whose only parameters are the equilibrium

frequencies of the four bases A,T,G,C in the absence of selection,

and the transition/transversion ratio k, whose influence is very

weak and which we set to k~2 [8]. In order to reduce the number

of parameters, we assume that Chargaff’s second parity rule holds,

so that p(A)~p(T) and p(G)~p(C). Thus, the mutation model

only depends on the GC usage, GC~p(G)zp(C). GC usage

different from 0:5 determines a mutation bias towards AT or

Author Summary

The Guanine plus Cytosine (GC) content of bacterial
genomes varies from 20% to 80%. This variation is
attributed to the mutation bias produced by replication
and repair machinaries. However, the evolutionary forces
that act on these very different machinaries have remained
elusive. It is known that the GC content of genes strongly
influences the resulting proteins’ hydrophobicity, which is
the main determinant of folding stability. This may lead to
expectation that the GC content is strongly selected at its
optimal value, since proteins that are too hydrophylic face
unfolding problems and proteins that are too hydrophobic
face misfolding and aggregation problems. In this work,
using a realistic model of genotype (DNA sequence) to
phenotype (protein folding stability) to fitness mapping
and a standard population genetics model, we find that
the optimal GC usage depends on population size. In
particular, very small populations prefer small GC usage,
intermediate populations prefer large GC usage, and large
populations prefer no bias. Our results may explain why
most intracellular bacteria, evolving with small effective
populations, tend to adopt small GC usage. To test this
hypothesis, we estimated the effective population size of
several bacterial species, finding that those that evolve
with 50% GC usage are characterized by significantly larger
populations, although several exceptions exist.

Mutation Bias, Protein Stability, Population Size
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towards GC, therefore we sometimes refer to the GC usage

variable as the mutation bias. In our model, the GC usage variable

very strongly correlates with the GC content of the evolving gene

in the stationary state of the evolutionary dynamics. The same

correlation is thought to exist between the GC content of bacterial

genomes, in particular at third codon position, and the GC usage

of the mutations arising in bacterial replication. Therefore, we will

compare the variable GC usage in our model with the variable GC

content at third codon position in bacterial genomes.
Folding stability. In our model the fitness of an individual

carrying a particular gene depends on the folding properties of the

translated protein, which are estimated through a simple protein

folding model. This model was used in our previous works

[25,29,30] and it is similar to those used by others [31–39]. A

characteristic of our model that distinguishes it from similar ones is

that we consider two types of stability, with respect to misfolding

and with respect to unfolding. Stability with respect to unfolding is

estimated through the folding free energy F of a protein sequence

A, calculated with a simple contact interaction model (see

Methods). Free energies estimated in this way correlate well with

experimental measures (correlation coefficient r~0:92 over a test

set of 20 proteins, UB, unpublished result). Stability with respect to

misfolding is estimated through the normalized energy gap a (see

Methods), which is the normalized difference between the effective

energy of the native state and the minimum effective energy

predicted through a Random Energy Model, representing the

energy of compact intermediate structures very different from the

native one. These misfolded structures can trap the folding

process, and they can expose hydrophobic patches and promote

aggregation.

Interestingly, these two kinds of stability respond in an opposite

way to an increased mutation pressure towards hydrophobicity:

while {F increases for increasing mean hydrophobicity, meaning

that proteins become more stable with respect to unfolding, the

normalized energy gap decreases. This is due to the fact that the

maximum stability of all potential misfolded structures increases

more than the stability of the native structure, thus making

misfolding and aggregation problems potentially more serious

[12]. This trade-off between the two stabilities has a deep influence

on the evolutionary dynamics.

Fitness. We adopt a fitness function that depends on the

normalized stabilities xa(A)~a(A)=athr and xF (A)~F (A)=Fthr

and on the neutrality exponent S,

f (xa,xF ,S)~

1

1zx{S
a zx{S

F

a(A)w0 ^ F (A)v0,

0 otherwise:

8<
: ð2Þ

The neutral thresholds athrw0 and Fthrv0 define the scale of

acceptable stabilities and they are kept fixed throughout the

simulation. With this definition the fitness takes values between 0
and 1, vanishing if the protein does not fold correctly, which

means that it is considered essential. Two plots of fitness versus

stability for S~1 and S~20 are represented in Fig. 1 for

illustration purposes. The fitness becomes a binary variable, either

0 or fmax, if the neutrality exponent S is either zero (in this case all

sequences satisfying aw0 and Fv0 are equally fit) or infinite (in

this case all sequences overcoming the neutral thresholds awathr

and FvFthr have fitness 1 and all other sequences are not viable).

These limits are equivalent to Kimura’s neutral model [2], which

we studied previously [25,29,30], in which it is assumed that

mutations that maintain stabilities above the neutral thresholds

have no fitness effect, while all the others are lethal. This

motivated us to name the parameter S the neutrality exponent.

Notice that the term neutrality is sometimes defined as the fraction

of proteins that retain wild-type structure under mutations [40].

This definition assumes a neutral model where the wild-type

structure is either stable (f ~1) or unstable (f ~0). We prefer to

call this quantity the fraction of neutral neighbors [29], and to call

neutrality exponent the exponent S that determines the

smoothness of the relationship between stability and fitness.

We choose the two neutral thresholds proportional to the values

of a and F for the reference protein in the Protein Data Bank

(PDB), multiplied with coefficients Ba and BF . In simulations of

neutral evolution, Ba and BF have to be smaller than one so that

the reference protein is viable. We present results with

Ba~BF ~0:95. We tested the robustness of our results with

respect to both changes in the analytical form of the fitness

function and the values of parameters, as discussed in the

following.

Analytic results
We can analytically predict how the population size N and the

neutrality exponent S influence stability and fitness by exploiting

the formal analogy between population genetics and statistical

mechanics demonstrated by Berg and coworkers [16] and by Sella

and Hirsh [17]. These authors noticed that, in the monomorphic

limit Nm%1 mentioned above and that we assume throughout this

work, the Moran process, as well as other evolutionary processes

studied in population genetics, tends to a stationary distribution of

the form exp (N log f ). This distribution is equivalent to a

Boltzmann distribution where population size N plays the role

of inverse temperature and the logarithm of fitness,

’(xa,xF ,S)~ log (f ) plays the role of minus energy. This result

implies that the probability to find a protein with stability values a
and F in the stationary state of an evolving population is

proportional to exp (N log f (xa,xF ,S)) multiplied by a factor that

depends on the mutation process. The bias arising in the mutation

process was treated as a ‘‘chemical potentia’’ by Sella and Hirsh

[17] or as a mutational entropy by Berg et al. [16]. These two

formalisms are qualitatively equivalent. We find the name

mutational entropy more intuitive, and we will use it in the

following. We define Pmut(a,F) the probability to find stability

parameters a and F under mutation alone, and we introduce the

quantity s(xa,xF ,GC)~ log Pmut(xa,xF ,GC)ð Þ, which we call the

mutational entropy compatible with stabilities xa and xF under the

given mutation process (notice that strictly speaking s is not an

entropy, however we find this name intuitive for indicating the

mutational force that opposes protein stability). As discussed

above, the mutational entropy depends on the GC usage, which

can favor one kind of stability with respect to the other. Taking all

this into account, the stationary distribution of stability that results

from mutation and selection is

P(a,F)!Pmut(a,F ) exp (N log f (a,F )): ð3Þ

The logarithm of the above probability can be interpreted as

minus an evolutionary free energy divided by temperature 1=N,

and it is given by

G(xa,xF )!s(xa,xF ,GC)zN’(xa,xF ,S), ð4Þ

where ’(xa,xF ,S)~ log (f ) is called the additive fitness [17]. The

distribution Eq. (3) is peaked around the values xa and xF that

maximize the exponent G, i.e. minimize the evolutionary free

energy. The equations that define these most likely values read

Mutation Bias, Protein Stability, Population Size
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Figure 1. Fitness versus stabilities for S~~1 (top) and S~~20 (bottom).
doi:10.1371/journal.pcbi.1000767.g001

Mutation Bias, Protein Stability, Population Size
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Ls

Lxi

� �
xi~xi

~{N
L’
Lxi

� �
xi~xi

~{NS
x{S{1

i

1zx{S
a zx{S

F

, ð5Þ

where i~a,F . We call the above the maximum-likelihood (ML)

equations. Notice that the maximum likelihood values xa and xF

depend on the parameters N, S and GC. We can study this

dependence analytically, assuming that Eq. (3) is narrowly peaked

around these values, so that averages can be calculated as

SxiT~xi and S’(xa,xF )T~’(xa,xF ). This approximation is

justified by the fact that the mutational entropy s is expected to

be proportional to protein length L, which is of the order of 102,

and the selective term is proportional to population size, which is

also large, so that the exponent G is large and the distribution very

narrow. The condition that G has a maximum at xa,xF requires

that its Hessian matrix H, consisting of its second derivatives, is

negative definite,

Hij~
L2s

LxiLxj

zN
L2’

LxiLxj

: ð6Þ

This Hessian is the sum of the Hessian of ’(xa,xF ), which is

negative by construction, as it is easy to verify, and the Hessian of

s(xa,xF ), which is the logarithm of a probability. We assume that

the mutational entropy s(xa,xF ) has a single maximum at

stabilities (xmut
a ,xmut

F ), so that its Hessian is negative. The values

(xmut
a ,xmut

F ) that represent the most likely values of xa and xF in

the absence of selection depend on GC. By definition of a, xmut
a is

always negative, which is not a viable stability (f ~0). However,

our numerical results show that xmut
F is positive for small GC

usage, corresponding to hydrophobic sequences. The mutational

entropy s decreases for xF wxmut
F and for xawxmut

a , which implies

that the corresponding derivatives are negative, as required for the

existence of the solution of the ML equations.

We can go beyond the maximum-likelihood approximation

writing the exponent G at second order as G(xa,xF )&G(xa,xF )z
1

2

X
ij

Hij(xi{xi)(xj{xj), which is equivalent to approximating

the distribution Eq. (3) as a Gaussian with covariance matrix

{H{1. Therefore, negativity of the Hessian matrix is equivalent to

requiring the covariance matrix to be positive.

Influence of population size. We can calculate how xa and

xF depend on population size by taking the derivatives of the ML

equations with respect to N (see Text S1). In this way, we find that

both stabilities must increase with population size, as expected.

The mean fitness f (xa,xF ,S) is therefore an increasing function of

N , whereas the mutational entropy s(xa,xF ,S) is a decreasing

function of N.

Influence of the neutrality exponent. Stabilities are not

monotonic functions of the neutrality exponent S. At S~0 all

stabilities above the lethal threshold xi~0 at which fitness drops to

zero are selectively equivalent, and the ML equations imply that

the stabilities with the largest mutational entropy fulfilling these

conditions will prevail. As mentioned above, the most likely value

of xa in the absence of selection is negative for all GC usages, so

that xa&0 for S?0. On the other hand, the most likely value of

xF in the absence of selection xmut
F is positive for hydrophobic

sequences, corresponding to small GC usage. The ML equations

thus predict that xF ~max(x�F ,0), where x�F&xmut
F satisfies the

equation Ls=LxF ~0 at xa~0. Similarly, in the neutral limit

S??, the smaller between xa and xF tends to the value 1, i.e.the

corresponding stability tends to the neutral threshold, and the

larger stability satisfies the equation Ls=Lxi~0 at xj~1. For finite

S, it can be shown that both stabilities increase with S when S is

small, they reach a maximum and then decrease towards the

neutral values (see Text S1). This behavior of stability arises from

the fact that, under neutral or almost neutral evolution, the

advantage in fitness provided by a more stable protein is too small

to be fixed in the population against the entropic effect of

mutations. This mechanism has been proposed as an explanation

of the empirical observation that natural proteins are only

marginally stable [3].

Similarly, we can show that the fitness has a minimum as a

function of S: It starts from the value f ~1=3 at S~0, then at

small S the fitness is reduced because low stability values are

penalized, at larger S more stable sequences are attained, and

finally in the neutral limit the fitness tends to the maximum

possible value f ~1 while stability decreases (see Text S1). We can

therefore distinguish three qualitative behaviors, described in

Table 1. We are mainly interested in the parameter range that is

far both from the region SNv1 at which the minimum stability is

close to the lethal threshold min(xa,xF )&0, and from the region

of large S at which stabilities are close to the neutral thresholds.

Influence of the mutation bias. The most interesting

feature of the evolutionary model presented here is the depen-

dence of stability and fitness on the mutation bias. Unfortunately,

this dependence cannot be predicted analytically, since we do not

have a detailed model of how the mutation entropy s depends on

GC usage. Numerical results show that, for the folding free energy

function that we adopt here, the two stabilities respond differently

to the GC usage. This is expected, since small GC usage favors

hydrophobic proteins, enhancing unfolding stability (xF ) at the

expenses of misfolding stability (xa). Since fitness depends on both

xa and xF , it has to trade-off between the two stabilities, and we

expect that there is an optimal GC usage at which the fitness is

maximal for given S and N, which satisfies the equation

d’=dGC~0

d’

dGC
~

S

1zx{S
a zx{S

F

Lxa

LGC
x{S{1

a z
LxF

LGC
x{S{1

F

� �
, ð7Þ

where xa and xF are determined by the ML equations (5). The

maximum fitness is achieved when the quantity

d~x{S
a zx{S

F ~x{S
min 1z(xmin=xmax)S
� �

ð8Þ

is minimal. Here xmin is the smaller value and xmax the larger

value of xa and xF . We first discuss the small N regime at which

Table 1. Qualitative behavior of fitness and stability versus
neutrality exponent S at fixed GC and population size.

S range Stability Fitness

Small Increasing Decreasing

Intermediate Increasing Increasing

Large Decreasing Increasing

At S~0 stability is close to the lethal threshold min(xa,xF )&0 without any
penalization for the fitness. In the small S regime stability increases with S, but
the penalization for low stability decreases even more, with the net effect of a
decrease in fitness. At intermediate S both stability and fitness increase with S

and stability reaches a maximum that depends on N . Finally, at large S stability
decreases with S, since the differences in fitness produced by a given difference
in stability become smaller and cannot be fixed against the entropic effect of
mutations, while fitness tends to the maximum possible value f ~1.
doi:10.1371/journal.pcbi.1000767.t001

Mutation Bias, Protein Stability, Population Size
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stabilities are small and they are strongly influenced by the GC

usage. In this regime, we expect that there is a value of GC at

which xa and xF are equal. Therefore, at small GC usage it holds

xmin~xa, which increases with GC, whereas at large GC usage it

holds xmin~xF , which decreases with GC. Consequently, the

factor x{S
min has a minimum where xa~xF . Conversely, the second

factor that appears in d, 1z(xmin=xmax)S , has a maximum where

xa~xF . We expect that the factor x{S
min depends more strongly on

GC than the factor 1z(xmin=xmax)S , in particular if S is large.

Therefore, we expect that the minimum d (i.e. the optimal GC) is

reached near the GC usage at which xa~xF , and that it

approaches this value as S grows. The GC usage at which xa~xF

has an interesting interpretation. We can define the selective

pressure on the variable xi as the derivative of ’ with respect to xi,

which expresses how fitness responds to a change in stability. If this

derivative is large, a large number of attempted mutations will be

discarded because of their negative influence on fitness. The ML

equations show that the selective pressure is proportional to

{Ls=Lxi, and it is stronger on the smaller variable xmin.

Therefore, when the GC usage increases, the selective pressure

on unfolding increases, and the selective pressure on misfolding

decreases, and they balance when xa~xF .

Theoretical considerations and numerical results indicate that

there is a second regime at large N . In this limit, the fitness tends

to the maximum possible value. Due to the trade-off between

unfolding and misfolding stability, it is not possible to maximize xa

and xF simultaneously, since they are inversely related. As N
increases, xa and xF are expected to converge to the optimal

fitness point xMax
a ,xMax

F and their dependence on GC is expected

to become weaker and weaker. We find numerically that xMax
a is

smaller than xMax
F , so that for large N, xa is smaller than xF for all

GC, and the selective pressure is always stronger on xa. In this

regime, x{S
min always decreases with GC and its dependence on GC

gets weaker. Conversely, the term 1z(xmin=xmax)S always

increases with GC, and the optimal GC is determined by a

balance between these two terms. We now discuss two interesting

limiting behaviors of the optimal GC.

1. In the small N regime and for finite S, so that SN is small, xa

tends to zero and xF tends to max(xmut
F ,0) independent of S.

For small GC usage, xmut
F is positive and d&x{S

a is a

decreasing function of GC, since xa increases with GC. For

large GC usage, xawxF and d increases with GC. Therefore,

we expect that the minimum of d, i.e. the optimal GC, is

attained near the GC usage at which xmut
F (GC)~0, which is

independent of S and of the neutral thresholds Ba and BF .

2. In the neutral limit S??, the selective pressure only affects

the smallest stability variable, since ’&{ log 1zx{S
min

� 	
. This

tends to xmin&1 independent of N and GC. Therefore, as

discussed above, for large S, the optimal GC is reached when

xa&xF&1, i.e. when the two selective pressures balance. The

ML equations imply that at this point Ls=LxF (1,1,GC)&
Ls=Lxa(1,1,GC), so that the optimal GC does not depend on

N. The ML equations also imply that, in the large S limit,

1zxS
min&NS=DLs=LxDx~1 (see Text S1), which means that the

maximum stability and maximum fitness is attained at the GC
value at which DLs=LxminD is minimum. This prediction is

confirmed in Fig. 6 in the Text S1).

Simulations
All simulations presented here are based on the native structure

of some natural protein. When not otherwise stated, we exemplify

our numerical results using the protein lysozyme, PDB id. 31zt.

In all cases, the starting sequence is the sequence in the PDB.

Results are collected after fitness has converged to its stationary

value, discarding the first &1000 accepted substitutions, which are

enough for equilibration, as it can be seen in Fig. 2 in the Text S1.

As an illustration of the stationary states of the evolutionary

dynamics, we represent in Fig. 2 the mean stability values xF and

xa obtained using the fitness function with S~1 for different

population sizes from N~10 to N~4000 and GC usage from

GC~0:1 to GC~0:9. The distributions P(a,F ), Eq. (3), are

narrowly peaked around the plotted points (xa,xF ). Sets of points

with the same GC usage are joined with solid lines, and sets of

points with the same N are joined with dashed line. The data are

superimposed to a heat map that shows the value of fitness in

colour code. We can see from the figure that both stabilities grow

with N. On the other hand, xa grows and xF decreases with GC,

so that xa and xF are negatively correlated for fixed population

size. For GCv0:6, xF tends to a finite value when xa tends to zero

(corresponding to very small N), i.e. the most likely value of xF in

the absence of selection is xmut
F w0 and, for such small GC usage,

there is very weak selective pressure on unfolding. One can see

from the plot that the GC usage at which xF and xa are equal

increases with population size, which implies that the selective

pressure on xa increases more than the selective pressure on xF for

increasing population size. In the large population limit both xa

and xF tend to finite values independent of GC. We estimated

from our numerical results that xmax
a &4 and xmax

F &10, so that for

large populations it is always xmax
a v xmax

F .

Fitness clearly increases with N . The variation of fitness with

GC is weaker, but one can nevertheless notice it from the plot.

This variation translates into the fact that, for fixed fitness function

and population size N , there is an optimal GC usage such that

fitness is maximal, as predicted in Eq. (7). The existence of this

optimal mutation bias is demonstrated in Fig. 3, where we plot the

fitness of populations with constant N and S as a function of their

GC usage. For each set of parameters, we obtained the optimal

GC usage GCopt(N,S) by cubic interpolation, as exemplified in

Fig. 3, and plotted it versus N. We found that GCopt is small for

very small populations, large for intermediate populations, and the

bias is almost absent (GC&0:5) for very large populations (see

Fig. 4). We obtained qualitatively similar results as long as the

neutrality exponent S is not too large or too small (in that case, the

fitness landscape becomes almost neutral). The population size at

which the optimal GC usage is highest increases with decreasing S
for small S, while the opposite holds for large S. Our numerical

results are consistent with the optimal GC usage becoming less

dependent on S in the infinite population limit, see Fig. 3 in the

Text S1.

Eq. (4) implies that a trait that confers a selective advantage can

only be fixed against the entropic effect of random mutations when

the difference in the selection coefficients ’ is larger than 1=N . We

therefore verified whether the difference of selective coefficients ’
between populations adopting different GC usages is large enough

so that the optimal one would be eventually selected. We found

that �’ decreases with population size, but more slowly than

1=N , so that N�’ increases with N, see Fig. 4 in the Text S1.

This implies that two populations evolving with different mutation

bias (the optimal one and another one) attain a fitness difference

large enough so that the optimal GC usage can be selected.

We tested that our results do not change qualitatively when

different protein structures are used in the simulation. To this end,

we computed the relationship between the optimal GC usage and

population size at neutrality exponent S~1 for five proteins of

different length and secondary structure (see Methods). All curves,

plotted in Fig. 5, have the same shape, although they are shifted in
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the vertical direction in a way that suggests that shorter proteins are

characterized by larger optimal GC usage (but more proteins are

needed to confirm this trend). We then combined the five curves. We

assumed that a genome composed of these five proteins is evolving

with very low mutation rate, so that at most one protein is mutated at

each step, consistent with the assumption mN%1. The global fitness

of the organism was obtained through two different ansatz that

yielded qualitatively similar results, either as the minimum of the

fitness of all proteins P, f ~minP fPð Þ or as the product of the

fitnesses, f ~PP fP, assuming absence of epistatic interactions. From

these f we then obtained the optimal GC by cubic interpolation.

This is represented in Fig. 5, bottom plot for S~1. One can see that

the qualitative behavior of the individual curves is preserved. We

expect therefore that this qualitative behavior would be maintained

for a large number of proteins as well.

To further test the robustness of our results we changed the

neutral thresholds athr and Fthr up to 20%, examining nine

combinations of thresholds for neutrality exponent S~1. The

results are shown in Fig 6. One can see that the qualitative

behavior is unchanged. As expected, when athr becomes more

tolerant the optimal GC usage decreases, and the contrary

happens when athr becomes more strict.

Finally, we verified that the results are robust with respect to the

energy parameters used. For such a test, we adopted the contact

interaction energies determined by Godzik, Kolinsky and Skolnick

(GKS) [41]. These parameters have correlation r~0:65 with the

BVK parameters adopted in the present study, so that their

differences are not small. We determined a new parameter for

conformation entropy s~sGKS~0:20 by demanding the folding

free energies computed with the two sets of energy parameters to

coincide on the average. As one can see from the dotted curve in

Fig. 7, the qualitative behavior is the same for the two parameter-

sets, but the optimal GC usage for GKS parameters is lower than

for BVK parameters. This is due to the fact that, for our test

protein lysozyme, GKS energy parameters produce a very low

normalized energy gap a~0:024 instead of a~0:24 with BVK

parameters, which means that the native conformation is closer in

energy to random conformations when GKS parameters are used.

Consequently, athr is very small (we recall that athr is proportional

to the value of a for the native sequence) and the selective pressure

on misfolding is very weak. We then increased this selective

pressure by setting Ba~9:5 instead of 0:95. The resulting curve

can be seen in Fig. 7 as a dashed curve. One finds that the

maximum GC usage is now much larger, reaching GC&0:8.

Finally, we show in Fig. 8 the optimal GC usage versus the

neutrality exponent S for small (N~40), intermediate (N~320)

and large (N~1280) populations. For small populations the

optimal GC usage increases with the neutrality exponent, from

very small values to GC&0:5. For intermediate and large

populations the optimal GC usage has a maximum and then it

decreases. The maximum value of GCopt increases with

population size, and it is reached at smaller neutrality exponent

for intermediate populations (S~2 at N~320) than for large

populations (S&5 at N~1280).

Figure 2. Mean unfolding stability xF versus misfolding stability xa for neutrality exponent S~~1 (non-neutral regime). The sets of
points joined with solid lines correspond to constant GC usage, between 0:1 (largest xF ) and 0:9 (largest xa). xa grows and xF decreases with GC.
The sets of points joined with dashed lines correspond to constant population size N , from N~10 (smallest stability) to N~4000 (largest stability).
Both stability variables xi increase with N . Data points are superimposed to a heat map of the fitness function, showing that fitness increases with N .
However, constant N lines do not correspond to constant fitness, but there are small variations, from which the optimal GC usage is derived. The
solid white line shows xa~xF at which the selective pressures on xa and xF balance. One can see that, at large N , xa is smaller than xF for all GC, so
that the selective pressure is stronger on the former.
doi:10.1371/journal.pcbi.1000767.g002
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We then tested the mean-field prediction that the stability

coefficient x~min(xa,xF ) has a maximum and the sequence

entropy has a minimum as a function of neutrality exponent S. As

expected, maximum stability and minimum entropy occur at the

same value of S, see Fig. 5 in the Text S1.

Qualitative behavior of the optimal GC. We now discuss

the N-dependence of the optimal GC based on the results

reported in Fig. 2. As explained above, the existence of the optimal

GC usage arises from the trade-off between unfolding stability and

misfolding stability in response to changes in the mutation bias.

One can observe this trade-off in Fig. 2, from which it appears that

xa and xF are negatively correlated for fixed population size. At

the optimal GC the derivatives of x{S
a and x{S

F with respect to

GC, which have opposite sign, become equal in absolute value, as

indicated by Eq. (7). One can see from Fig. 2 that at small GC

usage xa responds to GC variation more strongly than xF , whereas

the opposite happens at large GC usage, so that the optimal is

reached at intermediate GC. In Fig. 2, the white thick line

represents the xF ~xa line at which the selective pressures on

unfolding and misfolding are equal. One can see from the plot

that, for small GC usage and small population sizes, the selective

pressure is stronger on xa (misfolding). Since xF increases faster

than xa with population size, the selective pressure on xa increases

with N more than the selective pressure on xF . Consequently, the

GC usage at which xF ~xa (white line) increases with population

size. As discussed in the section ‘‘Influence of the mutation

process’’, this behaviour qualitatively explains why the optimal

GC increases with N at small N, since the optimal GC is expected

to be near the value at which xF ~xa. Near N~320, the optimal

GC attains a maximum as a function of N. For Nw320, we see

that xawxF for all GC usages, so that the selective pressure is

always stronger on misfolding, and we enter what we called the

large N regime. In this regime, xa and xF tend to the finite values

that yield the maximum absolute fitness (numerical results suggest

that they are xmax
a &4 and xmax

F &10), which are independent of

GC, so that the GC dependence of stabilities gets weaker and

weaker for large populations. When these limiting values are

approached, the (xa,xF ) curves that correspond to fixed Nw320
and varying GC in Fig. 2 change their shape, becoming more

convex and centered around GC~0:5 (red squares). This

behavior corresponds to the fact that the optimal GC decreases

towards GC~0:5 for very large population size.

According to this reasoning, the maximum value of GCopt

versus N is reached at a population size where xmin~xa

approaches its limiting value xMax
a . As discussed above and

detailed in the Text S1, xmin has a maximum as a function of S for

fixed population size. Therefore, the population size at which a

given value xmin is reached has a minimum as a function of S,

which implies that the population size N at which the optimal GC
is largest has a minimum as a function of S. This prediction is in
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Figure 3. Fitness (in different units for each curve) versus GC usage for neutrality exponent S~~1 and three different population
sizes. The curves have been shifted in the vertical direction so that their maxima coincide. We obtain GCopt by cubic fits, which are plotted as
dotted, dashed, and solid lines.
doi:10.1371/journal.pcbi.1000767.g003

Mutation Bias, Protein Stability, Population Size

PLoS Computational Biology | www.ploscompbiol.org 8 May 2010 | Volume 6 | Issue 5 | e1000767



Figure 4. Optimal GC usage GCopt at which the fitness is maximum versus population size N . The upper plot shows data with neutrality
exponent S~1 and the bottom plot shows S~0:5,1,2,5 and 20. Interpolating lines are drawn as a guide to the eye.
doi:10.1371/journal.pcbi.1000767.g004
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Figure 5. Optimal mutation bias GCopt at which the fitness is maximum versus population size N for different proteins and
neutrality exponent S~~1. Upper plot: Results for individual proteins. Bottom plot: Fitness is obtained for the combination of 5 proteins either as
the minimum or as the product over all proteins. Interpolating lines are drawn as a guide to the eye.
doi:10.1371/journal.pcbi.1000767.g005
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qualitative agreement with Fig. 4, bottom plot, which suggests that

the minimum of the largest GCopt versus N, maxNGCopt(N,S), is

reached between S~1 and S~2.

Effective population Size
The results that we have presented suggest that mutation bias

towards AT or GC favor protein folding stability for very small

and intermediate population sizes, respectively, while very large

populations are advantaged in the absence of bias (GC&0:5). As it

will be discussed below, this suggests that species evolving with

mutation bias, either towards AT or GC, will have smaller

population size than species with no bias. This prediction is

consistent with the fact that almost all bacterial species with

intracellular lifestyles, implying a reduction of effective population

size through bottlenecks, shifted their mutation spectrum to AT,

which resulted in small genomic GC content. On the other hand,

among bacteria with large GC content some are facultative

pathogens, such as Mycobacterium tuberculosis, and some live

symbiotically in plant nodules, but there is no general tendency

allowing for the deduction of their population size from their

lifestyles. Therefore, to test our prediction, we tried to directly

estimate their effective population size.

The effective population size Ne depends on the breeding

structure and the natural history of a population, and in particular

it is influenced by the bottlenecks that the population may undergo

if a few individuals periodically colonize new environments.

Therefore, the effective population size cannot be measured

experimentally, but is estimated by fitting some observed

population feature to its expected value under evolution in a

population with given Ne. Optimal codon usage was used several

years ago to estimate the effective population size of Escherichia coli

[42]. A recent work supports the existence of a correlation between

effective population size and synonymous codon usage [43], and

the availability of many complete genomes makes it possible to

analyze codon usage on a large scale. Codon usage and mutation

bias are intimately correlated. It is commonly believed that the

mutation bias, rather than selection for optimal codon usage,

ultimately influences the global GC content of a genome [18,19].

The definition of the optimal codon usage on which the results

that we use here are based considers the excess frequency of

preferred codons with respect to the frequency expected under

mutation alone, and is therefore not expected to depend on the

mutation bias in a trivial way. Dos Reis el al. [44] have recently

estimated the optimal codon usage in a large number of

prokaryotic species. We use their data rather than the analogous

data obtained by Sharp et al. [45], since Dos Reis et al. evaluated

the optimal codon usage on the entire genome, whereas Sharp

et al. concentrated their attention only on ribosomal genes, which

can be a biased sample. Fig. 9 shows the average optimal codon

usage versus the average GC content at the third codon position,

which is not affected by the selection on the amino acid sequence

and is expected to be very strongly correlated with the mutation

bias. We distinguished species with small (v0:3), intermediate (0:4
to 0:6) and large (w0:7) GC content. Species with intermediate

GC content turned out to have significantly larger optimal codon

usage, which suggests that they have larger effective population

size. The scatter plot and the histogram of the GC content are

shown in Fig. 7 and 8) in the Text S1. Error bars in the plot

represent the standard error of the mean, and show that the mean

values are significantly different. However, data prior to the mean

are rather broadly distributed, with standard deviations equal to

0:16 (GCv0:3), 0:24 (GC [ ½0:4,0:6�) and 0:20 (GC w0:7).
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Figure 6. Optimal GC usage GCopt versus population size N for neutrality exponent S~~1 and different values of the neutral
thresholds athr~Baa0 and Fthr~Bf F0, where the reference energy gap a0 and unfolding free energy F0 are those measured for the
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other curves are contained between them.
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As a second estimate of effective population size, we considered

the ratio between non-synonymous and synonymous substitutions

KA=KS, which is thought to represent the strength of negative

selection [8]. We examined values of KA=KS computed for pairs of

entire genomes, recently published by Daubin and Moran [46].

From their table, we eliminated two pairs of genomes for which

the evolutionary divergence, estimated through KS , was very small

(v0:1), corresponding to Bordetella pertussis/parapertussis and two

strains of Xylella fastidiosa, since it is known that the amino acid

substitution rate is significantly higher at small time separation

[47–49] and in fact these two pairs of genomes showed the two

largest values of KA=KS. We also eliminated two pairs for which

the two compared species had genomic GC content in different

bins: two strains of Prochlorococcus marinus having GC = 36% and

51%, and the pair Synechocystis/Synechococcus having GC = 48% and

GC = 65%, respectively. We divided the remaining 19 pairs in 3

bins of low, mean and high GC content and averaged their

KA=KS. Results, shown in Fig. 9, clearly show that species evolving

with no bias are characterized by lower KA=KS, hence larger

effective population size, in agreement with the analysis of the

optimal codon usage and with the prediction of our model.

Finally, we reanalysed our data on protein folding stabilities

computationally estimated for orthologous proteins in different

prokaryotic genomes [12]. Unfolding and misfolding stabilities are

negatively correlated, as predicted by our model (see Fig. 10). We

found that most of the organisms evolving with mutation bias have

proteins whose misfolding stability is lower than what could be

expected based on their unfolding stability, see Fig. 11. This

further supports the idea that these species are characterized by

reduced effective population sizes.

Discussion

Interplay between mutation bias and population size
We studied here a mathematical model of protein evolution

where the genotype to phenotype mapping is determined by the

stability of the mutated protein against unfolding and misfolding,

predicted using a protein folding model that correlates well with

experimental measures. As observed in previous work, the two

kinds of stability respond in an opposite way to changes in the GC

usage of the mutation process. This fact produces a trade-off

between the two kinds of stability, and an interesting phenome-

nology arises from the impossibility to find a mutation process that

optimizes both stabilities at the same time, a concept that in the

physical literature has received the name of frustration.

We considered three key evolutionary parameters: the effective

population size N, the neutrality exponent S, which determines

how protein stability influences fitness, and the GC usage that
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Figure 7. Comparison between the optimal GC usages computed with GKS energy parameters (dotted line and dashed line) and
the BVK parameters adopted in the present study (solid line). The conformation entropy is sBVK~0:074 for BVK parameters and sGKS~0:20
for GKS. The coefficient of the neutral threshold is Ba~0:95 for the dotted curve and Ba~9:5 for the dashed curve. Other parameters are fixed at
S~1, BF ~0:95.
doi:10.1371/journal.pcbi.1000767.g007
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expresses the mutation bias. Despite its importance in shaping the

folding properties of proteins, the latter has been rarely considered

in evolutionary models. Here we show that, in the non-neutral

regime, mutation bias has a very interesting interplay with

population size. We suggest that this can explain why some

microbial species adopted extreme mutation bias.

At high neutrality exponent, all proteins with stability above the

neutral threshold provide the same fitness and evolution is only

able to attain the lowest allowed stabilities [3], almost independent

of population size. Consistently, our analytic and numerical results

indicate that the neutrality exponent S has a non-monotonic

influence on protein stability, which reaches a maximum at

intermediate S for given population size. The increase of S in our

model has its biological counterpart in the increase of the

expression level of chaperones, which make proteins more tolerant

to stability losses. Therefore, the decrease of stability for increasing

S predicted by our model would correspond in the real world to

the decrease of protein stability when the chaperone expression is

increased. This outcome appears rather plausible. However, given

the cost of synthesizing chaperones, in real evolution it is to be

expected that the increase of the expression level of chaperones is a

consequence of the loss of protein stability, as observed in

intracellular bacteria with reduced population size, rather than the

other way round.

In the neutral regime the GC usage influences the amino acid

composition and consequently the folding properties, favoring

proteins more stable with respect to misfolding but less stable with

respect to unfolding, without modifying the fitness. In contrast, in

the non-neutral regime fitness is a continuous function of stability

and the outcome of evolution depends non-trivially on mutation in

the sense that for fixed population size there is an optimal

mutation bias at which fitness and stability are maximal. This is an

unexpected result, which implies that mutation and selection are

effectively entangled, and that the mutation spectrum constrains

the maximum stability and fitness that an evolving population can

attain. The possibility that the mutation rate is optimized as a

response to evolutionary forces [50] has received considerable

attention in experiments (see Ref. [51] for a recent work) and

modelling (see for instance Refs. [52,53]). The main forces

influencing mutation rate evolution have been identified as the

population size [50], the ruggedness of the fitness landscape [54]

and the average negative effect of a mutation [55]. Recently, a

theoretical work has established a relation between mutation rate,

maximal genome size and thermodynamic response of proteins to

point mutations, showing that populations go extinct via lethal

mutagenesis when their mutation rate exceeds a few mutations per

genome per replication [56]. Simulations of this model confirmed

the predicted behaviour, showing that the limiting number of

mutations is approximately seven for RNA viruses and about four

for DNA-based organisms, with some weak dependence on the

number of genes in the organism and the organism’s natural death

rate [57]. This model predicts that species with high mutation

rates tend to have less stable proteins compared to species with low

mutation rates. Therefore, the notion that the mutation process
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Figure 9. Estimates of quantities correlating with effective population size obtained from genomic data. Upper plot: Optimal codon bias
estimated by dos Reis et al. [44] versus GC content at synonymous third codon position, shown as mean and standard error of the mean for three bins of
GC3 (smaller than 30%, 40 to 60%, larger than 70%). Error bars in the plot represent the standard error of the mean, and show that the mean values are
significantly different. However, data prior to the mean are rather broadly distributed, with standard deviations equal to 0:16 (GCv0:3), 0:24
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intermediate and high GC content. Both plots support the notion that species with GC content &50% are characterized by larger effective population size.
doi:10.1371/journal.pcbi.1000767.g009
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Figure 10. Negative correlation between misfolding and unfolding stability. Upper plot: Simulation results for average misfolding stability
xa versus unfolding stability xF for various mutation biases, three population sizes and neutrality exponent S~1 (non-neutral regime) and S~20
(neutral regime). Bottom plot: Estimated misfolding versus unfolding stability for families of homologous proteins in prokaryotic genomes (data from
Ref. [12]). We distinguish genomes according to GC content at third codon position. The solid line represents a linear fit of misfolding stability for
genomes with moderate or no mutation bias (0:4ƒGCƒ0:6).
doi:10.1371/journal.pcbi.1000767.g010
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can influence protein stability, and that the optimal mutation

process is influenced by properties of the selection process is not

new, but the extension of this concept to the evolution of the

mutation bias is novel to our knowledge.

Quite interestingly, small populations attain higher fitness with

AT bias, intermediate populations get an advantage with GC

usage, and very large populations attain higher fitness with almost

absent bias. This result establishes a deep interplay between

population size and mutation bias. The ML equations show that

the optimal GC usage depends on how the number of stable

sequences decreases with the stability values, i.e. it is an effect of

probability in sequence space. For very small population size and

stabilities the optimal mutation bias is attained at small GC usage,

which makes folding easier. At higher stabilities (intermediate

population size) the optimal GC usage increases, therewith

improving the stability against misfolding at the optimal GC.

Approaching the maximal stabilities the optimal GC usage

decreases again towards the value 0:5, which means absence of

bias in the mutation process.

As a speculative remark, we note that it was not obvious that our

model would predict GCopt&0:5 as the optimal GC usage for

very large populations. In this limit the absolute maximum fitness

is reached. We have shown numerically (see Text S1) that the

optimal GC usage in the infinite population limit is little

dependent on the parameters of the fitness function S, athr and

Fthr, as long as the selective pressure affects mostly xa, so that in

this limit GCopt mainly depends on the contact energy parameters

and on the genetic code. This conjecture is consistent with our

data. Nevertheless, a systematic test requires cumbersome

simulations that we did not perform here. We obtained a different

result when using the GKS contact energy parameters, which

yielded GCopt&0:2 for Ba~9:5 in the very large population limit.

However, we notice that these parameters also produced a very

small normalized energy gap, which suggests that they might be

less suitable for this kind of study.

Influence of the mutation rate
The model that we adopt here is based on the assumption that

the population is genetically homogeneous, i.e. the product Nm of

population size times mutation rate is small. This allows us to

analytically compute the fixation probability of a new mutation

through Eq. (1) instead of explicitly simulating population

dynamics. This approximation is considered valid if m measures

the mutation rate of a single protein, in particular if population

size is small. However, the high mutation rates of RNA viruses

may violate this assumption even for a single protein, and in this

case several works [58,59] have shown that the load due to

nonviable mutations significantly modifies the evolutionary process

-0,4 -0,3 -0,2 -0,1 0 0,1 0,2
Δ Misfolding stability

0

1

2

3

4

5

6

7

H
is

to
gr

am

0.4 < GC < 0.6
GC < 0.3
GC > 0.6

Figure 11. Relationship between GC usage and protein folding stability in orthologous proteins in different prokaryotic genomes
(data taken from Ref. [12]). Histogram of the difference between the actual misfolding stability and the misfolding stability expected from the
unfolding stability, using the relationship derived from species with moderate bias (continuous line in the previous plot). Notice that species with
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even in the case of a neutral fitness landscape, leading to the

evolution of mutational robustness and enhanced folding stability

[60–62]. This situation can be studied analytically in the

framework of the quasi-species theory [63]. We did not consider

this theory here, because it assumes that the population size is

infinite and therefore it prevents to study the effect of finite

populations that is the main focus of the present work. If we

considered a whole evolving genome instead of a single protein,

the approximation of very small mutation rate would not be

justified, since genomic mutation rates are in a range of 0:003 to

0:004 mutations per genome per generation for DNA-based

microbes, including viruses, bacteria, and eukaryotes [55]. In this

context, a new interesting effect has to be considered, namely the

hitch-hiking effect, which consists in the fixation of mildly

disfavoured alleles driven by a positively selected allele present

in the same chromosome. However, since treating the hitch-hiking

effect would make both the analytic and the numeric study much

more complicated, we leave it as a subsequent step.

Robustness of the results
Our model depends on several assumptions and parameters. As

evolutionary model, we adopted the Moran process, one of the

best studied population genetic models. The theoretical work by

Sella and Hirsh [17] shows that other evolutionary processes, such

as for instance the Wright-Fisher process, would yield the same

qualitative results. The mutation process was modelled using a

single parameter, the GC usage. While this parametrization might

appear too simplified, it has the merit to focus on a variable whose

relevance has been pointed out by a large number of experimental

studies, statistical analysis and models.

The ingredients of our model that seem more debatable are the

form of the fitness function and its parameters S, athr and Fthr. To

test the robustness of our results, we simulated different functional

forms of the fitness function, using exponential functions of

stability instead of power laws or letting the fitness depend only on

the minimum between the two stabilities xa and xF . In all cases,

we found the same qualitative results: There is an optimal

mutation bias at which the fitness is maximal, such that for very

small populations the optimal bias is towards AT, and for

intermediate populations the optimal bias is towards GC. We then

studied in detail the fitness function Eq. (2). Changing the

neutrality exponent does not modify the qualitative results as long

as the combination of S and N is in the non-neutral regime.

Experiments on the evolution of small populations [13,14] and

computational studies of protein folding stability [12] suggest that

stability does depend on population size for populations subject to

repeated bottlenecks, so that for such populations it is justified to

assume that the non-neutral regime is the relevant evolutionary

regime. We also varied the neutral thresholds athr and Fthr by

more than 20%, finding that they do not change the qualitative

behavior, although they have a quantitative influence on the

optimal GC usage. We observed more important quantitative

changes when we changed the contact energy parameters, but

even in this case the gross qualitative features of the GCopt versus

N relationship remain valid.

Meta-population evolution of the optimal bias
The result that the mutation bias directly influences the fitness

that a population can attain in its evolution suggests the intriguing

possibility that there may be a feedback between mutation and

selection such that a particular mutation bias favors optimal

protein folding stability, and selection may favor the replication

machinery yielding this optimal mutation bias. Nevertheless, the

selective advantage of evolving with the optimal GC usage is only

apparent after a sufficiently large number of substitutions in

protein coding genes. A mutant for GC usage would have a very

low selective advantage during the first generations, and therefore

its fixation would be a matter of almost neutral genetic drift. After

the mutant is fixed, however, our model predicts that the

population evolving with optimal bias will accumulate a

sufficiently high selective advantage to take over populations with

a less favourable GC usage when they, or their hosts in the

important case of endosymbiotic bacteria, come to compete.

Therefore, we expect this meta-population selection to almost

deterministically favour the selection of the strain with optimal GC

usage in contrast to the almost neutral fixation of a mutant with

optimal GC usage within a single population. Thus the optimal

mutation bias can facilitate the selection of more stable proteins

and, on a longer time scale, selection at the meta-population level

may favor the replication machinery that is most suitable to

protein stability.

The population sizes at which we find the maximum of GCopt

in our model are of the order of a few hundreds individuals for

S~1. These values appear very small compared with real

bacterial populations, even if they tend to grow rapidly for very

high or very low neutrality exponent S. We may reconcile our

model with biology if we notice that the effective population size is

not the same as the total number of individuals of a species. Berg

[42] showed that, if a small number of individuals often colonize

new habitats with colonization probability almost independent of

the founders fitness, the effective population size is given by the

number of generations between two colonization events. This is a

very small number for obligatory endosymbiotic and parasitic

bacteria, and it may also be small for facultative parasites or

symbionts, and even for the paradigm of a free living bacterium

such as Escherichia coli for which Berg [42] estimated an effective

population of 105 individuals.

The meta-population structure of bacterial species raises the

question of whether the molecular evolution properties of a species

such as the codon usage bias and the Ka=KS ratio are primarily

determined by the effective size of a local population or by the

global size of the meta-population. This is an important question

that requires modelling the meta-population dynamics and the

different levels of selection that are relevant for it. Our opinion is

that both population sizes influence the evolutionary dynamics,

and that, despite the losses of stability of small local populations

can be in part compensated at the meta-population level, the

influence on evolution of the local population size remains

important even taking into account these corrections, so that

observables such as codon usage bias and Ka=KS strongly reflect

the local structure of the population.

Comparison with observed mutation bias
The distribution of GC content observed in bacterial genomes is

remarkably broad. We assume here, as it is widely believed, that

these differences in the GC content are mainly determined by

different mutation pressures [18,19]. The third codon position,

where a shift from A to G and from C to T does not change the

coded amino acid in most cases, is thought to strongly reflect the

mutation bias. However, the GC content at third codon position is

strongly correlated with the GC content at first and second codon

position [20,21], and through this correlation, the mutation bias

influences the properties of the protein sequence, most notably its

hydrophobicity [12,22]. This is surprising, since hydrophobicity is

considered the main determinant of folding stability [23], and it is

expected to be finely tuned since the protein has to avoid unfolding

on one hand, and misfolding and aggregation on the other hand

(of course this balance is very different for membrane proteins,
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which are not considered here). One possible interpretation is that,

due to the trade-off between unfolding and misfolding, the

hydrophobicity is to some extent neutral so that it is possible to

modify it without significantly affecting the global fitness of the

protein. Our results suggest a different interpretation: There may

be an optimal range of hydrophobicity, but this range may be

different for different values of protein stability. So proteins with

low stability, as those found in small populations, may tend to be

more hydrophobic than proteins with high stability as those found

in large populations, hence leading to a preference for a lower GC

usage in their evolution.

Our model predicts that species with large population size will

tend to evolve without mutation bias (GC usage equal to 0:5),

whereas species with small and intermediate populations will tend

to present such a bias, either towards AT or towards GC. This

prediction is in qualitative agreement with two independent

estimates of effective population size based on optimal codon

usage and on the ratio between non-synonymous and synonymous

substitutions represented in Fig. 9, and with a computational

comparison of unfolding and misfolding stabilities in orthologous

bacterial proteins, see Fig. 11. Of course bacterial genomes are

rather complex, and we do not expect the mechanism proposed

here to explain their GC content as the result of a single factor,

population size. Another important factor influencing the GC

content has been identified in a previous statistical study, which

demonstrated that aerobiosis is an important determinant of GC

rich genomes [64]. This interesting result is not in contradiction

with our model, since many bacteria with small GC content tend

to have an intracellular lifestyle, which in turn can make them

anaerobic and at the same time reduce their effective population

size.

As mentioned above, the proposed relationship between low

GC content and small population size is consistent with the known

fact that most bacterial species that adopted an intracellular

lifestyle shifted their mutation spectrum towards AT with respect

to their free living relatives [26]. This AT bias is, in most cases, the

consequence of the loss of repair genes. For instance, three out of

the four sequenced species of Buchnera lost the gene mutH, which

in Escherichia coli is responsible of repairing the replication errors

produced by methylation of cytosine that causes C to T mutation

[65]. Moran proposed that this loss of repair genes and the

consequent mutation bias is a selectively nearly neutral event in

the evolution of endosymbionts [9]. Nevertheless, the results

presented here suggest that this shift has important consequences

on the folding properties of the whole proteome. In fact, a strong

AT bias, together with reduced population size, is expected to

produce severe misfolding problems, as indicated by the low

predicted misfolding stability of proteins of intracellular bacteria

with respect to orthologous ones in free living bacteria [12], and by

the observed positive selection and over-expression of molecular

chaperones in endosymbiotic bacteria [66], which is an expensive

but effective strategy to reduce misfolding problems. Interestingly,

it has been found that the fitness observed in an experimental

population subject to frequent bottlenecks can be in part recovered

by over-expressing chaperones [15]. Nevertheless, AT bias also

enhances stability with respect to unfolding, and the results

presented here suggest that its influence on fitness is globally

positive for small populations.

The relationship between small population size and GC

richness is even less expected. Only a few out of several

prokaryotic species having high GC content are obligatory

intracellular bacteria, such as for instance Mycobacterium leprae,

and some are facultative pathogens or plants associated symbionts.

Our results suggest the intriguing possibility that they tend to have

small population size, although larger than for obligatory

endosymbionts. To test this prediction, we estimated the

population size using optimal codon usage [44], which has often

been used to estimate population sizes. There are several caveats:

The selective advantage of optimal codon usage strongly varies

from one gene to another, and from one species to another.

However, it is expected that the average codon usage bias

estimated on the whole genome is correlated with population size.

The optimal codon usage is computed subtracting the average

mutation background, therefore it should not be trivially

influenced by mutation bias. We found significantly reduced

selection for optimal codon usage in bacteria evolving with large

mutation bias compared to those with moderate or no bias,

supporting our prediction that the former are characterized by

smaller effective population size. Furthermore, we tested the

relationship between GC content and effective population size

estimating the latter through the ratio between non-synonymous to

synonymous substitutions computed by Daubin and Moran [46]

for entire bacterial genomes. This analysis presents important

caveats. For instance, the non-synonymous substitution rate has

been shown to depend on the time separation between two species

[47–49]. We tackled this point by eliminating values of KA=KS

estimated at short timescales, which are known to be strongly

overestimated. Given the above, it is remarkable that the

qualitative picture provided by this measure qualitatively coincides

with the one obtained analysing optimal codon usage. Both

measures strongly support the prediction of our model that species

with GC~0:5 are characterized by larger effective population

size. Nevertheless, among species presenting large mutation bias,

those with bias towards GC are estimated through the KA=KS

measure to have smaller effective population than those with bias

towards AT, which is in contrast with our prediction. This point is

worth further investigation taking into account more carefully the

time dependency of the KA=KS estimate [48].

Of course, there exist several exceptions to these predictions, as

there are several other factors, some already identified [64,67] and

others still unknown, that influence the differences in GC content

of prokaryotic species. One remarkable exception to the

association between intracellularity and low GC content is the

genome of the endosymbiotic bacterium Hodgkinia cicadicola, very

recently sequenced by Moran’s group [68]. This genome is

extremely reduced (144 kb), as generally observed for endosym-

biotic bacteria, but it shows GC content of 58%, which came as a

big surprise since it is probably the most serious exception to the

association between genome size and GC content. This genome

also challenges the association between endosymbiotic bacteria

and AT bias. It has been suggested that Hodgkinia belongs to the

Rhizobiales division of alpha proteobacteria, characterized by

high GC content. Interestingly, the genetic code of Hodgkinia

underwent a modification such that UGA codes for Tryptophan

instead of Stop. This modification is expected to ease the evolution

of proteins that are stable with respect to misfolding. Consistently

with this expectation, we found that the optimal GC usage for

small populations slightly increases when this alternative genetic

code is used in simulations, but this effect is too small to reconcile

the GC content of Hodgkinia with its expected small effective

population size (data not shown). Further research is needed to

identify the origin of the GC content in this genome that lacks any

repair gene [68]. Nevertheless, the association between intracel-

lular lifestyle and AT bias, despite not being deterministic as

demonstrated by this counterexample, is still strongly significant.

A second exception is represented by Prochlorococcus marinus, a

very abundant species of small marine cyanobacteria [69,70]. It is

expected that this species has a very large population size, which is
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in agreement with a recent estimate of its KA=KS ratio [46]. 11 out

of 13 fully sequenced strains of this cyanobacterium present low

GC content, in the range between 30 to 38 percent, apparently

contradicting the association between large population size and

lack of mutation bias. However, the two remaining strains have

GC content of 50%, as expected according to our model, and one

of these was used to estimate the small KA=KS ratio that supports

the large population size. Prochlorococcus has a complex meta-

population structure in which the strains with 50% GC content,

characterized by large genomes, appear to act as gene reservoirs.

These strains are also characterized by a larger cell size than other

Prochlorococcus strains, which the authors describe as ‘‘a feature that

may have led to their lower isolation recovery due to the filtration

step most often used to separate Prochlorococcus from Synechococcus.

Hence, there are probably more LL-adapted Prochlorococcus strains

with cell and genome sizes similar to those of Synechococcus thriving

deep in the euphotic zone. This is apparently confirmed by the

dominance of this ecotype at the base of the euphotic zone in the

Atlantic Ocean, as revealed by quantitative PCR data’’ [70].

These strains with large genomes and without mutation bias are

found at considerable depth in the ocean and thus at low oxygen

pressure. There seems to be a positive association between ocean

depth and GC content for Prochlorococcus strains, thus a negative

association between oxygen pressure and GC content, opposite to

the observed general association between oxygen and GC content

[64]. Comparative analysis of the sequenced Prochlorococcus strains

will be necessary to test the hypothesis that there is an association

between the GC content and the population size of these strains.

Consistent with this possible association, it was found that in the

MED4 strain, characterized by the smallest GC content among all

Prochlorococcus strains, translational selection does not shape the

codon usage variation among the genes in this organism [71].

Conclusions
We have shown here that the AT mutation bias can increase the

fitness associated with essential proteins if the population size is

very small. The same happens with GC mutation bias for

intermediate population. These results suggest that the mutation

bias is not selectively neutral, but it may be the preferred outcome

for the evolution of small populations. We found a deep interplay

between the estimated effective population size and the GC

content that is consistent with the predictions of our model. Of

course this association is not deterministic, since many other

factors influence the GC content. However, the influence of

population size is an intriguing one that we believe is worth further

investigation. Thus, we hope that this proposal will be subject to

experimental test in the future.

Materials and Methods

Folding stability
As in our previous work, the unfolding free energy of a protein

with sequence Aa � � �AL and contact matrix Cij~1 if the minimal

interatomic distance between residues i and j is below 4:5A
0
, 0

otherwise, is defined as

F (A)~
X

ij

CijU(Ai,Aj)zsL , ð9Þ

where U(a,b) is the contact interaction matrix determined in [72],

s~0:074 was determined fitting Eq. (9) to a set of experimentally

measured unfolding free energy (UB, unpublished) and L is

protein length. Although rather simple, this model is accurate

enough to allow quantitative predictions of the folding free energy

of small proteins that fold with two-state thermodynamics (the

correlation coefficient between experimental and predicted free

energy is r~0:92 over a representative test set of 20 proteins, UB,

unpublished result) and of the stability effect of mutations

(correlation coefficient r~0:72 over a set of 195 mutations, UB,

unpublished result). This is comparable to state-of-the-art

programs such as Fold-X [73]. However, the computational

simplicity of the model makes it affordable to use it for simulating

very long evolutionary trajectories with a large number of

parameters, which would not be possible using other tools.

The normalized energy gap a measures how alternative

compact conformations are higher in energy than the native,

and it is defined using the random energy model [74,75] as

a(A)~

P
ij

CijU(Ai,Aj){NcSeTAzse,A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nc(ALzB)

p
P
ij

CijU(Ai,Aj)(1{q0)
ð10Þ

with A~0:1, B~4, q0~0:1, Nc~
P

ij Cij , and SeTA and se,A are

the mean and standard deviation of the interaction energy of both

native and non-native contacts in sequence A.

Protein structures
We studied five proteins with different size and secondary

structures: Phosphocarrier protein of E.Coli (85 amino acids, PDB

id. 1opd), Lysozyme of G.Gallus (129 amino acids, PDB id. 3lzt),

ATP synthase epsilon chain of E.Coli (135 amino acids, PDB id.

1aqt), Triose Phosphate Isomerase of E.Coli (255 amino acids,

PDB id. 1tre) and Tryptophan Synthase alpha chain of S.

Typhimurium (260 amino acids, PDB id. 1a50). When not otherwise

stated, we exemplify our results with the structure of the protein

lysozyme.

Mutation process
Mutations are modelled through the HKY process [28], in

which the mutation rate from nucleotide n to n’, Tm(n,n’), is mf (n’)
if n?n’ is a transition, mkf (n’) if it is a transversion. The

transition/transversion ratio is fixed at k~2. The microscopic rate

m is assumed to be very small and it does not affect the results. We

further assume p(A)~p(T) and p(C)~p(G) (Chargaff second

parity rule), so that the only parameter of the mutation model is

the stationary GC content, GC~p(C)zp(G), which we call GC

usage.

Simulation of the evolutionary process
Simulations were performed starting from the native sequence,

which was changed through random mutations subject to the

acceptance probability Eq. (1) computed using the estimated

folding stabilities. We checked that simulations converged in all

cases after a number of accepted substitutions not larger than a few

times the protein length L, and discarded the first 8|L steps of

the trajectory for collecting statistics. The simulations were run

until 2000|L accepted substitutions were collected, which makes

it rather cumbersome to simulate large populations for which the

acceptance rate is small. For each set of parameters we run 10

independent simulations in order to evaluate the statistical error.

At every step, we randomly draw one mutating DNA site j with

probability dependent on the nucleotide nj that occupies it,

Pj!
P

n’=nj
Tm(nj ,n’), and we draw a new nucleotide n’=nj with

probability proportional to Tm(nj ,n’). The mutation is then

translated to the amino acid sequence, whose stability is computed

through Eq. (9) and (10) from which we obtain fitness through Eq.
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(2). The fitness is compared to the one of the current wild type

sequence and the mutation is accepted with probability given by

Eq. (1).

Optimal mutation bias
For fixed N and S the equilibrium fitness f is simulated for 9

GC usages from 0:1 to 0:9 and the results are fitted to a cubic

function, from which we obtain the optimal GC at the point where

the first derivative vanishes. If f (GC) is monotonically increasing

or decreasing the maximum (minimum) GC is chosen. To

estimate the error, we estimated GCopt from 10 independent

simulations, and we computed mean and standard error of the

mean.

Supporting Information

Text S1 Supporting figures and analytic developments

Found at: doi:10.1371/journal.pcbi.1000767.s001 (0.23 MB PDF)
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