
A New Approach for Determining Phase Response
Curves Reveals that Purkinje Cells Can Act as Perfect
Integrators
Elena Phoka1,2*., Hermann Cuntz1., Arnd Roth1, Michael Häusser1
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Abstract

Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual
network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe
the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in
spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to
predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during
spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show
using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the
interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which
eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing
frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing
rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons.
These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of
Purkinje cells depends on their firing rate.
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Introduction

Cerebellar Purkinje cells exhibit a wide range of dynamical

phenomena. They are intrinsic neural oscillators, firing spontane-

ously and highly rhythmically in the absence of synaptic input, at a

rate of 10–180 Hz [1–5]. They also exhibit intrinsic bistability

[2,3], which influences their responses to sensory stimulation [3].

In addition, interactions between spontaneously firing Purkinje

cells can result in waves of activity travelling down the cerebellar

folia [4], or in high frequency oscillations [6], which may

contribute to the generation of precise temporal patterns in the

cerebellar network [7]. Hence, the firing of Purkinje cells is highly

time- and state-dependent, and thus they represent excellent

targets for dynamical systems analysis.

The phase response curve (PRC; [8–12]) is a powerful tool to

study neuronal dynamics at the cellular level. The PRC describes

the effect of a brief perturbation on the firing phase of a neuron,

and can be used to predict the response of a neuron to more

complex stimulation patterns [8–12]. The shape of the PRC is

linked to the type of neuronal excitability [13,14], to oscillatory

stability [15] and to network synchronization properties [16–19].

Studying Purkinje cell PRCs is therefore an essential step to

explore their dynamic repertoire, probe their biophysical mech-

anisms, and to construct models of Purkinje cells to determine

their role in information processing at the network level.

PRCs can be obtained by directly perturbing the membrane

potential by short (infinitesimal) square current pulses [8–12] or

synaptic conductance pulses [12,19–22], and via indirect methods

[23–25]. Using the direct method, infinitesimal PRCs are obtained

by repeatedly injecting brief current pulses while neurons are firing

action potentials (APs). Phase and phase perturbation are

measured by using the AP immediately preceding the current

pulse as a reference, and we refer to these PRCs as ‘‘traditional’’

PRCs throughout this paper. We show using electrophysiological

experiments and in simulations that the interspike interval

variability present in Purkinje cells introduces a systematic bias

in this traditional calculation of the PRC. The bias results from

loss of causality caused by the jitter of the APs surrounding the

current pulse, and gives rise to an empty triangular region in the

PRC plot, which we call the ‘‘Bermuda Triangle’’. We introduce a

method for calculating the PRC which corrects for this bias by

using all spikes in the spike train as a reference, one at a time. We

refer to PRCs obtained by this method as ‘‘corrected’’ PRCs. Note

that in our study both ‘‘traditional’’ and ‘‘corrected’’ PRCs are

calculated using the same experimental data: perturbation of the

firing of Purkinje cells with brief square current pulses. Using the
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corrected method we show that the shape of the Purkinje cell PRC

changes fundamentally depending on the firing rate of the neuron.

Results

A bias in the traditional method for calculating PRCs
Somatic whole-cell patch-clamp recordings were made in

current-clamp mode from spontaneously firing Purkinje cells in

mouse cerebellar slices. To construct PRCs, a single brief

depolarizing current pulse (amplitude, 0.05 nA; duration,

0.5 ms) was injected after a 100–150 ms baseline period (see

Fig. 1A). Repeating this protocol many times should result in a

homogenous sampling of phase space in spontaneously spiking

neurons. The resulting change in interspike interval (ISI) relative

to the mean ISI corresponds to the PRC value denoted by Dw.

Plotting, for each trial, Dw as a function of the phase, w, at which

the pulse arrived shows the overall ISI shortening corresponding to

a positive PRC (Fig. 1B, neuron firing at 180 Hz; see Materials

and Methods). Three observations can be made. First, at late

phases there is a triangular region entirely void of data points

(outlined in green) which we call the ‘‘Bermuda Triangle’’. This

causes a negative bias of the running average at late phases

(Fig. 1B, dashed red line). Second, the intrinsic variability in the

ISI [1] of spontaneously firing Purkinje cells acts as a source of

noise, giving rise to data points with ww1. However, removing all

points beyond 1 does not eliminate the negative bias (Fig. 1B, solid

red line). Finally, many trials (typically more than 5000) were

required to calculate the Purkinje cell PRC reliably, while PRCs in

other cell types are normally obtained from 100–200 trials [8,15].

The ISI variability in Purkinje cells [1] results in PRCs with low

signal-to-noise ratio, increasing the bias at late phases and leading

to a miscalculation of the PRC when this traditional method is

used. Thus, a robust and unbiased method for the calculation of

Purkinje cell PRCs in the presence of noise is required.

To better understand the negative deflection of the PRC at late

phases, a control PRC (cPRC; see Materials and Methods) was

calculated from the unperturbed voltage traces prior to the current

pulse. The cPRC should be zero throughout all phases. However,

the negative bias of the PRC at the late phases persisted in the

cPRC (Fig. 1C). We conclude that it is not the result of the brief

current pulse injection. Rather, it results from the inhomogeneous

sampling of the phase in the presence of noise. Indeed, the phase

histogram (Fig. 1C, lower panel) indicates that late phases are

sampled less frequently.

To reproduce the effect of noise, PRCs were obtained from a

Purkinje cell model [26] in which Gaussian current noise was

added to reproduce the irregularity of real Purkinje cell spiking

(example model neuron firing at its spontaneous firing rate of

27 Hz; see Materials and Methods). The model PRC exhibited the

same negative deflection at late phases as observed in the

experimental PRC (Fig. 1D, dashed red line). As before, removing

all points for which the phase exceeds 1 did not eliminate the

negative deflection (Fig. 1D, solid red line). Similarly, the cPRC in

the model exhibited the same negative bias and the same

inhomogeneous phase distribution (Fig. 1E) as the experimental

cPRC. Therefore, the negative bias at late phases is a general

feature of the traditional method for calculating PRCs, and must

be due to the intrinsic ISI variability.

In order to explain how the ISI variability might affect the PRC

calculation, we sketch twelve representative scenarios in which

spike jitter due to noise causes misclassification of the phase and/

or the PRC value. In these scenarios (shown in Fig. 2A–L), we

jittered either the first or the second AP (Fig. 2A–L, black lines)

with respect to a perfectly periodic cycle of firing (Fig. 2A–L, grey

lines). We divided the sketches into three blocks depending on the

phase of the current pulse within the cycle (Fig. 2 A, D, G, J: early

phase; B, E, H, K: middle phase; C, F, I, L: late phase). The

misclassification of phase and/or PRC value (arrows) becomes

clear when comparing them against their deterministic counter-

parts. The jitter of the spike preceding or following the brief

current pulse can lead to a loss of causality and hence to a drastic

miscalculation of the PRC. The most serious consequences of the

ISI variability due to noise occur in the scenarios illustrated in

Fig. 2C and 2J, where the jitter causes the current pulse to fall into

a different cycle of firing, resulting in a significant bias at the late

and early phases of the PRC, respectively. Specifically, the

‘‘Bermuda Triangle’’ effect present in both model and experiment

can be explained by means of the sketch in Fig. 2C: when the pulse

arrives at late phases, and the AP jitter results in the pulse falling

into the subsequent ISI as compared to the deterministic case, the

resulting phase is small according to the new ISI boundaries. Due

to causality, it is impossible for a PRC point to fall into the green

‘‘Bermuda Triangle’’ in Fig. 1, since for all points in the triangle

the shortening of the ISI would be larger than the actual phase

difference of the pulse to the end of the ISI. This explains the

observation that phases are sampled less frequently in the late part

of the ISI, and thus the PRC values are underestimated and the

effect of ISI noise is not averaged out.

To visualize the resulting phase and PRC misclassification, we

translated each of these twelve sketches onto a corresponding

phase plot (Fig. 2M,N). This allows the resulting phase and PRC

values of each of the twelve cases to be compared against their

deterministic counterparts. More specifically, regularly spaced

spike times were defined and jittered independently by noise taken

from a Gaussian distribution. The known actual phase without

noise was plotted against the sampled phase. The assumption that

the process underlying spiking is perfectly periodic and that the

presence of a spike does not reset this underlying process is made

only for generating the data in Fig. 2M,N (and subsequently

Fig. 3B–E), and only for purposes of illustration. In a purely

deterministic scenario, the sampled phase is linearly dependent on

the actual phase (Fig. 2M, points on the diagonal). This is also the

case for occurrences in which the noise has no effect on the phase

(e.g. the scenarios in Fig. 2A or 2B; yellow points in Fig. 2M). For

any deviations of the sampled phase from the actual phase due to

noise, the points are scattered across the plot (Fig. 2M, color

Author Summary

By observing how brief current pulses injected at different
times between spikes change the phase of spiking of a
neuron (and thus obtaining the so-called phase response
curve), it should be possible to predict a full spike train in
response to more complex stimulation patterns. When we
applied this traditional protocol to obtain phase response
curves in cerebellar Purkinje cells in the presence of noise,
we observed a triangular region devoid of data points near
the end of the spiking cycle. This ‘‘Bermuda Triangle’’
revealed a flaw in the classical method for constructing
phase response curves. We developed a new approach to
eliminate this flaw and used it to construct phase response
curves of Purkinje cells over a range of spiking rates.
Surprisingly, at low firing rates, phase changes were
independent of the phase of the injected current pulses,
implying that the Purkinje cell is a perfect integrator under
these conditions. This mechanism has not yet been
described in other cell types and may be crucial for the
information processing capabilities of these neurons.

A Frequency-Dependent Switch in Purkinje Cell PRCs

PLoS Computational Biology | www.ploscompbiol.org 2 April 2010 | Volume 6 | Issue 4 | e1000768



A Frequency-Dependent Switch in Purkinje Cell PRCs

PLoS Computational Biology | www.ploscompbiol.org 3 April 2010 | Volume 6 | Issue 4 | e1000768



coding as in A–L). Based on the same principles, the effect of noise

in each of the twelve scenarios on the PRC plot is shown in Fig. 2N

(color coding as in A–L).

To summarize, the bias at late phases of the PRC calculated

using the traditional method is due to erroneous phase sampling,

which results from the substantial ISI variability present in

spontaneously firing Purkinje cells, and the loss of causality

between the current pulse and the jitter in the times of either of its

two surrounding APs.

Improving the traditional method to obtain PRCs in the
presence of noise

Our new method to correct for the bias in the traditional PRC

and obtain a homogeneous phase histogram is illustrated in

Fig. 3A. The red spike immediately preceding the pulse is the one

used as a reference (w~0) in the traditional method. In our new

method, instead of using just the spike immediately preceding the

current injection, each spike in the spike train is taken as a

reference one at a time and the corresponding phase values

(indicated under the arrows in Fig. 3A) are all taken into account

(see also Materials and Methods). In this case, the two spikes prior

to the stimulation pulse (red and black in Fig. 3A) predominantly

contribute to the phase interval [0,1] of the PRC (Fig. 3B, red and

black points). The impact of the pulse on the subsequent ISI, the

PRC2, is then determined by the two spikes following the current

pulse (Fig. 3A blue and cyan spikes; also compare [24]) and so on.

It is worth emphasizing that even though more than one spike is

included in the PRC calculation, the presence of each reference

spike resets the phase to zero (w~0). Our method restores

periodicity in the spiking jitter as can be seen in Fig. 3B (all points,

in analogy to Fig. 2M). By taking only the points according to the

traditional calculation of the PRC, a sharp boundary is drawn

(Fig. 3B, red) resulting in an inhomogeneous distribution of

sampled phases (Fig. 3C, red). In contrast, by including the second

spike prior to the pulse, spike jitter effects are averaged out

(Fig. 3D). The bias at the late phases of the PRC plot observed

when taking points according to the traditional calculation of the

PRC (Fig. 3E, red) is thereby eliminated (Fig. 3E, all points), as is

the bias in the cPRC (not shown).

In order to validate our new method, we applied it to neuronal

models for which the PRC can be calculated analytically (from the

adjoint [27]). PRCs of the Morris-Lecar model (parameters from

[28]), in the presence and absence of noise, were compared with

the analytically derived PRC (Fig. S1A). The PRCs calculated

using both the traditional and our corrected method overlap

perfectly (except near w~0 and w~1, due to the finite time step

and finite amplitude of the current pulse in the simulations), and

match the analytically derived PRC. In the presence of noise, the

PRC calculated by the traditional method is biased at late phases,

as described above. Our new method eliminates most of this bias.

However, it has been shown that noise can directly affect the

dynamics of neurons underlying the PRC, leading to changes in

the PRC which are not due to measurement errors (e.g. in the

Morris-Lecar model [29]). We therefore used an additional model,

the non-leaky integrate-and-fire model, in which noise-dependent

changes of dynamics can be excluded. When noise was introduced

in this model, the traditional method resulted in a biased PRC, as

compared to the analytically derived PRC and the PRC in the

absence of noise. Again, our corrected method removed most of

this bias (Fig. S1B). The same analysis was repeated in a leaky

integrate-and-fire model. This shows that the ‘‘Bermuda Triangle’’

and its consequences on the PRC are the result of the traditional

calculation of PRCs, separate from the effect of noise on the

dynamics of the system (Fig. S1C).

Next, using the Purkinje cell model [26], we compare the result

of our method (Fig. 4A, black) to the PRC obtained with the

traditional method (Fig. 4A, red) and the deterministic PRC

without noise (Fig. 4A, green). When the noise is increased,

reflected by an increased coefficient of variation (CV) of ISIs, the

traditional PRC deviates from the deterministic one and the bias

becomes more pronounced (Fig. 4A, dashed red line). In contrast,

our corrected method performs as well as with low CV (Fig. 4A,

dashed black line). The strong bias at late phases is eliminated. In

order to evaluate the performance of our method in comparison to

the traditional method, we calculated the integral of the differences

between PRCs and their deterministic counterparts (PRC error;

Fig. 4B). As the CV increases, the PRC error shows larger

increases using the traditional (Fig. 4B, red line) compared to our

corrected method (Fig. 4B, black line).

In conclusion, the ‘‘Bermuda Triangle‘‘ present in PRCs is due

to shortcomings of the traditional method for calculating PRCs.

The bias can for the most part be compensated for by taking the

two spikes preceding the pulse as a reference, one at a time, instead

of just the spike immediately preceding the pulse as in the

traditional method.

A frequency-dependent switch in Purkinje cell dynamics
Spontaneous firing frequencies of Purkinje cells range from 10–

180 Hz both in vitro [1,2,4,5] and in vivo [3,30]. To test how the

dynamics of Purkinje cells change according to the firing

frequency, we recorded from cells firing spontaneously at low

(15–40 Hz, n = 10) and high (55–180 Hz, n = 6) rates and

calculated their PRCs using our corrected method.

A representative corrected PRC is shown in Fig. 5A (the same

example of a rapidly firing (180 Hz) Purkinje neuron as in Fig. 1B).

The PRC is positive, indicating that the brief current pulse causes

an advance of the following spike (shortening of the ISI relative to

the mean) with maximum displacement when the pulse arrives

near the middle of the ISI. It is worth noting that the phase

histogram is homogeneous (Fig. 5A, lower panel), suggesting that,

with the corrected method, the ISI is equally sampled throughout.

In order to study the effects of the brief pulse on the subsequent

intervals we plotted the PRC2–5 (Fig. 5B; see Materials and

Methods). PRC2 is negative, suggesting that the subsequent ISI is

lengthened relative to the mean. A PRC2 with opposite sign to the

PRC has been previously reported [24] and it is believed to be due

Figure 1. Purkinje cell PRCs determined using the traditional method. (A) Whole-cell patch-clamp recording of a spontaneously firing
Purkinje cell. The injected current pulse (0.5 ms) is shown below. (B) Experimentally determined Purkinje cell PRC from the same cell as in (A) (mean
firing rate 180 Hz) showing a triangular region (‘‘Bermuda Triangle’’, dashed green lines) devoid of points, creating a bias at late phases of the PRC
(dashed red line). Deleting the points at phases.1 does not remove the bias (solid red line). (C) Control PRC calculated with no current pulse
injection (cPRC) is flat for most of the phases, but the ‘‘Bermuda Triangle’’ and the negative bias at the late phases are still present. The panel below
shows the phase histogram, which is inhomogeneous with smaller probabilities of sampling the ISI in the late phases. (D) When noise is introduced in
a Purkinje neuron model (firing at its spontaneous firing rate of 27 Hz), the ‘‘Bermuda Triangle’’ and the bias at the late phases are reproduced. (E)
Control PRC for the model neuron, calculated in the absence of current pulse injection. It is flat for most of the phases, but the ‘‘Bermuda triangle’’
and the negative deflection at the late phases are reproduced. The phase histogram below is inhomogeneous, with smaller probability of sampling
the ISI in the late phases in the model.
doi:10.1371/journal.pcbi.1000768.g001

A Frequency-Dependent Switch in Purkinje Cell PRCs
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to a compensatory effect on the current ISI length. Indeed, as seen

from PRC2–5, these curves are negative and the effect dies out

after about 4 ISIs.

In comparison, an example of a PRC of a slowly firing (30 Hz)

Purkinje neuron is shown in Fig. 5C. The brief current pulse

causes the same positive displacement of the following spike

independently of its position within the ISI, resulting in a square

PRC. The phase histogram is homogeneous, indicating that there

is an equal probability for the pulse to arrive at each phase within

the ISI (Fig. 5C, lower panel). In order to study the effects of the

brief pulse on the subsequent intervals we calculated the PRC2–5

(Fig. 5D; see Materials and Methods). They were negative, similar

to those of cells firing at a high rate, but exhibited larger

fluctuations. It is interesting to note that the PRC phase advances

occur at a different scale in the slowly and rapidly firing Purkinje

cells. However, when converted back into time units, the PRC

Figure 2. Interspike interval variability causes a bias in the traditional method to calculate PRCs. Illustrations of the changes in w and Dw
(arrows) introduced by noise, in the form of jittering of the spikes (black lines) surrounding the current pulse, one at a time; as compared to the
deterministic case (gray lines). Noise in the PRC plots depends on the position of the pulse within the ISI: (A, D, G, J) the pulse arrives near the
beginning of the ISI; (B, E, H, K) the pulse arrives near the middle of the ISI; (C, F, I, L) the pulse arrives near the end of the ISI. The color coding groups
the different scenarios according to the effect of the noise on w and Dw. For example, green indicates those scenarios in which noise gave rise to an
increase in w and Dw as compared to the deterministic case. (M) Actual phase plotted against the sampled phase (resulting from jittering the spikes
around a mean). The color coding is the same as in (A–L). The extreme cases where noise misclassifies the stimulus in a different ISI are shown in red
and purple. (N) Sampled PRC corresponding to data in (M), shown plotting sampled PRC against sampled phase. Color-coding corresponds to each of
the cases in (A–L).
doi:10.1371/journal.pcbi.1000768.g002
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values are of the same order of magnitude in both cases (see

below).

The PRCs of Purkinje cells exhibiting slow (15–40 Hz; n = 10)

and rapid (55–180 Hz; n = 6) spontaneous firing were calculated

using our corrected method. The PRCs switched from square

(phase-independent) for lower frequencies (Fig. 6A) to phase-

dependent for higher frequencies (Fig. 6B). The switch occurred at

a frequency of approximately 50 Hz. The average PRC of all

neurons firing at low rates (Fig. 6A, thick line) is phase-

independent. To our knowledge, such a square PRC has not

been previously reported. A square PRC can only be obtained if

the cells act as perfect non-leaky integrators. In contrast, the

average PRC of all Purkinje cells firing at high rates (Fig. 6B, thick

line) exhibited a sharp peak. It is useful to compare these average

PRCs (Fig. S2, thick black and red lines) with the biased ones

obtained with the traditional method (Fig. S2, thick green lines).

To quantitatively assess the switch in dynamics we plotted the

peak-to-baseline ratio of the PRCs in relation to the firing rate

(Fig. 6C; see Materials and Methods). This quantity essentially

compares the extreme value in the first half of the PRC with the

extreme value in the second half. The switch at a firing rate of

approximately 50 Hz can be seen clearly in this representation.

The switch becomes particularly apparent when both the phase

and the phase shift of the PRC are plotted in units of time, and

phases are aligned with respect to the second AP in the ISI

(Fig. 6D). Then, the peaks of the PRCs measured at high firing

rates coincide (red), indicating that an input signal causes an effect

only in a 3 ms window prior to the output spike irrespectively of

the precise firing rate of the cells in that group. This peak in the

PRC is shown to give way to a larger phase-independent plateau

(black) at low firing rates, in which incoming signals will affect the

spiking of the cell regardless of the time at which they arrive. A

transitory PRC (thin solid red lines in Fig. 6B and Fig. 6D,

indicated by arrows) showing both a plateau at early phases and a

peak at late phases was observed in a cell with intermediate firing

frequency (55 Hz). To summarize, the PRCs of Purkinje cells

Figure 4. Validation of the corrected method for obtaining PRCs. (A) PRCs of a model Purkinje cell, calculated using the corrected method in
the stochastic model (black), in the deterministic model (green) and calculated using the traditional method in the stochastic model (red). Traces are
shown at two different noise levels (increased CV indicated by dashed red and dashed black lines respectively). (B) PRC error, expressed as the
integral of the differences between PRCs and their deterministic counterparts. The corrected method performs better than the traditional method in
all cases, particularly at high CV.
doi:10.1371/journal.pcbi.1000768.g004

Figure 3. A new approach for generating corrected PRCs. (A) Schematic illustration of a spike train, coded by color: the red spike is
immediately preceding the pulse and is the one used as a reference (w~0) in the traditional method. The remaining colors correspond to the
temporal sequence of spiking (green: three spikes before pulse, black: two spikes before pulse, blue: first spike after pulse, cyan: second spike after
pulse). In our new approach, all spikes are used as a reference one at a time to calculate the phase of the current pulse (values under arrows) and the
corresponding PRC value. The red arrow indicates the phase used to calculate the PRC using the traditional method. (B) Sampled phase vs. actual
phase plot as in Fig. 2M with the color code corresponding to the colors used in (A). The two spikes preceding the pulse (red and black circles)
contribute to the interval of interest [0,1], whereas in the traditional method only the spike immediately preceding the pulse is used as a reference
(red circles). (C) Phase histograms, plotted separately for the different reference spikes in the corresponding color code. (D) Phase histogram of
sampled phases using all five spikes as a reference one at a time. (E) Same sampled PRC vs. sampled phase as in Fig. 2N with the same color code as in
(A). PRC2 and PRC3 are calculated by using only the spikes following the pulse as reference spikes, and correspond to the phase intervals [21,0] and
[22,21] respectively. The data shown in Fig. 3B–E (as well as 2M,N) assume for the purpose of illustration that the process underlying spiking is
perfectly periodic and that the presence of a spike does not reset this underlying process. However, when actually applying our corrected method for
calculating the PRC, the phase is yoked to the reference spike, i.e. phase is reset at each reference spike.
doi:10.1371/journal.pcbi.1000768.g003

A Frequency-Dependent Switch in Purkinje Cell PRCs
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largely depend on the intrinsic firing frequency of the cells: they

are phase-independent at low firing rates (15–40 Hz) and phase-

dependent at high frequencies (55–180 Hz).

The firing rate of a Purkinje cell changes depending on

modulation of its inputs [31–35]. For example, during locomotion

in cats the firing frequencies of Purkinje cells can increase from an

average of about 40 Hz [34] to more than 100 Hz [35]. To test

whether the switch in Purkinje cell dynamics can occur in the same

cell, we recorded Purkinje cell PRCs while modulating their firing

frequencies using injected current (n = 3; Fig. 6C, points labeled

with two colors). We first recorded at the spontaneous firing

frequency, and if the spontaneous frequency was low, we next

increased the firing rate by injecting a positive constant current.

Alternatively a negative constant current was injected if the

spontaneous frequency was high. The PRCs for both fast and slow

states were calculated (Fig. 7, color coding as in Fig. 6C). When

Purkinje cell spiking was changed from slow (33 Hz) to fast

(104 Hz), the originally square PRC (Fig. 7A), exhibited a sharp

peak (Fig. 7B). This change in the PRC was reversible, as when the

neuron was allowed to relax back to its intrinsic firing rate (40 Hz)

Figure 5. Two types of PRCs depending on the Purkinje cell firing rate. (A) PRC of a rapidly firing cell. Using the corrected method the ‘‘Bermuda
triangle’’ (shown in green dashed lines) and the bias at the late phases are eliminated. The brief current pulses cause an ISI shortening as reflected by the
positive PRC values. The panel below shows the phase histogram, which is homogeneous, suggesting an equally sampled ISI. (B) The effect of the brief
current pulse is persistent in the subsequent ISIs (PRC2–5) and dies out after four ISIs. PRC2–5 are negative suggesting ISI lengthening. (C) PRC of a slowly
firing cell. The PRC is square/flat; the brief current pulse causes the same effect independent of its position within the ISI. Again, the phase histogram,
below, is homogeneous revealing an equally sampled ISI. (D) Similarly to (B), the brief current pulse lengthens subsequent ISIs: PRC2–5 are negative.
doi:10.1371/journal.pcbi.1000768.g005
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the PRC returned to a square shape (Fig. 7C). Conversely, another

neuron initially firing at a high rate (71 Hz) exhibited a peaked

PRC (Fig. 7D), which was switched to a square shape by reducing

its firing rate to 26 Hz via injection of hyperpolarizing current

(Fig. 7E). When the neuron was then allowed to fire at its intrinsic

firing rate (84 Hz) the sharp peak in the PRC reappeared (Fig. 7F).

Therefore, the switch in Purkinje cell dynamics reflected in the

switch of the PRC can also occur in the same cell.

Discussion

We have shown that the traditional method for calculating PRCs

results in a bias, particularly in neurons exhibiting high ISI

variability. We developed a corrected method for calculating PRCs

which removes most of this bias. Our method can be directly applied

to noisy experimental data. We used this corrected approach to

measure for the first time the PRCs of Purkinje cells at various firing

rates. At high firing rates, Purkinje cell PRCs were phase-dependent;

however, a phase-independent PRC was observed at lower firing

rates. This suggests that Purkinje cells can behave as perfect

integrators at low firing rates, which has important consequences for

our view of the integrative properties of these neurons.

A new approach for determining PRCs
We have determined Purkinje cell PRCs by injecting brief

current pulses and measuring the phase change in the subsequent

Figure 6. A frequency-dependent switch in Purkinje cell dynamics. (A) Individual PRCs (thin dashed lines) and the average PRC (thick line) of
slowly firing cells (frequency,50 Hz, n = 10, black). The average PRC is independent of the phase of the brief current pulse within the ISI. (B)
Individual PRCs (thin lines) and the average PRC (thick line) of rapidly firing cells (frequency.50 Hz, n = 6, red). The PRC is phase-dependent with a
peak at late phases. The thin solid line is the PRC of the cell with the lowest firing frequency (55 Hz) in this group (arrows in (B–D) and shows both a
peak at late phases and a plateau at early phases. (C) Peak-to-baseline ratio (see Materials and Methods) plotted against firing frequency: as the
frequency increases the PRC switches from phase-independent to phase-dependent. Points shown in two colors correspond to PRCs from the same
cell (see Figure 7 and text for more details). (D) PRCs of the two groups of cells (black: low firing rate, same data as in (A); red: high firing rate, same
data as in (B) plotted on the same axes with both the phase and the phase shift of the PRC in units of time, and phases aligned with respect to the
second AP in the ISI. The peaks seen at high firing rates coincide at a time of approximately –3 ms from the second spike.
doi:10.1371/journal.pcbi.1000768.g006
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neuronal spiking. Since at the typical spontaneous firing rates of

Purkinje cells these phase changes were small compared to the

spike jitter during spontaneous spiking [1], many trials were

required. This revealed a general bias of the traditional method at

late phases of the PRC in the presence of noise (Fig. 1). We

characterized the effect in a model with and without noise, and

showed that the bias is related to inhomogeneous phase histograms

caused by interspike interval jitter (Fig. 1 and Fig. 3). To correct

for this, we developed a new method, which recovers periodicity in

the spike jitter due to noise (Fig. 3). We showed that this method

homogenizes the phase sampling in the experimental data and

removes most of the bias observed in the PRCs calculated using

the traditional method (Fig. 4A). Our corrected approach can be

directly applied to existing experimental data in order to measure

PRCs under low signal-to-noise conditions. It should be applicable

to a wide range of cell types, as neuronal noise and the resulting

ISI variability are not restricted to Purkinje cells [36].

The use of indirect methods to obtain PRCs, for example from

the spike triggered average [23] or the poststimulus time histogram

(PSTH) [24] are possible alternatives to the traditional method.

Here we have applied a correction to the traditional method,

which resulted in reliable PRC measurements in Purkinje cells.

Figure 7. The switch in PRC shape can occur within the same cell. (A) A slowly firing cell (33 Hz) displaying a phase-independent PRC. (B)
Injection of depolarizing current into the cell in (A) increases its firing rate (104 Hz) and the PRC switches to being phase-dependent. (C) When the
depolarizing current is removed, the cell relaxes back to its intrinsic spontaneous firing rate (40 Hz) and its PRC switches back to being phase-
independent. (D) A rapidly firing cell (71 Hz) displaying a phase-dependent PRC. (E) When hyperpolarizing current is injected into the cell to decrease
its firing rate (26 Hz), the PRC switches to being phase-independent. (F) Removal of the hyperpolarizing current returns the cell to its intrinsic
spontaneous firing rate (84 Hz) and its PRC switches back to being phase-dependent.
doi:10.1371/journal.pcbi.1000768.g007
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Further alternative methods for calculating PRCs exist. For

example, dynamic clamp was previously used to study hippocam-

pal spike-timing-dependent plasticity in relation to PRCs [37]. In

this special case, underlying subthreshold oscillations provide

phase locking. Such a method is only applicable if phase

information is accessible to the experimenter, independent of

spiking. PRCs can also be calculated using Bayesian statistics [25],

or by injecting trains of rectangular current pulses [38] and noisy

inputs [11]. These methods result in periodic PRCs, but only

because periodicity is imposed as part of the optimization (fitting)

techniques employed. In conclusion, our method can be applied to

noisy experimental data to calculate PRCs while avoiding possible

bias or overfitting problems present in some of the currently

available methods. A wide, comparative study will be required in

the future to find out which methods for calculating the PRC yield

the best results under different conditions.

Purkinje cell dynamics depend on firing rate
Purkinje cells fire spontaneously and modulate their firing in

response to synaptic input. The spontaneous firing rate of Purkinje

cells varies from 10 to 180 Hz, but firing frequency can also be

increased by the ,150,000 parallel fiber synaptic inputs [39] or

decreased by molecular layer interneurons during the execution of

motor tasks such as smooth-pursuit eye movements [40],

maintenance of posture [41] and locomotion [35,42]. For

example, the rate of Purkinje cell firing can exhibit a consistent

temporal relationship with wrist movement [31] or be monoton-

ically related to eye velocity during smooth-pursuit eye movements

[40].

How is the integration of single inputs affected by the firing rate

of the Purkinje cell? We have addressed this question by measuring

the PRC at different firing rates. Using our new approach, we

determine experimentally the PRCs of cerebellar Purkinje cells

and show that their shape changes significantly depending on the

firing rate (compare Fig. 5A and Fig. 5C). At high firing

frequencies (.50 Hz) Purkinje cell PRCs are monophasic

(Fig. 6B). However, at low firing rates (,50 Hz), Purkinje cell

PRCs become phase-independent (Fig. 6A). To the best of our

knowledge, this is the first study to report a phase-independent

PRC in a mammalian neuron.

It was previously reported in a spike-frequency adaptation

model of cortical neurons that an increase in firing frequency

causes a shift of the PRC peak from rightward skew to the centre

with a decrease in amplitude [24], implying that the integrative

properties of this model neuron change depending on the firing

rate. Specifically, it was suggested that the model cell acts like a

coincidence detector at low firing rates and more of an integrator

at higher firing rates [24]. Purkinje cells appear to show

the opposite behaviour, acting as perfect integrators at low firing

rates.

Functional implications
The shape of the PRC is thought to be linked to the type of

excitability of the neuron. Neurons with type I excitability, whose

f-I curves are continuous, are thought to display purely positive

PRCs while neurons with type II excitability, characterized by a

discontinuity in the f-I curve at the onset of firing, exhibit

biphasic PRCs [11,13,14]. While biphasic PRCs intuitively result

in resonator behavior, neurons with purely positive PRCs act as

integrators of synaptic input [11,13,14,43]. Although Purkinje

cells exhibit type II excitability [2,44,45], their PRCs are positive

at all firing rates, implying that they are integrators rather than

resonators. These findings suggest that the type of excitability of

a neuron is not strictly correlated with the PRC shape. Similarly,

Tateno and Robinson [15] showed that low-threshold spiking,

fast spiking and non-pyramidal regular spiking interneurons can

exhibit both purely positive and biphasic PRCs which do not

always strictly correspond to the type of excitability of the

neuron.

The shape of the PRC has functional implications for the

integration of synaptic inputs. At high firing rates, Purkinje cells

are most sensitive to inputs during the last 3 ms of their firing cycle

(Fig. 6D), imposing a strict relationship between the timing of the

input and the timing of spike output, with direct consequences for

network dynamics. It has been shown theoretically that oscillators

which are described by type I PRCs and are coupled by excitatory

synapses tend not to synchronize [16]. However, the opposite is

true for inhibitory coupling between oscillators [16,46], such as

coupled Purkinje cells. Indeed, theoretical and experimental

evidence indicates that Purkinje cells tend to synchronize via

inhibitory inputs [4,6,7].

As the firing rate of Purkinje cells decreases, and the levels of

synaptic and intrinsic conductances and currents are modified, the

PRC switches from monophasic to phase-independent (Fig. 6C).

The phase-independent PRCs at low firing rates suggest that

Purkinje cells integrate their synaptic inputs independently of their

timing within the interspike interval (Fig. 6A). Our results

therefore support the idea that at low firing rates, Purkinje cells

cannot read out the timing of their inputs, which would exclude

the use of a temporal code. Instead, in this regime they are well

suited for rate coding.

What are the biophysical mechanisms responsible for the switch

in PRC behaviour at different firing rates? To generate an entirely

flat PRC would require a neuron to effectively completely

compensate for its leak conductance. This is illustrated by the

example of the PRC of a simple leaky integrate-and-fire neuron in

which the leak conductance was eliminated (Fig. S1B and C).

However, this absence of leak is unlikely to occur in real Purkinje

cells, and the biophysical implementation remains unknown.

PRCs qualitatively similar to those observed in our experiments at

high firing rates can be generated by the Purkinje cell model of

Khaliq and colleagues [26] (Fig. S3A). However, when the firing

rate is lowered in the model, no qualitative switch in the shape of

the PRC can be observed. A hint to the mechanisms underlying

the switch in the experiment is provided by using the model of

Akemann and Knöpfel [47] (a further development of the Khaliq

et al. model): at low firing rates a ‘shoulder’ appears in the early

phases of the PRC (Fig. S3B). However, none of these models fully

capture the experimentally determined switch in Purkinje cells,

perhaps reflecting the fact that both of these models represent

dissociated Purkinje cells. Thus, our experimental results could aid

the refinement of existing models in order to capture the full

dynamic behaviour of Purkinje cells.

In conclusion, our experimental findings indicate that Purkinje

cells display different dynamic behavior depending on their firing

rate. At high firing rates these neurons act as coincidence detectors

of synaptic inputs, with maximal sensitivity at the late phases of the

interspike interval. In contrast, at low firing rates Purkinje cells are

not suited for precise coincidence detection, but instead appear to

perfectly integrate their inputs independently of their position

within the interspike interval. Thus, at high firing rates Purkinje

cells can transmit information via a temporal code whereas at low

firing rates they are well-suited for rate coding.

Materials and Methods
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Acute slice preparation and electrophysiological
recordings

Twelve- to fifteen-day-old L7-tau-gfp mice [48] were anaesthe-

tised using isoflurane, decapitated and their brains were

transferred to ice-cold low Ca2+ artificial cerebrospinal fluid

(ACSF) containing (in mM): 125 NaCl, 26 NaHCO3, 25 glucose,

2.5 KCl, 26 NaH2PO4, 0.5 CaCl2 and 3 MgCl2, saturated with

carbogen (95% oxygen and 5% carbon dioxide gas). 230-mm-thick

sagittal brain slices from the cerebellar vermis were cut on a

VT1200S microtome (Leica Microsystems) and were transferred

to normal ACSF containing the following (in mM): 125 NaCl, 26

NaHCO3, 25 glucose, 2.5 KCl, 26 NaH2PO4, 2 CaCl2 and 1

MgCl2, again bubbled with carbogen. The slices were incubated

for 30–40 minutes at 37uC and were then allowed to cool to room

temperature. Thick-walled, filamented, borosilicate glass elec-

trodes (Harvard Apparatus Ltd.) were pulled to a tip resistance of

4–5 MV (PC-10 microelectrode puller, Narishige). Cells were

visually identified with the aid of an upright infrared differential

interference contrast (IR-DIC) microscope (Axioskop, Carl Zeiss)

and a video camera (C2400-07, Hamamatsu). Purkinje cell

somatic whole-cell patch-clamp recordings were obtained using

an internal solution containing the following (in mM): 130

methanesulfonic acid, 10 HEPES, 7 KCl, 0.05 EGTA, 2 Na2ATP,

2 MgATP, 0.5 Na2GTP and 0.4% biocytin, pH-adjusted to 7.3

with KOH. All recordings were performed at 34.561uC in the

presence of carbogen-bubbled ACSF supplemented with GABAA

receptor blocker SR95331 (10 mM). Recordings were made with

an Axoclamp 2B amplifier (Axon Instruments) and were filtered at

3 kHz and sampled at 50 kHz using an ITC-18 DAC board

(Instrutech) and Axograph 4.9 (Axon Instruments). Series

resistance and pipette capacitance were carefully monitored and

compensated throughout the experiment. Methanesulfonic acid

was obtained from Fluka, and other chemicals from Sigma-Aldrich

and BDH Chemicals.

Phase response curves
Data were analyzed with MATLAB (The MathWorks). To

determine how spike timing during spontaneous firing is shifted by

a brief perturbation, we injected rectangular current pulses of

0.5 ms duration and 50 pA amplitude, after a baseline of 150 ms

(50 ms) of spontaneous firing in subsequent trials of 350 ms

(100 ms) for a slowly (rapidly) firing cell. A control PRC (cPRC)

was calculated using the unperturbed part of the voltage traces and

assuming a current pulse injection (0 pA amplitude) after 50 ms

(25 ms) of spontaneous firing in subsequent trials of 350 ms

(100 ms) for a slowly (rapidly) firing cell. The cPRC should be zero

throughout all phases.

The dynamics of a neuronal oscillator can be reduced to a single

variable: the phase w. w is calculated by dividing the time from the

previous spike by the period T of the oscillation; it increases

linearly from 0 to 1 between two spikes. Depending on the phase w
of the stimulus, a change in phase, Dw, of subsequent spiking will

occur.

Traditional method: A brief current pulse is injected at a

random time. The spikes before and after it are identified. Dw is

calculated by the difference between the unperturbed T and the

perturbed T [8–12]. When the unperturbed T is defined as the

mean ISI (vTw), a point p(i)~(w,Dw) on the PRC plot becomes:

p(i)~
t

vTw

,1{
Ti

vTw

� �
ð1Þ

where Ti denotes the ISI which contains the brief current pulse

and p(i) is the PRC point calculated in reference to the spike just

prior to the stimulus. t is the time between the pulse and the

preceding spike i. The resulting curve is a plot of Dw against w.

The curve is positive (negative) when the injected current advances

(delays) the next spike. In the experimental and model (with noise)

PRCs, we refer to raw data as the estimated measurements

(‘points’) on the PRC plot. A moving average was calculated with a

Gaussian kernel over the raw data.

Corrected method: A major problem with the traditional

method is the loss of periodicity of the sampling reference (Fig. 3B),

which results in an inhomogeneous sampling of phases in the

presence of spike jittering. In order to restore periodicity, points

unaffected by the stimulation pulse can be added to the ensemble

of PRC points, which allows the spiking jitter to average out

properly. These points can be obtained from the same data by

adding PRC values when the preceding ISI is taken into account:

p(i{1)~
Ti{1zt

vTw

,1{
Ti{1

vTw

� �
ð2Þ

When n preceding and m subsequent ISIs are taken into account

as in:

p(i{j)~
Ti{jz . . . zTi{1zt

vTw

,1{
Ti{j

vTw

� �
, j~1,:::n ð3Þ

and

p(izk)~
t{Ti{ . . . {Tizk{1

vTw

,1{
Tizk

vTw

� �
, k~1,:::m ð4Þ

periodicity in the spiking jitter is restored, phases are sampled

homogeneously and the cPRC becomes flat. In the resulting plot,

the phase interval ranges from {m to n and the PRC component

affecting directly the interval Ti corresponds to all points in the

phase interval [0,1], termed PRC1. Successive PRC2–5, corre-

spond to phase intervals [21,0], [22,21], [23,22] and [24,23],

respectively and indicate how Tiz1,:::,Tiz4 are affected by the

pulse.

Peak-to-baseline ratio: In order to distinguish the phase-indepen-

dent PRCs from the phase-dependent ones, PRCs were classified

according to the peak- to-baseline ratio. Inspired by Tateno and

Robinson [15], local extrema at the two halves of the PRC (i.e. for

0ƒwv1=2 and 1=2ƒwƒ1) were calculated and were denoted as

early (me) and late (ml ) respectively. The peak-to-baseline ratio is

then defined as:

r~
Dml{meD
Dml DzDmeD

Simulations
Simulations were performed in NEURON [49] using a model

of Purkinje cells consisting of a single compartment [26,47]. The

model includes seven voltage-gated conductances (a resurgent

Na+ current, fast and slow K+ currents, P-type Ca2+ current,

Ca2+-activated K+ current and the hyperpolarization-activated

current Ih) and one voltage-independent conductance (Ileak), based

on voltage clamp measurements from Purkinje cells [26]. The

membrane surface area of the neuron was modified (613) to

reproduce input resistance values close to those observed in

Purkinje cells (80 MV). In order to mimic the noise observed in
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Purkinje cells, noisy current input drawn from a normal

distribution with m~0 pA (mean) and s~14 pA (standard

deviation) was injected at each time step of the simulation (every

25 ms) into the soma. The noise injection resulted in a coefficient of

variation of ISIs of 0.05, which is comparable to the values

measured in real Purkinje cells in the experiments presented here

(see also [1]). Current pulses of 0.5 ms duration and 250 pA

amplitude were injected after 2500 ms, at a time at which spike

jitter had randomized spiking phase. Data shown is taken from

more than 15000 trials.

Additional neuron models were used in the supplementary parts

of the manuscript. For Fig. S1, the Morris-Lecar model was directly

implemented using parameters from [28]. The adjoint was

calculated using XPPAUT [27] and the PRCs with noise were

integrated in MATLAB (The MathWorks). The parameters for the

leaky integrate-and-fire model were: a membrane time constant of

t~5 ms, a reset potential of Vreset~0 mV, a threshold potential of

Vthreshold~30 mV, a membrane resistance of Rm~100 MV, and a

steady driving current of I~61:11 pA (to result in 50 Hz firing) and

was simulated at time steps of dt~1 ms. For the non-leaky integrate-

and-fire model the time constant t was set to infinity and I~15 pA,

otherwise the same parameters were used. An alternative model for

Purkinje cell firing was used for Fig. S3 which also includes a

resurgent Na+-current and modified voltage-gated K+-conductances

[47]. In this model, current pulses of 0.5 ms duration were injected

at amplitudes of 10 pA in the low firing rate (33 Hz) case and 60 pA

in the high firing rate (111 Hz) case. Simulation results were

analysed in the same way as the experimental data.

Supporting Information

Figure S1 Validation of the corrected method. (A) Comparison

between the traditional method (red line) and the corrected

method (black line) to obtain PRCs and their numerical (green

line) and analytical (blue dashed line) no-noise pendants (using the

example of the Morris-Lecar model for which the analytical PRC

can be calculated by the adjoint method). Curves have been

rescaled to their maxima to aid comparison. (B) and (C) Same

procedure for a non-leaky and a leaky (5 ms time constant)

integrate-and-fire (I&F) model. In all cases the corrected method

performs better than the traditional method. The use of the

corrected method is particularly important in (B) which corre-

sponds best to the case observed in the experimental data from

Purkinje cells at low firing rates. Note that here we find phase-

independent and phase-dependent PRCs in a simple I&F neuron.

A square PRC can be obtained by eliminating the leak of the I&F

neuron, compare (B) and (C). Purkinje cells therefore act as perfect

non-leaky integrators at low frequencies (compare Fig. 6A). A

phase-dependent PRC can be obtained by adding a leak to the

I&F neuron (right). This suggests that Purkinje cells act like leaky

integrators at high frequencies (compare Fig. 6B).

Found at: doi:10.1371/journal.pcbi.1000768.s001 (0.52 MB TIF)

Figure S2 Comparison of the corrected and traditional methods

for obtaining PRCs. (A) and (B) PRCs of individual Purkinje cells

firing at low rates (A, black) and high rates (B, red) and population

averages (thick lines), exactly as in Figure 6AB of the main

manuscript. (C) and (D) PRCs of the same cells as in (A) and (B)

but obtained using the traditional method. The population

averages obtained with the traditional method (thick green lines)

are qualitatively different from the population averages obtained

using the corrected method (thick black and red lines). The bias is

such that the conclusions obtained in this study would not have

been possible without developing the new method.

Found at: doi:10.1371/journal.pcbi.1000768.s002 (0.32 MB TIF)

Figure S3 PRCs in different model neurons. (A) PRCs obtained

with the model of Khaliq et al. [26] at a low firing rate (left) and a

high firing rate (right) both exhibit monophasic behavior as seen in

the experiment at high firing rates. (B) Frequency dependence of

PRCs in an alternative Purkinje cell model from Akemann and

Knöpfel [47]. A hint of a ‘shoulder’ at low firing rates indicates the

trend of a frequency dependent switch in the model. However, the

PRCs at low firing rates (left) are still not flat.

Found at: doi:10.1371/journal.pcbi.1000768.s003 (0.21 MB TIF)
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