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Abstract

Recent evidence suggests that the metabolism of some organisms, such as Escherichia coli, is remarkably efficient,
producing close to the maximum amount of biomass per unit of nutrient consumed. This observation raises the question of
what regulatory mechanisms enable such efficiency. Here, we propose that simple product-feedback inhibition by itself is
capable of leading to such optimality. We analyze several representative metabolic modules—starting from a linear
pathway and advancing to a bidirectional pathway and metabolic cycle, and finally to integration of two different nutrient
inputs. In each case, our mathematical analysis shows that product-feedback inhibition is not only homeostatic but also,
with appropriate feedback connections, can minimize futile cycling and optimize fluxes. However, the effectiveness of
simple product-feedback inhibition comes at the cost of high levels of some metabolite pools, potentially associated with
toxicity and osmotic imbalance. These large metabolite pool sizes can be restricted if feedback inhibition is ultrasensitive.
Indeed, the multi-layer regulation of metabolism by control of enzyme expression, enzyme covalent modification, and
allostery is expected to result in such ultrasensitive feedbacks. To experimentally test whether the qualitative predictions
from our analysis of feedback inhibition apply to metabolic modules beyond linear pathways, we examine the case of
nitrogen assimilation in E. coli, which involves both nutrient integration and a metabolic cycle. We find that the feedback
regulation scheme suggested by our mathematical analysis closely aligns with the actual regulation of the network and is
sufficient to explain much of the dynamical behavior of relevant metabolite pool sizes in nutrient-switching experiments.
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Introduction

Much is known about the metabolic reactions that lead to the

production of biomass and energy in cells. However, understand-

ing the logic of metabolic regulation has been challenging due to

the network’s scale and complexity. Flux-balance analysis (FBA), a

constraint-based computational approach, has been used to show

that some microorganisms, including E. coli, maximize their

growth rates per molecule of carbon source consumed [1]. FBA

uses mass conservation to predict optimal growth rates as well as

fluxes [2]. In its simplest form, FBA assumes that cells regulate

fluxes to produce biomass at the maximum rate possible given a

particular limiting input flux. Recently, FBA has been successfully

applied to additional microorganisms [3–5], and to objective

functions other then maximizing biomass [6], e.g. maximization of

ATP production [7] or minimization of metabolic adjustment in

response to perturbations in metabolic network [8]. Attempts to

include regulatory [9,10], thermodynamic [11,12], and environ-

ment-specific constraints have resulted in insights into the

structure of metabolic networks, e.g. the organization of redundant

pathways [13,14]. (For a comprehensive list of FBA achievements

see reviews by Kauffman et al, 2003 and Lee et al, 2006). Despite

their predictive strength and wide applicability, FBA-based

methods are limited; FBA assumes that fluxes are optimal (thereby

assuming perfect regulation) but does not reveal how these optimal

fluxes are achieved. This leaves open the question: how can cells

achieve nearly optimal fluxes for efficient growth?

Previously, some complex bio-molecular networks have been

successfully analyzed and understood in terms of simple modules

[15], e.g. the eukaryotic cell cycle [16,17]. In the same spirit, we

address the question of how to achieve optimal growth using

several representative modules drawn from real metabolism. In

particular we consider four modules, each of which captures an

essential feature of the real metabolic network - i) a linear pathway,

ii) a bidirectional pathway, iii) a metabolic cycle, and iv)

integration of two different nutrient inputs. Linear pathways, in

addition to being common, suggest simple rules for achieving

optimal growth. In the second module, representing a bidirec-

tional pathway, metabolites are interconverted, albeit at a cost,

with the consequent risk of running a futile cycle (e.g.,

interconversion of fructose-6-phosphate and fructose-1,6-bispho-

sphate (FBP)). In the third module we analyze a metabolic

assimilation cycle. A metabolic cycle can be visualized as a linear

pathway where the end product is essential for the first step of the
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pathway. Two important examples of metabolic cycles are the

TCA cycle and the glutamine-glutamate nitrogen-assimilation

cycle. Finally, the fourth module addresses the problem of

balancing two different inputs, carbon and nitrogen. This module

takes into account the ability of microbes to assimilate nitrogen in

the form of ammonium via an ATP-independent pathway or a

higher affinity ATP-dependent one. When nitrogen is scarce, the

ATP-dependent pathway is utilized, whereas when carbon is

scarce, it is avoided.

For regulation of these modules we invoke only product-

feedback inhibition. Since its discovery in the late 1950’s,

product-feedback inhibition has become recognized as one of

the cornerstones of metabolic regulation [18,19]. This form of

regulation was first hypothesized by Novick and Szilard [20] for

the tryptophane biosynthetic pathway from chemostat experi-

ments, and has since been found in almost every biosynthetic

pathway [21]. Product-feedback inhibition is a regulatory

scheme in which the product of metabolism inhibits its own

synthetic pathway. Remarkably, in all four of the modules

studied, we find that simple product-feedback inhibition is

sufficient to control fluxes so as to enable nearly maximally

efficient growth.

To test our understanding of the physiological role of product-

feedback inhibition, we compared our simple models to actual

regulation of the glutamine-glutamate nitrogen assimilation cycle,

including its integration with carbon metabolism. We find

important similarities between the product-feedback inhibition

scheme that we propose based on general principles and the actual

regulatory mechanisms present in E. coli.

If, as we will argue, simple product-feedback inhibition is

enough to achieve nearly optimal growth, why is real metabolic

regulation so complex? Metabolic feedback regulation exists at

various levels, such as, control of enzyme mRNA transcription

[22], reversible enzyme phosphorylation [23], non-competitive

allosteric regulation [24], and competition for enzyme active sites

[25]. There are many cases where multiple feedback mechanisms

work together, e.g. glutamine synthetase is regulated by a bicyclic

cascade of covalent modifications and transcriptionally by the

NtrC two-component system [26]. Our mathematical analysis

suggests that simple feedback regulation, while adequate for flux

control, could lead to large metabolite pools, and that accumu-

lation of these pools may be prevented by multiple regulatory

mechanisms working in concert to produce ultrasensitive

feedback.

Results

Models
Linear pathway: minimal model. To elucidate the main

findings of our mathematical analysis, we first consider a minimal

metabolic circuit (Fig. 1A) in which an input flux of magnitude V
leads to growth at rate g via one metabolite with pool size p. This

analysis, while somewhat redundant with prior careful treatments

of linear pathways [27,28], lays out the nomenclature and logic

that will be used subsequently for the other modules, where the

conclusions are less immediately apparent. For our purpose, we

include no intermediates in the linear pathway. The lack of

intermediates in the pathway is equivalent to one of the steps of the

linear pathway being rate limiting for product formation. In

general, input fluxes are limited by nutrient availability, transport,

and catabolism, all lumped here into an inequality constraint

VƒVmax. This is an unbranched pathway and thus, at steady-

state and assuming no futile cycling, the input flux should equal

the efflux leading to growth (e.g., the pathway could make an

amino acid, with the efflux being its consumption by protein

synthesis leading to growth). The input flux and efflux should both

accordingly be proportional to growth rate. Assuming all other

components required for growth are freely available, the optimal

flux-balance growth rate would be set by the maximum input flux

gFBA~kVmax, where k reflects the stoichiometry between the

input flux and growth rate. As k is merely a scaling factor, in all

future equations we set it to 1 for simplicity. When the maximum

input flux become sufficiently high, then growth rate becomes

limited by other factors (e.g. other factors in growth medium used

to culture cells), never exceeding some maximum gmax. Thus, the

optimal flux-balance growth increases linearly with the input flux

until it reaches the maximum growth rate gmax (gray curve in

Fig. 1B). In general, to calculate the FBA growth rate one

maximizes the steady-state growth rate consistent with the

stoichiometric and linear constraints on the various input,

output, and internal fluxes.

To go beyond FBA and explicitly consider the regulation of

fluxes, we assume product-feedback inhibition acts on the input

flux such that

V~Vmax
Kh

Khzph
, ð1Þ

where h is a Hill coefficient and K is an inhibition constant. Since

the feedback could also be transcriptional, more generally K can

be interpreted as an effective inhibition constant and h as an

effective Hill coefficient. h~1 models simple feedback inhibition,

while hw1 represents ultrasensitive feedback inhibition. Note that

Eq. 1 always satisfies the linear constraint VƒVmax.

In our simple linear pathway model, the growth rate g depends

exclusively on the size of the metabolite pool p. In general, the

growth rate g as a function of the pool sizes of N essential

metabolites should satisfy the following constraints: g is a

monotonically increasing function of each pool, g approaches

zero if any pool approaches zero, and g becomes asymptotically

independent of each pool pi above a certain saturating pool size

Author Summary

Bacteria live in remarkably diverse environments and
constantly adapt to changing nutrient conditions. Recent
evidence suggests that some bacteria, such as E. coli, are
extraordinarily efficient in producing biomass under a
variety of different nutrient conditions. This observation
raises the question of what physical mechanisms enable
such efficiency. Here, we propose that simple product-
feedback inhibition by itself is capable of leading to such
optimality. Product-feedback inhibition is a metabolic
regulatory scheme in which an end product inhibits the
first dedicated step of the chain of reactions leading to its
own synthesis. Our mathematical analysis of several
representative metabolic modules suggests that simple
feedback inhibition can indeed allow for optimal and
efficient biomass production. However, the effectiveness
of simple product-feedback inhibition comes at the cost of
high levels of some metabolite pools, potentially associ-
ated with toxicity and osmotic imbalance. These large
metabolite pools can be restricted if feedback inhibition is
ultrasensitive. We find that the feedback regulation
scheme suggested by our mathematical analysis closely
aligns with the actual regulation of the nitrogen assimi-
lation network in E. coli and is sufficient to explain much of
the dynamical behavior of relevant metabolite pool sizes
seen in experiments.
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Figure 1. Analysis of metabolic modules: (A) minimal linear pathway and (D) bidirectional pathway, two different regulation
schemes are considered – Min-FI scheme: feedbacks only on the input nutrient fluxes (dashed lines), and Full-FI scheme: feedbacks
on all the fluxes. (B,C) Results for linear pathway from Eq. 3: (B) gFBA, the optimal growth rate given by flux-balance analysis (FBA) (gray curve), and
growth rate as a function of Vmax (solid and dashed curves). (C) Metabolite pool size p as a function of Vmax. The parameters for numerical solutions
are K~50,h~1 (solid curves) and K~25,h~2 (dashed curves). (E,F) Results for bidirectional pathway from Eq. 5: (E) gFBA (gray curve), and growth
rate as a function of Vmax

1 (solid, dotted, and dashed curves). (F) Metabolite pool sizes p1 and p2 as a function of Vmax
1 . The parameters for FBA and

numerical solutions: the maximum input flux, V max
2 ~1:5, the maximum interconversion flux, Umax~1, for the Min-FI scheme,

K1~K2~250,Km1~Km2~10,h~1 (solid curves) and K1~K2~110,Km1~Km2~5,h~2 (dashed curves), and for the Full-FI scheme,
K1~K2~165,K12~K21~65,Km1~Km2~7,h~1 (dotted curves).
doi:10.1371/journal.pcbi.1000802.g001
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p?i . Throughout this work, we use as a growth-rate function

g~
gmax

1

N

XN

i~1

pizp?i
pi

, ð2Þ

which satisfies the above constraints. This function was obtained as

the growth rate of a heteropolymer made from equal stoichiom-

etries of monomers with pool sizes pi [29]. A pool is called ‘‘growth

limiting’’ if dg=dpi*gmax=p?i .

Combining Eqs. 1 and 2 (with N~1) we obtain the kinetic

equation for the metabolite pool p,

dp

dt
~Vmax

Kh

Khzph
{gmax

p

pzp?
: ð3Þ

The steady-state metabolite-pool size is obtained by setting the

above time derivative to zero, and the growth rate is then

calculated using Eq. 2. Intuitively, as long as input flux is limiting

for growth (Vmaxvgmax), feedback inhibition should be inactive so

that there is no reduction of the flow of nutrients into the cell.

Therefore, the feedback-inhibition system should be designed such

that the feedback remains minimal until Vmaxwgmax, i.e. until the

ability to produce metabolite p exceeds demand for it. This design

can be achieved by choosing parameters in Eq. 3 such that a much

larger metabolite pool is required for significant feedback

inhibition than is required for saturated growth, that is by

choosing K&p?. Indeed, the growth rate approaches its optimum

as the feedback-inhibition constant K increases (see Text S1). As

expected, a large feedback-inhibition constant, K&p?, is advan-

tageous for maximizing production of p and thus growth rate in

the regime where metabolite p is growth-limiting.

However, there is a trade-off between the growth rate and the

metabolite-pool size (Fig. 1C). For non-cooperative feedback

(h~1), the steady-state pool size is given by

p~
K

2

Vmax

gmax

{1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax

gmax

{1

� �2

z
4Vmax

gmax

p?

K

s2
4

3
5: ð4Þ

In the asymptotic limit of small input flux, Vmax%gmax (Vmax-

limited regime), the resulting pool size is small, p*p?Vmax=gmax,

but in the asymptotic limit of large input flux, Vmax&gmax (gmax-

limited regime), the pool size becomes large, p*KVmax=gmax, and

continues to grow with increasing Vmax. Importantly, in this gmax-

limited regime, the pool size is proportional to the feedback-

inhibition constant K . Therefore, while large values of K yield

nearly optimal growth rates, they also lead to very high metabolite-

pool sizes in the gmax-limited regime. (Note that for K??, i.e. in

the absence of feedback inhibition, there is no steady-state solution

of Eq. 3 for Vmaxwgmax and the pool size p grows without limit. In

reality, other processes, e.g. leakage, degradation, or constraints,

e.g. thermodynamics [11], may limit steady-state intracellular

metabolite-pool sizes).

Cooperative or ultrasensitive feedback (hw1) can restrict the

metabolite-pool size without sacrificing growth rate. In the gmax-

limited regime, ultrasensitive feedback leads to a sub linear

increase of pool size as Vmax increases, p*K Vmax=gmaxð Þ1=h
. In

addition, in the Vmax-limited regime ultrasensitive feedback

significantly decreases the growth-rate deficit, Dg~(1{g=gFBA),
for a given value of K , Dg!1=Kh. Intuitively, for a given small

pool size pvK , a higher Hill coefficient means weaker feedback

inhibition thereby allowing more input flux and thus a higher

growth rate. Consequently, for a higher Hill coefficient, a smaller

inhibition constant K is enough to achieve a similar growth rate.

Therefore, for a given growth-rate deficit Dg, increasing the Hill

coefficient h substantially reduces the metabolite-pool size in the

gmax-limited regime, p*K(Vmax=gmax)1=h*½Vmax=(gmaxDg)�1=h
,

as shown for h~2 in Fig. 1B,C. Note that in Fig. 1B,C we chose

feedback constants K such that the resulting growth-rate is similar

for the two Hill coefficients h~1,2.

Simple feedback regulation without ultrasensitivity has two

important features: (1) simple product-feedback inhibition is

enough to approach the optimal flux-balance growth rate, and

(2) metabolite-pool sizes are small when growth limiting but

become large when not growth limiting. These large non-growth-

limiting metabolite pools can be restricted by more complex

ultrasensitive feedback regulation. We test the generality of these

features for various metabolic modules drawn from real

metabolism.

Bidirectional pathway. Bidirectional pathways, such as

glycolysis/gluconeogenesis, are used for switching between

different nutrient sources, e.g. glucose (a 6-carbon unit) and

lactate (a 3-carbon unit). At the heart of these bidirectional

pathways are metabolites that are linked by two different

enzymatic reactions (or pathways) of differing energetics due to

different cofactor requirements, e.g. fructose-6-phosphate and

fructose-1,6-bisphosphate, linked by phosphofructokinase in

glycolysis and fructose-bisphosphatase in gluconeogenesis. Since

these interconversions may allow cycling, limiting futile cycles

between these metabolites is essential for achieving optimal

growth.

Here we consider a simple module of two interconverting

metabolites shown in Fig. 1D. The module has two input nutrient

fluxes, V1 and V2, representing different sources for the same

elemental nutrient (e.g. glucose and lactate for carbon), feeding

into their respective intermediate metabolite pools p1 and p2. The

metabolite pools can interconvert, albeit at a cost: two molecules of

p1 make one molecule of p2 and vice versa, making futile cycling

wasteful of nutrients. (For mass balance and thermodynamic

consistency a low-energy waste product has to be released in each

such reaction.) The interconversion fluxes between p1 and p2 are

represented by U12 and U21, with the order of indices indicating

the direction of conversion. We further assume that both

metabolite pools p1 and p2 are required for growth with equal

stoichiometry.

Limited availability of interconversion enzymes is modeled by

the constraint on the interconversion fluxes U12,U21ƒUmax (the

same constraint is used for both fluxes for simplicity). Depending

on these constraints and on the maximum input fluxes, Vmax
1 and

Vmax
2 , the optimal flux-balance growth rate gFBA will be limited

either by the input nutrient fluxes, by the interconversion fluxes, or

by the maximum growth rate gmax. For smaller input flux into

metabolite p1, Vmax
1 vVmax

2 , the optimal flux p2?p1 is non-zero,

U21w0, while the optimal flux p1?p2 remains zero to avoid futile

cycling, U12~0. As Vmax
1 increases so that Vmax

1 wVmax
2 , the

interconversion is reversed with flux going from p1?p2. As Vmax
1

increases further, gFBA is limited either by the maximum

interconversion flux Umax or by gmax. In the case when Umax

limits growth, V1 is just high enough to maximize the

interconversion flux U12~Umax. In Fig. 1E, we chose flux

constraints that result in gFBA being limited by Umax for high

Vmax
1 (gray lines). In all cases, the maximum growth rate is

achieved by eliminating futile cycling, i.e. at least one of the

interconversion fluxes is zero.

We compare two different regulatory schemes for this module.

The simpler of the two schemes, minimal product-feedback

Optimal Growth Through Product Feedback Inhibition
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inhibition (Min-FI) assumes feedbacks only on the input nutrient

fluxes (the minimum number of feedbacks required to have a

stable-steady state solution), while full product-feedback inhibition

(Full-FI) assumes feedbacks on all the fluxes. Full-FI yields the

following kinetic equations for the metabolite pools p1 and p2,

dp1

dt
~Vmax

1

Kh
1

Kh
1 zph

1

{2Umax
p2

1

p2
1zK2

m12

Kh
12

Kh
12zph

2

� �

zUmax
p2

2

p2
2zK2

m21

Kh
21

Kh
21zph

1

� �
{g

dp2

dt
~Vmax

2

Kh
2

Kh
2 zph

2

{2Umax
p2

2

p2
2zK2

m21

Kh
21

Kh
21zph

1

� �

zUmax
p2

1

p2
1zK2

m12

Kh
12

Kh
12zph

2

� �
{g,

ð5Þ

where h is a Hill coefficient (assumed for simplicity to be the

same for all feedbacks), the Kx, with x~1,2,12,21, are feedback-

inhibition constants, the Kmy, with y~12,21, are Michaelis-

Menten constants for the enzyme-substrate complexes, the

exponent 2 on pi models the stoichiometry of the reactions:

2pi?pj , and the growth rate g is given by Eq. 2. Note that the

presence of the additional feedback terms in the Full-FI scheme

(given in square brackets) makes the interconversion flux depend

on a ratio of the two pool sizes, Uij*p2
i =ph

j , resulting in tight

control of the interconversion fluxes (see below).

To achieve optimal growth, the feedback-inhibition constants

are chosen according to the logic of flux-balance analysis, i.e. to

avoid futile cycling while allowing adequate flux from non-growth-

limiting metabolite pool to growth-limiting metabolite pool. To

avoid futile cycling, the interconversion flux should preferentially

flow from the non-growth limiting pool to the growth-limiting

pool. This is achieved by choosing the Michaelis-Menten constant

for each outgoing interconversion flux to be much larger than the

growth-saturating substrate pool size, e.g. Km12&p?1. Availability

of adequate input flux is accomplished by choosing the feedback

constant, Kx, from each pool on its input flux to be much larger

than the Michaelis-Menten constant, Kmx for that pool’s outgoing

interconversion flux, e.g. K1&Km12.

Numerical solutions for the steady-state growth rate and

metabolite-pool sizes for the two alternative regulatory schemes

are shown in Fig. 1E,F. For simplicity, we have chosen parameters

to make the network symmetric with respect to the two

metabolites. The growth-rate deficit and the metabolite pools for

the Min-FI scheme follow the same trends seen in the linear

pathway: the growth-rate deficit Dg decreases as the magnitudes of

feedback constants increase, the two metabolite-pool sizes switch

between being small ( p?i ) when growth-limiting and large (*Ki)

when non-growth-limiting, and the size of non-growth-limiting

pool is significantly restricted by high (hw1) Hill coefficients.

Furthermore, we find that the additional feedbacks in the Full-FI

scheme better restrict the pool sizes than the Min-FI scheme, for

h~1.

Metabolic cycle. Organisms metabolize some nutrients using

metabolic cycles, e.g. the TCA cycle in carbon metabolism. A

metabolic cycle is a wrapped linear pathway where the end

product is essential for the first step of the pathway. Consequently,

the import of nutrients is slowed or stopped if there is not enough

end product available. Therefore, an adequate pool of the end

product must always be maintained in order to achieve optimal

growth. Here we analyze a module based on the two-intermediate

glutamine-glutamate nitrogen-assimilation cycle. In this cycle,

ammonium (NHz
4 ) is combined with glutamate (E) to form

glutamine (Q), which in turn can be combined with a-

ketoglutarate to yield two molecules of glutamate.

The cyclic module considered here is shown in Fig. 2A. The

input nitrogen flux VN combines stoichiometrically with gluta-

mate, with pool size pE , to make glutamine, with pool size pQ.

Glutamine yields two molecules of glutamate with flux UQE, up to

a maximum Umax, thereby completing the nitrogen assimilation

cycle. We assume that both glutamine and glutamate are utilized

for growth but with unequal stoichiometries, cE=cQ*10 [30]. We

also include the flux into glutamate from glutamine-dependent

biosynthetic reactions, since these typically yield a glutamate

molecule.

The optimal flux-balance growth rate gFBA depends on the

maximum input flux, Vmax
N , and the maximum conversion flux,

Umax, along with the maximum growth rate, gmax. At low Vmax
N ,

the flux-balance growth rate is proportional to the maximum input

flux, gFBA~Vmax
N =(cQzcE) (Vmax

N -limited). As Vmax
N increases,

the growth rate may be limited by the conversion flux,

gFBA~Umax=cE (Umax-limited), or by the maximum growth rate,

gFBA~gmax (gmax-limited). In Fig. 2B we chose flux constraints

that result in a gmax-limited regime for high Vmax
N (gray lines).

As in the previous case, we compare different regulatory

schemes for this module. The Min-FI schemes have only one

feedback on the input flux from either glutamate or glutamine. In

the Full-FI scheme, there is product-feedback inhibition of both

the input flux and the conversion flux of glutamine (Q) to

glutamate (E). The kinetic equations for the the Full-FI scheme

are

dpQ

dt
~Vmax

N

pE

pEzKmEQ

Kh
Q

Kh
Qzph

Q

{Umax
pQ

pQzKmQE

Kh
E

Kh
Ezph

E

� �
{cQg

dpE

dt
~2Umax

pQ

pQzKmQE

Kh
E

Kh
Ezph

E

� �

{Vmax
N

pE

pEzKmEQ

Kh
Q

Kh
Qzph

Q

{(cE{cQ)g,

ð6Þ

where h is a Hill coefficient (assumed for simplicity to be the same

for all feedbacks), the Kx, with x~Q,E are feedback-inhibition

constants, the Kmx, with x~QE,EQ, are Michaelis-Menten

constants for the enzyme-substrate complexes (the order of indices

indicates the direction of conversion), and the growth rate g is

given by Eq. 2. The kinetic equations for the Min-FI scheme with

feedback on the input flux from glutamine can be recovered by

dropping the terms in square brackets in Eqs. 6, and the kinetic

equations for the Min-FI scheme with feedback from glutamate

can then be obtained by substituting Q?E in the feedback on the

input flux.

Interestingly, we find that neither of the two Min-FI schemes

yield steady-state solutions that are stable in all of the three

regimes: Vmax
N -, Umax-, and non-nutrient limited. In particular,

stability in one regime can be guaranteed by a particular choice of

Michaelis-Menten and feedback constants, but the same param-

eters lead to instability (one pool growing without bound or

shrinking to zero) in one of the other regimes. We conclude that

the metabolic cycle requires two feedbacks to assure stability, even

though there is only one primary nutrient input.

Optimal Growth Through Product Feedback Inhibition
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Figure 2. Analysis of metabolic modules: (A) metabolic cycle and (D) module for integrating carbon and nitrogen inputs. (B,C) Results
for metabolic cycle module from Eq. 6: (B) gFBA, the optimal growth rate given by flux-balance analysis (FBA) (gray curve), and growth rate as a
function of V max

N (solid and dashed curves). (C) Metabolite pool sizes pQ and pE as a function of V max
N . The parameters for FBA and numerical

solutions: E?Q flux, Umax~1, KmQE~0:9,KmEQ~0:1, KQ~KE~60,h~1 (solid curves), and KmQE~0:9,KmEQ~0:1, KQ~KE~30,h~2 (dashed
curves). In all cases, the stoichiometry factors are cQ~1=9,cE~10=9 [30], consistent with the relative usage of glutamine and glutamate during
growth. (E,F) Results for nutrient-integration module from Eq. 7: (E) gFBA (gray curve), and growth rate as a function of Vmax

C (solid and dashed
curves). (F) Metabolite pool sizes pC and pN as a function of V max

C . The parameters for FBA and numerical solutions: the maximum nitrogen fluxes,
V max

N1
~V max

N2
~2, KC~KN1

~100,KN2
~1000,h~1 (solid curves), and KC~KN1

~20,KN2
~200,h~2 (dashed curves).

doi:10.1371/journal.pcbi.1000802.g002
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For the two-feedback Full-FI scheme, to maximize the growth

rate in the Vmax
N -limited regime, the glutamate pool should always

be saturating for the nitrogen-assimilation reaction (E?Q) so that

nitrogen import is maximized. This is achieved by choosing a small

Michaelis-Menten constant, KmEQ%p?E. For the gmax-limited

regime, achieving optimal growth only requires Kx&p?x. Interest-

ingly, the Michaelis-Menten constant for the glutamine to glutamate

reaction KmQE controls the relative levels of glutamate and

glutamine. In Fig. 2B,C, we chose KmQE*p?Q to yield results

consistent with nitrogen-upshift experiments (see Text S1 and [25]).

The numerical solution of the kinetic equations for the Full-FI

scheme (Fig. 2A) shows that the growth-rate deficit Dg decreases as

the magnitudes of feedback-inhibition constants increase and the

metabolite pools are significantly reduced by high Hill coefficients.

However, even though there is only one primary nutrient input

like the linear pathway, the metabolic cycle requires two feedbacks

to assure a stable steady state.

Integrating carbon and nitrogen inputs: partitioning of

carbon into biomass and energy. Microorganisms integrate

various nutrients to produce biomass. Since carbon sources (e.g.

glucose, glycerol) are used for both biomass and energy, optimal

partitioning of the carbon flux is essential for optimal growth.

Here, we consider a simple module that integerates carbon and

nitrogen fluxes. In E. coli, nitrogen in the form of ammonium

(NHz
4 ) is assimilated into biomass via two pathways [31]. In the

reaction catalyzed by glutamate dehydrogenase (GDH), NHz
4 is

assimilated directly into glutamate. Alternatively, in an energy-rich

environment, glutamine synthetase/glutamate synthase (GS/

GOGAT) form an assimilatory cycle, with NHz
4 first assimilated

into glutamine. This ATP-energy-dependent cycle is essential for

nitrogen-limited growth of cells [31].

The metabolic module shown in Fig. 2D integrates two

elemental nutrients, carbon (C) and nitrogen (N). The module

has one input carbon flux VC and two input nitrogen fluxes VN1

and VN2
feeding into their respective intermediate metabolite

pools with sizes pC and pN. The input pathways are coupled by the

carbon-dependent nitrogen flux, VN1
, representing the GS/

GOGAT cycle, which requires ATP (produced by catabolism of

carbon) to import nitrogen (Fig. 2D). The other nitrogen flux, VN2
,

representing the ATP-independent GDH pathway, is modeled as

being uncoupled from carbon metabolism (note that, in reality,

both nitrogen import fluxes require also the carbon skeleton a-

ketoglutarate). We further assume that both pC (carbon metabo-

lites) and pN (nitrogen metabolites) are required for growth and are

utilized with equal stoichiometry. Thus, proper partitioning of the

carbon flux between biomass and energy for importing nitrogen is

essential for achieving optimal flux-balance growth rate.

Depending on the constraints on the input fluxes: VCƒVmax
C ,

VN1
ƒVmax

N1
, VN2

ƒVmax
N2

, and the maximum growth rate gmax, the

optimal flux-balance growth gFBA will be limited by either or both

input nutrient fluxes or by gmax (gray curve in Fig. 2E). For small

values of the maximum carbon flux, carbon will be limiting. In this

regime, the carbon-dependent nitrogen flux remains zero,

VN1
~0, and the carbon-independent nitrogen flux stoichiomet-

rically matches the input carbon flux, VN2
~Vmax

C . As the

maximum carbon flux increases, growth becomes limited by both

nitrogen and carbon – some of the carbon flux is partitioned to

energy to augment the nitrogen flux. In this regime, the carbon-

dependent nitrogen flux is greater than zero VN1
w0, while the

carbon-independent nitrogen flux is at its maximum VN2
~Vmax

N2
.

As the maximum carbon flux increases further, the growth is either

limited by nitrogen availability or by gmax (see Text S1). In Fig. 2E

we chose flux constraints that result in gmax-limited growth for

high maximum carbon flux Vmax
C .

Like previous modules, we assume product-feedback inhibition

of all the input fluxes (Fig. 2D). This yields the following kinetic

equations for the metabolite-pool sizes pC and pN ,

dpC

dt
~Vmax

C

KC

KCzpC
{Vmax

N1

KN1

KN1
zpN

{g

dpN

dt
~Vmax

N1

KN1

KN1
zpN

zVmax
N2

KN2

KN2
zpN

{g,

ð7Þ

where Ki, with i~C,N1,N2, are feedback-inhibition constants,

and the growth rate g is given by Eq. 2. The carbon-dependent

nitrogen flux is assumed to be unconstrained by the pool size of

carbon metabolites pC, i.e. the affinity of the reaction for its energy

substrate (ATP) is assumed to be high. The auto-regulatory

negative feedbacks in the regulation scheme ensure a stable steady

state.

To achieve optimal growth, the feedback-inhibition constants

are chosen according to the logic of flux-balance analysis, i.e. the

carbon-dependent nitrogen flux is turned on only after the carbon-

independent nitrogen flux reaches its maximum. This is

accomplished by choosing KN2
&KN1

.

The kinetic equations (7) are readily solved numerically for the

steady-state growth rate and metabolite-pool sizes (Fig. 2E,F). As

for the linear pathway, the growth-rate deficit Dg decreases as the

magnitudes of the feedback constants increase. The growth-

limiting metabolite pool remains small ( p?i ) while the non-

growth-limiting pool becomes large (*Ki) and continues to grow

as its input flux increases. A metabolite pool can switch from being

growth-limiting to non-growth-limiting with changes in the

available input fluxes Vmax
i . For example, in the carbon-limited

regime, pC is of the order p?C while pN is of the order KN2
or larger

(Fig. 2F). In contrast, in the nitrogen-limited regime this behavior

is reversed with, pN p?N and pC*KC or larger. Since the carbon-

derived product ATP can be used to import nitrogen, there is also

a regime where both carbon and nitrogen metabolite pools are

growth limiting and thus small, pi p?i . On the other hand, in the

gmax-limited regime neither the carbon nor the nitrogen

metabolite pool is growth limiting, consequently both pools are

large (*>Ki) and continue to grow as their maximum input fluxes

increase.

In experiments, it has been shown that the ATP-independent

GDH pathway is preferred under glucose-limited growth [32,33],

which is also consistent with the optimal FBA behavior that we

find in our nutrient-integration module. Furthermore, when both

carbon and nitrogen are available in excess, the ATP-independent

GDH pathway is largely inactive, corresponding to VN2
*0 [34].

Consistent with this observation, in the gmax-limited regime of the

model, a reduction of VN2
still allows for optimal growth.

The results show that simple product-feedback inhibition is

sufficient to achieve the optimal flux-balance growth rate in all

regimes. As for the other modules considered, larger feedback-

inhibition constants improve growth rate but result in large pools

of non-growth-limiting metabolites. Increasing the Hill coefficients

of the feedbacks restricts pool sizes and simultaneously reduces the

growth-rate deficits.

Nitrogen assimilation in E. coli
Regulation of nitrogen assimilation in E. coli has been studied in

great detail, perhaps more carefully than any other metabolic sub-

network [25,35,36] (see also cites in [25]). As nitrogen assimilation

involves both a metabolic cycle and nutrient integration, it offers a

chance to examine the extent to which actual metabolic networks,

beyond the much studied linear or branched biosynthetic

Optimal Growth Through Product Feedback Inhibition

PLoS Computational Biology | www.ploscompbiol.org 7 June 2010 | Volume 6 | Issue 6 | e1000802



pathways, are regulated by feedback inhibition circuits of the sort

that we hypothesize above.

Our mathematical analysis of metabolic cycle and nutrient

integration suggest a simple regulation scheme that allows near

optimal steady-state growth. For the nitrogen assimilation GS/

GOGAT cycle the analysis suggests feedback inhibition by

glutamine and glutamate on GS and GOGAT, respectively.

Feedback inhibition of GS by glutamine is well known. It does not

involve standard allostery, but instead a bicyclic cascade of

covalent modifications [37]. Interestingly, consistent with our

suggestion that ultrasensitive feedback might be necessary for

adequate control of metabolite pool sizes, it has been proposed

that the purpose of this bicyclic cascade is to yield ultra-sensitive

feedback [38]. Feedback inhibition of GOGAT by glutamate, in

contrast, had not been explicitly considered until recent efforts at

data-driven modeling of the network [25]. These efforts revealed

that such feedback inhibition is essential to obtain models that

match experimental data. Furthermore, examination of older

literature reveals biochemical evidence for such feedback inhibi-

tion: glutamate and aspartate both inhibit GOGAT activity [39].

The effect of glutamate is an example of standard product

inhibition of an enzyme, and was considered initially insignificant

due to the high inhibition constant (i.e., the feedback is weak).

However, given the large cellular pool size of glutamate (*102

mM), the high inhibition constant is appropriate (indeed matching

our expectation that large inhibition constant values are required

to obtain near-optimal growth, with the associated consequence of

large metabolite pool sizes). Aspartate is a direct product of

glutamate, and provides further feedback essentially as a glutamate

surrogate.

For the ATP-independent nitrogen flux via GDH the analysis

suggests feedback inhibition of GDH by the key nitrogen

intermediates, glutamine and glutamate, which is again consistent

with biochemical studies of purified GDH enzyme and with the

existence of product inhibition of all enzymatic reactions [40,41].

A prediction from our analysis is that large changes in

metabolite pools will occur upon the onset of nutrient limitation.

This also agrees well with experimental observations. For example,

consider the dynamics of a-ketoglutarate and glutamine, the

carbon skeleton and the most nitrogen-rich product of central

nitrogen metabolism. a-ketoglutarate is part of the TCA cycle, and

many TCA cycle metabolites show similar patterns to its temporal

response during nitrogen limitation and re-addition [25]. Accord-

ingly, we consider the a-ketoglutarate level as an indicator of

available carbon (specifically, carbon in the TCA cycle).

Glutamine levels have been shown to correlate well with growth

rate under nitrogen limitation [36], and accordingly we consider

glutamine levels to indicate available nitrogen.

Fig. 3A shows the experimental metabolite pool size dynamics

following nitrogen limitation and subsequent upshift for wild-type E.

coli, as well as E. coli lacking the covalent modification enzyme

responsible for feedback inhibition of glutamine synthetase (GS) by

glutamine (DglnE). The steady-state metabolite pool sizes of the two

strains are nearly identical before the nitrogen upshift; however,

upon nitrogen upshift, the fold changes in both a-ketoglutarate and

glutamine are amplified in the feedback-defective strain compared

to the WT strain. Moreover, after the nitrogen upshift, large

amounts of extracellular amino acids, including glutamine and

glutamate, were measured in cultures of the feedback-defective

strain consistent with unregulated nitrogen assimilation (Fig. 3 in

Text S1). These observations are consistent with simulations based

on our simple feedback model (Fig. 3B). Furthermore, we find

metabolite pool dynamics observed under nitrogen-limited growth

to also be consistent with our model [42] (see Text S1).

Within our model, the WT strain is described by the module

with all three feedbacks present (Fig. 2D), while the feedback-

defective strain is described by the same basic module but without

the feedback on carbon-dependent nitrogen input flux VN1
. As a

simulation of the experiment, we started the two modules at steady

state in the nitrogen-limited regime, and suddenly increased

nitrogen availability by simultaneously increasing the two nitrogen

maximum input fluxes Vmax
N1

and Vmax
N2

, thereby shifting the

modules to the non-nutrient limited (gmax-limited) regime. To

achieve steady state in our model for the feedback-defectve strain,

we assumed a leakage flux for the large nitrogen intermediate pool

pN (see Text S1 for equations with leakage).

Some of the system’s dynamics, in particular the overshoot of

glutamine in the wild-type strain, are not captured by our simple

feedback model. Generally, time-delay in the feedback may result

in an overshoot in a feedback-inhibited system. This is consistent

with the specific implementation of feedback by glutamine on GS:

a cascade of covalent modification reactions which occur on the

*1 min timescale, with the overshoot occurring in the period

where nitrogen assimilation outraces the feedback mechanism.

We also compared the growth rate response of the wild-type

and feedback-defective strains to relief of nitrogen limitation.

Consistent with experimental results, the simulations predicted a

bigger increase in the growth rate in the WT strain than in the

feedback-defective strain following nitrogen upshift (Fig. 3C,D). In

the simulation, the reason for the slower growth in the feedback-

defective strain post nitrogen up-shift is excessive drainage of the

carbon metabolite pool (e.g., a-ketoglutarate) by unregulated

nitrogen uptake in the feedback-defective strain. Whether such

drainage of a valuable carbon species is the real reason in live cells

is not clear, however. An alternative possibility is that the excessive

accumulation of glutamine causes osmotic imbalance. This

alterative, while not quantitatively included in our model, is

nevertheless consistent with the role of feedback inhibition as a

homeostatic regulatory mechanism.

Discussion

Understanding metabolism and its regulation have long been

central goals of biochemistry. Recently, flux-balance analysis

(FBA), a constraint-based computational approach, has been used

to predict the optimal metabolic fluxes and growth rates of

microorganisms in different environments. In several cases, in

particular involving E. coli, the FBA-predicted optima agree

remarkably well with experiments [1,34], raising the question ‘‘for

cells to realize optimal growth how complex must metabolic

regulation be?’’ We have addressed this question using a set of

representative metabolic modules. We find that, in all the cases

studied, simple product-feedback inhibition is enough to achieve

nearly optimal growth. Furthermore, the divergence from

optimality becomes arbitrarily small as the feedback-inhibition

constants are increased.

An important trade-off is that larger inhibition constants result in

larger pool sizes of non-growth-limiting metabolites, which can be

detrimental to growth. However, ultrasensitive feedback mecha-

nisms (i.e. those with high Hill coefficients) can substantially restrict

these pool sizes; the higher the Hill coefficient of the feedbacks, the

smaller the increase in pool size required to achieve the same degree

of inhibition. This suggests that the need for ultrasensitive

mechanisms to control metabolite pool sizes may account for some

of the complexity found in metabolic regulation in real cells at both

the transcriptional and post-transcriptional levels.

Can we hope to gain insight into real metabolism using the very

simple models we studied? To address this question we examined
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Figure 3. Nutrient-switching experiment with feedback-knockout DglnE (FG 1114) and WT strains of E. coli and simulations of
analogous modules. (A) Fold changes in key carbon and nitrogen intermediates, a-ketoglutarate (a-KG) and glutamine, under nitrogen upshift. (B)
Simulated fold changes in the carbon and nitrogen intermediates pC and pN in the two strains after nitrogen upshift, which is applied by changing
both maximum nitrogen input fluxes Vmax

N1
and V max

N2
from 1 to 2:75; the maximum carbon input flux is fixed at V max

C ~5. (C) Normalized growth
curves. Measured optical density (OD) are normalized by OD at t~0 for each experiment. (D) Simulated growth curve for modules analogous to the
two strains. All data presented are averages and standard error of multiple (N~4 for wild-type, N~2 for DglnE) independent experiments conducted
on separate days.
doi:10.1371/journal.pcbi.1000802.g003
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the nitrogen assimilation network in E. coli, which involves both

nutrient integration and a metabolic cycle. First, we found the

feedback regulation scheme proposed by our mathematical

analysis of representative modules aligns closely with the known

regulation of the network. Second, we found reasonable

agreement between simulations based on our simple feedback

models and actual experimental results, for both wild type and

feedback-defective E. coli. Comparing strains with different

regulatory schemes allowed us to directly ask the question ‘‘is

product-feedback inhibition essential for achieving optimal

growth?’’ At least in the case of nitrogen up-shift, both our

simulations and experimental data argue that it is: the feedback-

defective strain grew substantially slower than wild type after the

up-shift.

One of the central predictions of our feedback framework is that

pool sizes will be large for non-growth-limiting metabolites. Since

few metabolites are growth-limiting under any nutrient condition,

the cells are likely to have large pools of multiple metabolites under

a wide range of conditions. Therefore, we need to consider the

possible impact of large pool sizes on cell physiology. Can large

sizes of metabolite pools be detrimental to the well-being of cells?

In fact, many metabolic intermediates, such as glyoxylate and

formaldehyde, are toxic at high concentrations. Even the

biosynthetic end-products required for growth (e.g. amino acids,

nucleotides, etc.) can be detrimental to a cell’s growth at high

enough concentrations. Metabolites at high concentration can

interact nonspecifically with various enzymes and disrupt

metabolic reactions [43]. Furthermore, metabolite pools contrib-

ute to intracellular osmolarity and consequently to the osmotic

pressure inside cells. Dedicated mechanisms to respond to osmotic

stress have evolved in microorganisms, reflecting the harmful

effects of osmotic imbalance [44–46]. For E. coli, the growth rate is

maximized in conditions corresponding to external osmotic

pressures of around 8 atm [45,46]. Furthermore, the turgor

pressure has been estimated to be around 1 atm [47] in an AFM

study of the magnetotactic Gram negative bacteria Magnetospir-

illium gryphiswaldense. Consequently, the internal osmotic pressure is

thought to be around 9 atm, which corresponds to an effective

concentration of 360 mM of solute. Recent measurements have

revealed that some metabolite pools can become very large, such

as fructose-1,6-bisphosphate (*20 mM) and glutamate (*100
mM) [48]. These large metabolite pools could contribute

significantly to the overall internal osmotic pressure of the cells.

In general, pools that are large even when growth-limiting will

potentially be very large when non-growth-limiting and may cause

osmotic imbalance. Such pools in particular may require

ultrasensitive feedback mechanisms to restrict their sizes. Exper-

imental manipulation of feedback sensitivities (e.g. by enzyme

mutation, knockout of enzymes involved in covalent modification

cascades, etc.) should help shed light on the role of ultrasensitive

feedback mechanisms.

Ultrasensitivity is a common feature of feedback inhibition. At

the transcriptional level, multiple promoter binding sites along

with other cooperative mechanisms like DNA looping yield

ultrasensitive responses [49] (Fig. 4A). The response time for

transcriptional feedback is limited by protein degradation (and

dilution), which in microorganisms is typically of the order of tens

of minutes to hours. Metabolite-pool sizes, on the other hand, may

change in just few seconds, e.g. the glutamine pool increased by

over 10-fold in *10 seconds in the nutrient-switching experiment

described above. The fast dynamics of metabolite-pool sizes

suggests the need for fast feedback mechanisms. Fast regulation

Figure 4. Examples of transcriptional and post-transcriptional regulation schemes for ultrasensitive feedback. (A) Cooperative
transcriptional regulation. The product of enzyme E, with pool size p, allosterically controls the activity of transcription factors (circles) that
cooperatively regulate the expression of enzyme E. (B) Zeroth-order ultrasensitivity via post-transcriptional covalent modification. E is the active
enzyme while E? is the modified inactive enzyme. The product of enzyme E activates conversion of E to E? (or equivalently inhibits conversion of E?

to E) where both the reactions are zeroth-order, i.e., saturated with respect to E and E? concentrations. Dashed lines represent regulatory
connections, where the bar is used to represent inhibition.
doi:10.1371/journal.pcbi.1000802.g004
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can be realized through various post-translational mechanisms –

allosteric regulation of protein aggregates, e.g. ATP molecules

bind cooperatively to a homodimer of pantothenate kinase [50],

competition, e.g. Wee1 regulation of Cdk1 [51], or covalent

modifications, e.g. reversible phosphorylation of isocitrate dehy-

drogenase [52] and the bicyclic cascade of covalent modifications

in glutamine regulation [26] (Fig. 4B). Thus, the need for fast

ultrasensitive feedback mechanisms may be a key driver of the

observed complexity in metabolic regulation.

Our study of simple representative metabolic modules is an

attempt to identify the design principles underlying the regulatory

mechanisms that optimize metabolic function, such as biomass

production [53]. In addition to highlighting general lessons in

metabolic regulation, our analysis raises new fundamental

questions. How many feedbacks are required in a metabolic

network, in particular the metabolic network of a real cell? What

principles, in addition to optimal growth and stability, guide the

evolutionary selection of feedbacks and feedback mechanisms?

Has the complexity and dynamics of the cellular environment led

to additional constraints on feedback strategies? And finally, given

the apparent sufficiency of feedback inhibition, why are other

regulatory motifs, such as allosteric enzyme activation, also found

in metabolism? Further experiments in which metabolic feedbacks

are eliminated, modified, and/or rewired, in concert with

additional theoretical analyses, should facilitate answering these

questions.

Materials and Methods

The analyses were carried out using kinetic equations (Eqs. 3, 5,

6, 7). The equations account for the concentration of each

component in the metabolic modules and the steady-state solutions

were numerically obtained using MATLAB. For details on the

flux-balance analysis (FBA) see Text S1.

Supporting Information

Text S1 Additional information.

Found at: doi:10.1371/journal.pcbi.1000802.s001 (0.25 MB PDF)
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