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Abstract

Attractor neural networks are thought to underlie working memory functions in the cerebral cortex. Several such models
have been proposed that successfully reproduce firing properties of neurons recorded from monkeys performing working
memory tasks. However, the regular temporal structure of spike trains in these models is often incompatible with
experimental data. Here, we show that the in vivo observations of bistable activity with irregular firing at the single cell level
can be achieved in a large-scale network model with a modular structure in terms of several connected hypercolumns.
Despite high irregularity of individual spike trains, the model shows population oscillations in the beta and gamma band in
ground and active states, respectively. Irregular firing typically emerges in a high-conductance regime of balanced
excitation and inhibition. Population oscillations can produce such a regime, but in previous models only a non-coding
ground state was oscillatory. Due to the modular structure of our network, the oscillatory and irregular firing was
maintained also in the active state without fine-tuning. Our model provides a novel mechanistic view of how irregular firing
emerges in cortical populations as they go from beta to gamma oscillations during memory retrieval.
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Introduction

Persistent activity in prefrontal and parietal neurons has been

identified as a neural correlate of working memory. Indeed,

neurons in these areas show elevated firing for specific memoranda

during the delay period of a working memory task [1–3]. Recent

studies have analyzed the temporal structure of these neuronal

spike trains, and its modulation during the task [4–7]. The data

indicates that spike trains are highly variable across all task epochs

[5,7], while local field potential recordings suggest that the

underlying neural populations present gamma-range oscillations

[4]. These experimental findings (selective persistent firing,

irregular spike trains, and population oscillations) pose important

constraints on mechanistic models of working memory in the

cortex.

Attractor network models have replicated and permitted the

analysis of bistability of firing rates [8–11] i.e. the coexistence of a

non-selective ground state and several possible active states, where

one population shows an elevated-rate foreground activity and the

rest a low-rate background activity. Highly irregular spike output in

the ground state has been achieved by means of balance between

excitation and inhibition [8], with spiking driven by fluctuations in

the input [12,13]. But the balance is typically lost when the

network enters an active state, and persistent activity is typically

more regular than background activity. Recently, some modeling

efforts have succeeded in achieving highly variable foreground

firing [14–16].

Here we investigate a model that operates in a new regime, with

low-rate firing and population oscillations in both the ground and

the active state (referred to as bistable oscillatory regime). This has

several advantages, such as 1) a very robust bistability that does not

require fine-tuning as in previous models; 2) it reproduces

oscillations during delay activity which are prominent in vivo [4];

3) there is no rate dependence on variability in contrast to existing

models; 4) firing rates are low and there is only a small gap in firing

rates between ground state and foreground activity in agreement

with experimental results [5].

To investigate this we used and modified a previously developed

spiking attractor network model, which demonstrated perceptual

and memory operations such as memory recall, spontaneous

attractor wandering and attentional blink [17]. We analyzed the

statistics of neuronal activity and found a good match with

experimental data during visual working memory tasks [4–7].

We used the same model neurons as in our previous

investigations. However, the phenomena studied here are likely

not dependent on details of the model neurons since preliminary

results from two of our recently developed models with the same

network architecture but comprising Hodgkin-Huxley type point-

neurons and integrate-and-fire neurons respectively show much

the same dynamics. A comparison of models employing different
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types of model neurons as well as a more in depth theoretical

analysis of the phenomena reported here is certainly desirable but

outside the scope of the current paper.

Oscillatory activity is compatible with attractor network models

of working memory [18,19], provided a depolarizing mechanism

with long-time constant supports network dynamics, such as

NMDAR-mediated synaptic currents [20] or slow intrinsic

depolarizing currents [19]. We have found that a modular

network structure in terms of hypercolumns stabilizes oscillatory

activity in ground and active states, even in the absence of such

slow depolarizing currents. High variability can emerge in such an

oscillating network [21]. Hypercolumnar modularization therefore

provides spike-train variability and bistability without fine-tuning.

Results

We studied a computational network model of a neocortical

layer 2/3 circuit with a minicolumnar and hypercolumnar

structure, and a diversity of interneuron classes (see Methods). In

brief, a cortical minicolumn was composed of thirty pyramidal

cells [22,23], one soma targeting basket cell and two dendrite

targeting regular-spiking non-pyramidal (RSNP) interneurons

(possibly double bouquet cells) of equal selectivity [24–26].

Fourty-nine such minicolumns of distinct selectivity were coupled

to each other mainly through mutual inhibition to form a

hypercolumn. The full model consisted of nine hypercolumns,

which were mutually connected through excitatory conductance-

based synapses. These excitatory projections across different

hypercolumns targeted pyramidal neurons in minicolumns sharing

the selectivity of presynaptic neurons and RSNP neurons in

minicolumns of dissimilar selectivity to that of presynaptic neurons

(Figure 1). This specific organization of connectivity among a

diversity of cell classes is consistent with the known physiology and

anatomy of the neocortex [25,27–29] but its implications for

persistent activity in working memory are still unknown. We

describe in the following how this architecture instantiates novel

mechanisms for persistent activity in our cortical network model.

Bistable, low rate and irregular firing
Similar to other working memory network models in the

literature [8,30], our network could operate in a bistable regime, i.

e. two qualitatively distinct activity states co-existed as stable, self-

maintained states of the network. Each of the active states engaged

a specific subpopulation of the network belonging to the same

attractor as elevated-rate ‘‘foreground cells’’ and the remaining

neurons as low rate ‘‘background cells’’. To compare with data

from dorsolateral prefrontal cortex [3,5] obtained in visual delayed

response experiments, we mapped our model’s ground state to the

fixation period activity, and the foreground cells to the cells

representing a preferred cue during delay activity. Pyramidal cells

in the background were related to those cells that represent a non-

preferred cue. Figure 2A, B shows pyramidal cells switching from

ground state to a specific active state, with some cells ending up in

Author Summary

The basic computational principles of the brain are still
unknown, and one major reason for this is related to the
difficulties in simultaneously measuring detailed data from
a sufficiently large number of cells. In techniques where
populations of cells are monitored, resolution is low.
Computational models have no such measurement
limitations and can be constrained by several experiments
at different levels of granularity, enabling testing of the
biological plausibility of different computational theories.
One such theory, the attractor network paradigm, has
gained increasing support over the past twenty years by,
for instance, comparing the output of attractor memory
models to population data and spike frequency modula-
tions of neocortical neurons. We take this comparison
further by also looking at the fine-structure of activity in a
network model with a novel modular structure also seen in
vivo. This allows the network to operate in a new dynamic
regime. In particular, we reproduce the irregular low-rate
spiking of single cells in vivo, which has previously been a
challenge for attractor network models. Oscillations in field
potentials at gamma and beta frequencies, again believed
to be connected to, or even essential for, attention and
consciousness, emerge as a feature of the underlying
dynamics of the model.

Figure 1. Schematic wiring diagram of the network model, with connectivity densities and average post-synaptic potential
amplitudes as measured in the soma indicated. Hypercolumns are shown with light grey background, minicolumns with dark grey. The middle
hypercolumn shows the mutual inhibition via basket cells between minicolumns in the same hypercolumn. The pyramidal cell to the left in this
column shows how pyramidal cells project locally and globally. Percentages are given as the chance of one cell of the pre-population being coupled
to one cell of the post-population. Note that global connectivity is exaggerated since the number of hypercolumns is down-scaled. Each cell sees
about the same number of active synapses as it would in vivo assuming 1% activity. 1Connectivity of pyramid-RSNP cells given the two minicolumns
are in different patterns, otherwise 0%. 2Global connectivity of pyramid-pyramid given the two minicolumns are in the same pattern, otherwise 0%.
doi:10.1371/journal.pcbi.1000803.g001
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the foreground, and a majority of them in an even lower rate

background activity. Figure 3 shows typical intracellular potential

(Vm) traces of the three cell species as this switch to active state

occurs. The firing on the population level is oscillatory in both

states, with increased frequencies in the active state moving from

beta (20–25 Hz) to gamma band (40–50 Hz). These oscillations

are clearly seen in the average Vm of a local neuron population

and in a synthetic local field potential (LFP). Additionally, the

single cell spike-trains were highly variable in all states in

accordance with experiments [5]. The spectral power was

enhanced during the delay period, and selectively for the

foreground population (Figure 2D).

In the following we show that due to the hypercolumnar

structure of our network model the bistable range is much larger

than in previous models and activity is oscillatory in both states

without slow excitatory currents. Further, since inhibition and

excitation is approximately balanced in the oscillatory regime, low-

rate and high variability of individual spike-trains in all states is

achieved without fine-tuning. Several other features such as a very

small gap in firing frequencies between the two states, increased

oscillation frequency in the active relative to the ground state and

correlation between oscillation frequency and firing rate naturally

emerges. How these findings relate to each other and the

mechanisms behind them will be investigated in subsequent

sections.

Hypercolumns allow bistable oscillatory activity
One problem with existing models of bistable network states is a

narrow range of parameter values that give rise to bistability for

biologically plausible neuronal firing rates. Our modular network

model had a very comfortable bistable range compared to other

non-modular models [8]. We define here the bistable range such

that its lower boundary is the limit where recurrent excitatory

synapses are strong enough to support self-sustained active states,

Figure 2. Spike raster showing bistability. A: A subsample of 5880 pyramidal cells (4 out of 9 hypercolumns) is shown. Each dot represents a
spike occurring at a particular time (x-axis) and in a particular cell (y-axis). In the beginning of the simulation the stable, non-specific ground state was
active. When a part of a pattern (first minicolumn in 5 out of 9 hypercolumns, see Methods) was stimulated it completed and was then persistently
active, even after stimulation terminated. The foreground pattern consisted of the first minicolumn in each hypercolumn, so the activity after
stimulation also marks the borders between the hypercolumns. Each of the four highly active and synchronous bands is the collective spike output of
30 pyramidal cells within the first minicolumn. The three bottom hypercolumns in the raster plot received direct stimulation and activated the top
hypercolumn. After stimulation, the background pyramidal cells lowered their firing rates. B: Activity histograms of 30 pyramidal cells (top) going
from ground state to foreground in the active state, and 30 pyramidal cells (bottom) going from ground state to background. The vertical bar marks
10 s21 (top) and 1 s21 (bottom), respectively, measured as the number of spikes divided by time and number of cells. C: Zoom in of the part of the
spike raster that is indicated by the dashed vertical lines in A. Only the cells in the foreground population are shown. Active minicolumns are not
tightly synchronized in terms of phase. D: Synthetic LFP spectrograms. The network started out in the ground state and entered an active state after
2 seconds due to stimulation. The signal was produced from 30 pyramidal cells entering foreground (left) and background (right) respectively. The
average signal from 5 runs is plotted.
doi:10.1371/journal.pcbi.1000803.g002
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and its upper boundary occurs when this excitation is so strong

that the ground state becomes unstable and attractors activate

spontaneously. In order to find out if the high stability was due to

the network architecture we gradually transformed the network

towards a non-modular one. All results in this section were

produced without basket-basket cell connections for easier

comparison with other models. Since there would be no input to

the RSNP cells in the uni-modular case, we temporarily removed

RSNP cells also in the multi-modular networks to make a fair

comparison.

Most cortex models in the literature feature only one inhibitory

population that provides negative feedback to the entire excitatory

cell population. In contrast, our model had several hypercolumns

defined by the extension of separate populations of basket cells.

We gradually decreased the number of hypercolumns, and

increased the number of pyramidal cells in each minicolumn to

hold the number of neurons in the foreground population constant

(Table 1). When comprising only one large hypercolumn the

network dynamics resembled that of previous models [8]. A small

bistable range existed but the active state would often spontane-

ously fall back into the ground state during 3 seconds of simulation

and the bistable range was hence somewhat ill-defined.

The low gap in oscillation frequencies between ground and

active state in the uni-modular case meant that a small

perturbation in activity allowed background cells to start fire and

the active state to transition back to the ground state. If feedback

inhibition was lowered stable solutions existed, but they were non-

oscillatory and the bistability ratio was very small (1.02).

As the number of hypercolumns was increased, active states

became stable at lower levels of recurrent excitation and

spontaneous termination of an active state never occurred.

Long-range pyramidal to pyramidal cell excitation between

hypercolumnar modules arriving out-of-phase with the local

oscillations (Figure 4) stabilized the persistent activity in the active

states. The firing and oscillation frequencies in the active states

increased (keeping recurrent excitation constant) with the number

of hypercolumns. This could be explained by the fact that a similar

number of pyramidal cells in a minicolumn fired in each

oscillatory cycle, regardless of the minicolumnar size (Figure 4 B,

D). Thus, more cells were allowed to spike with increased

modularization thereby increasing the total amount of recurrent

excitation and producing shallower but equally steep Vm

deflections, leading to an increased oscillation frequency. Since

destabilizing the ground state in modular networks required the

simultaneous activation of a larger number of cells, less likely to

happen by chance, the upper boundary of the bistable range did

not decrease as much as the lower one. Thus, the width of the

bistable range increased with modularization.

The most pronounced effect of having the RSNP cells in this

network was a shift in the bistable range towards larger recurrent

excitatory conductances (along with a slight increase of the range).

As oscillation frequency increased with recurrent excitation this

Figure 3. Intracellular potential traces of pyramidal cells and inhibitory interneurons in a simulated hypercolumn. To the left is a
sketch of a hypercolumn, where the red minicolumn is in foreground and the blue is in background state. The voltage traces to the right are taken
from the same simulation that yielded the raster plot in Figure 2. They show how the neurons behave as the network switches from ground state to a
persistent active state (indicated by horizontal stimulation bar). The two upper voltage plots show basket cells, B1 and B2, adjacent to red and blue
minicolumn respectively. Middle voltage traces show RSNP neuron membrane potential. R2 is far away from the active minicolumn and maintains an
firing rate (although lower than in the ground state). R1, located in the active minicolumn, will fire at a low rate activated only by the low activity of
background pyramidal cells. P1 is a pyramidal cell that ends up in the foreground after stimulation, and P2 becomes part of the background.
doi:10.1371/journal.pcbi.1000803.g003

Table 1. Bistable range as a function of number of hypercolumns.

Number of Hypercolumns (pyramidal cells/minicolumn) 1 (270) 4 (67) 9 (30)

Bistable range 1.30–1.43 0.89–1.29 0.75–1.20

Bistability ratio 1.10* 1.45 1.60

Active state stability 10/20 20/20 20/20

Frequency range 21–23 Hz 22–25 Hz 22–29 Hz

Mean firing rate (s21) 0.46–0.54 1.6–2.6 2.8–5.5

Bistable range is the level of maximum and minimum recurrent excitatory conductance allowing for bistability, where 1 is the standard value; bistability ratio is upper
boundary/lower boundary; activity state stability is the fraction of active states that are stable for 3 seconds or more in the middle of the bistable range; frequency range
refers to the oscillation frequency of Vm in the active state in the bistable regime (faster oscillations for stronger excitation). The oscillation frequency of the ground state
was ,20 Hz in all simulations; mean firing frequency is the average firing frequency of foreground cells at the lower and upper boundary of the bistable regime.
doi:10.1371/journal.pcbi.1000803.t001
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therefore increased the oscillation frequency in the active state to

between 29 and 42 Hz in the 9 hypercolumns case, while the

oscillation frequency in the ground state increased from ,20 to

,21 Hz. With RSNP cells the network better matched the

gamma-frequency increase seen during delay [4] in working

memory tasks.

As mentioned previously, it is possible to stabilize persistent

activity in a recurrent network in the oscillatory regime with e.g.

NMDA-synapses [20]. It has even been argued that this is the only

way to achieve robust oscillatory persistent activity [19,31]. When

NMDA synaptic currents were blocked in our network, persistent

activity was preserved if this was compensated for with enhanced

AMPA conductances. Additionally, if the external noise input was

removed the network could still engage in persistent activity if the

amount of AMPA-mediated recurrent excitation was further

increased. Conserving either long-range inhibition or long-range

excitation was sufficient. Thus, having several connected hyper-

columns oscillating out of phase replaced the effect of a slow

Figure 4. Out-of-phase excitation. Upper panel (A–D): Shows average voltage of one minicolumn and the spiking output within (circles) and from
other connected (dots) minicolumns. A is taken from the ground state in a one-hypercolumn network, B from the active state in the same network. C
from the ground state in a nine- hypercolumn network, D from the active state. Lower panel (E–G): Spike histogram showing spike latency to the
nearest membrane potential peak. In the one-hypercolumn case (E) all excitatory input arrives around the peak while in the case with four (F) and
especially nine (G) hypercolumns incoming excitation is more distributed in time.
doi:10.1371/journal.pcbi.1000803.g004
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excitatory current and did not require fine-tuning. This allowed us

to attain a robust bistable oscillatory regime which resulted in

several interesting and novel features of the model as further

explained below.

Oscillatory regime is balanced and show irregular and
low rate firing

Existing attractor memory models face three major issues; 1) the

persistent activity state has much higher firing rates than the

ground state at odds with most experimental data, 2) high firing

rates result in lost balance between excitation and inhibition, and

3) as a consequence the firing in the active state becomes regular.

Problems 2) and 3) have been extensively studied [14–16] and a

solution to 3) was recently presented [16]. We find that the

modular network investigated here provides a solution to all three

problems.

Regarding 1), in our model the average firing rate in the ground

state was 0.5–1 s21. In the active state, background cells fired at an

average of ,0.1 s21 and this state was stable if the foreground

population fired from about 3 s21 (without RSNP inhibition) at

the lower boundary of the bistable range. Thus, the firing rate in

the ground state was consistently lower than in the foreground

population of the active state but the gap between the two was

small; with a minimum gap around 2–3 s21 close to the

experimental values reported [5]. However, with the standard

network architecture (with RSNP inhibition) and set of parameters

given in the Methods and Supplementary material (Text S1),

average firing rate was 15 s21 due to stronger recurrent excitation

(middle of bistable range).

Regarding 2) we investigated the balance of currents in the

oscillatory regime, since such a balance between excitation and

inhibition produces highly irregular firing [12,13]. We measured

the currents into the soma (as described in Methods) on a cell

injected with a hyperpolarizing current to prevent it from spiking,

as it participated in the different states of the task (Figure 5A–C).

The net current into the soma was slightly excitatory in both the

ground state and in the foreground of the active state, ,7.7 pA

and ,8.0 pA respectively. When we disabled the recurrent

connectivity we found that the net excitatory contribution from

noise synapses (representing input from cells outside the simulated

network, see Methods) was approximately 10 pA, implying that

the net contribution from the recurrent network was inhibitory for

both ground and active state. The mean firing frequency with

recurrent connections removed and only noise driving the cells

was ,8 s21 compared to ,15 s21 with the recurrent network

enabled. This shows that increased spiking rates in the foreground

cells were driven by other mechanisms than a net increase in

excitation. In addition, we injected current into a cell during the

Figure 5. Balance of currents in a single cell during three different models of activity of the network. From 0–0.5 s network is in its
ground state, from 0.5–1.5 s it is in an active state. Between 0.5–1 s the cell is part of the foreground and between 1–1.5 s it is part of the
background. A: Plot of the soma potential. Note that the soma was injected with a negative current (20.2 nA), so that the cell did not spike while we
measured the balance of currents. B: Net, i.e. total excitatory+inhibitory, currents into soma. C: Top line is the excitatory current into soma, and the
bottom is the inhibitory current that almost perfectly balances the excitatory one. The middle line is the net synaptic current of panel B, the result of
imbalance between excitatory and inhibitory currents. Notice its significantly smaller amplitude. D: Plot of firing frequency as a function of current
injected into the soma in three different cells in ground state. The dashed line corresponds to the mean firing rate in the active state in the same
network.
doi:10.1371/journal.pcbi.1000803.g005
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ground state (Figure 5D). A cell firing at 1–3 s21 without current

injection required between 30 and 40 pA to reach 10 s21. This is

about 100 times the difference in mean net soma current between

cells in the foreground and those in the ground state in the fully

functional network, again demonstrating that net increase in

excitatory current was not a direct cause of the increase in firing

rates.

To investigate 3) above, we measured the local ISI-variability

(Figure 6A), ,CV2., as described in the Methods section.

,CV2. was high (0.8–1.1) in all states throughout the bistable

range and therefore required no fine-tuning. For the standard

parameters, with basket to basket cell connectivity enabled,

,CV2. was 0.96 in foreground and background pyramidal cells

and 0.98 in ground state. Without basket to basket cell connections

the variability was slightly lower, especially in the ground state. To

rule out that Poisson noise was the main source of high variability

we measured the variability of pyramidal cells only driven by such

noise, and found a ,CV2. of 0.69. The modeled basket cells

showed a high variability (,CV2. of 0.89) in both ground and

active states, whereas RSNP cells typically had lower variability,

with ,CV2. increasing from 0.25 to 0.45 respectively.

In Figure 6B we plot the ,CV2. against the level of recurrent

excitatory conductance for the network with and without basket to

basket cell connectivity. When these connections were disabled

,CV2. was stable and quite high in the oscillatory regime and

drastically dropped as the excitation was increased beyond the

bistable range to the level where firing became asynchronous

(leaving the inhibition dominated regime). This dramatic shift and

drop in variability was not seen with basket to basket cell

connectivity enabled, but instead there was a more continuous

transition to the asynchronous regime. The different sensitivity of

neuronal dynamics to recurrent excitation in these two cases could

be explained by the effect it had on neuronal firing rate (Figure 6C).

Since oscillations of different frequencies are prominent both in

resting and active cortical states in vivo [4,32–35] and in vitro [36],

we next studied oscillation frequency modulations in the different

states.

Oscillation and firing frequency modulations
As mentioned, the frequency and spectral power of beta-gamma

band oscillations increased when switching from ground to active

state. This is supported by strong correlation with pronounced

power enhancement in gamma-band with delay activity [4,33] and

with increased firing rates [35]. This frequency increase was robust

when changing tGABA from 6 to 25 ms and changing the reversal

potential from 285 mV to 270 mV, though oscillations were

generally slower with longer GABA time constants. With disabled

basket to basket cell connections the oscillation frequency

decreased from ,20–25 Hz to ,15–20 Hz in ground state and

from ,40–50 to ,30–40 Hz in the active state. This general shift

in both states towards lower frequencies is in agreement with

previous results of a more abstract model [37] and it also explains

the shift in frequencies compared to our previous models [17,38]

where basket to basket cell connections were not present.

Next we studied the mechanisms behind the increased firing

rates in the active state compared to the ground state. It was not

due to a net increase in excitation (see above) or to an increase in

fluctuations [15] since soma potential variability decreased slightly

in the active state. We found that in each oscillatory cycle there

exists a time window, where pyramidal cell membrane potentials

climb close to the firing threshold (Figure 7). If and when in this

window of opportunity a cell fires is decided by fluctuations and

small biases in net input between competing populations. Firing

rate increased in the active state in two different ways; firstly the

frequency of population oscillations increased around 40% when

entering the active state. Secondly, the foreground cells spiked

with an increased probability in each oscillatory cycle, from ,1

spike in 25 oscillations to ,1 in 3 oscillations (Figure 7 A–B). The

increased probability of firing per oscillatory cycle in the

foreground cells occurred since they had a systematically slightly

Figure 6. ,CV2. and oscillations. A: ,CV2. histograms for the foreground pyramidal cells in the active state for three different networks,
displaying weak, strong and non-oscillatory activity. We move between the different networks by manipulating the level of recurrent excitatory
conductance. B: Relative recurrent excitatory conductance vs ,CV2., where weak (‘‘W’’), strong (‘‘S’’) and non-oscillatory (‘‘N’’) networks are marked.
Recurrent excitatory conductance = 1 is defined as the smallest possible recurrent excitatory conductance for which we had stable memory retrieval.
The solid line is for a network with basket to basket cell connections, the dashed line corresponds to the same network, but with no basket to basket
cell connections. Note that we here go outside the bistable range (Table 1) for high levels of excitation. C: ,CV2. against average firing rate. The
solid line represents the network with basket to basket cell connections, the dashed line the one without such connections.
doi:10.1371/journal.pcbi.1000803.g006
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higher membrane potential relative to background cells and

therefore consistently reached threshold first. With similar

feedback inhibition in ground and active state this requires that

active state oscillations are faster than ground state oscillations

since background cells have essentially the same excitation in the

two cases. This ‘‘racing condition’’ between foreground and

background cells during oscillatory activity has previously been

referred to as a ‘‘winner-takes-all algorithm’’ [33]. It allows for fast

transitions between attractor states since small differences in

excitation are sufficient to switch foreground subpopulation [13].

Figure 7C shows that feedback inhibition in the network regulates

total pyramidal cell activity such that the number of spikes remains

almost the same in ground and active states. However, in the

active state the firing is confined to a small fraction of the cells

which fire at an elevated rate (the foreground population), whereas

in the ground state, spiking is distributed among all the pyramidal

cells in the network.

Discussion

We have proposed and investigated a cortical network model of

working memory featuring a wide bistable range, oscillatory

population activity, and low-rate irregular neuronal spiking patterns.

The single most distinguishing structural property of the model was

its modularization in terms of hypercolumns interacting via long-

range excitatory synapses terminating on pyramidal neurons or

dendritic targeting inhibitory interneurons. The persistent active

state was stable for rates as low as ,3 s21 in the foreground cells

which is remarkably low and yields a small gap between ground and

active states much closer to experimental data [5] than previous

spiking working memory models. In terms of dynamics, population

activity was oscillatory in ground as well as in active states with

increased power in gamma-band during an active state [4,33] and

for elevated firing rates [35]. Our results indicate that such increase

in oscillation frequency is required in order to have bistability in the

oscillatory regime, and is helped by the modular structure and

specific inhibition from RSNP cells which both significantly

increased the gap in oscillation frequency between the two states.

In addition to the modular structure the presence of NMDAR

gated synapses [20] also stabilized oscillatory activity. But in

contrast to previous results [18,19,31], our network showed

persistent oscillatory activity even with NMDAR blocked.

Bistability remained over a large range of recurrent excitatory

conductance and was also observed in previous studies with more

pronounced cellular adaptation and synaptic depression [17,38].

This result points toward computational advantages with a

modular structure and the need for large-scale network models

that span more than just the local network.

While cellular adaptation was present in the model it was reduced

relative previous work with quasi-stable attractors [17,38]. This

allowed comparison with persistent state models which assume delay

activity to be a stationary state. Whether delay activity in vivo is indeed

persistent or is switched on and off in slow theta-like oscillations as is

the case with stronger adaptation is still unclear [7,39]. In the latter

case the gaps in firing rates between ground state, background and

foreground activity would decrease even further as foreground rates

would decrease and background rates increase. The same would be

true if interneurons were included in the data [5], as they had similar

or even decreasing rates in the active state in the model. Further,

calculating firing rates as the mean of inverse ISI:s over some time

interval as is often done experimentally, would also give a bias

towards higher background rates.

In vivo data shows high ISI-variability both during fixation and

delay period activity in working memory tasks [5,7]. Data seems to

indicate that variability during the delay period can both increase

[5] and decrease [7] depending on cortical area studied. Previous

models have demonstrated that oscillatory activity can produce

highly irregular spike output [21,37,40] and our model operated in

this regime in the ground as well as active state. Bistable, irregular

firing has previously been studied in the non-oscillatory regime

[14–16]. While two models [14,15] required fine-tuning, a

recurrent network model with near-threshold post-spike voltage

reset and depressing synapses did not [16]. In our model the

bistable range was however much larger (60% compared to ,9%)

and it was stable with a much smaller gap in firing rates between

the two states.

Figure 7. Spiking activity and soma potentials of pyramidal cells in foreground and background. A: Pyramidal cell spike output from
two minicolumns, one entering the foreground of the active state (bottom), the other entering the background of the active state (top) at t = 0.3 s. B:
Mean soma potentials of the same two minicolumns. The mean potential of the foreground cells (dashed) is systematically above the mean potential
of the background cells (solid). Firing threshold is marked with solid horizontal line. C: Summed pyramidal cell spike output of one hypercolumn. The
number of spikes within the hypercolumn in ground state (0–0.3 s) and active state (0.3–0.6 s) stayed almost constant. Measured over longer
intervals the total spike output was slightly lower in active state.
doi:10.1371/journal.pcbi.1000803.g007
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Another interesting result of the winner-takes-all dynamics in

the oscillatory regime is that two minicolumns of different size,

everything else being equal, produces the same output in terms of

numbers of spikes. This implies that such a system is very robust to

cell loss or variations in functional column size which might be

important for large-scale coordination.

Our model is admittedly complex when it comes to component

neuron and synapse models as well as architecture and

connectivity. Some aspects of its architecture and connectivity

remain hypothetical like, for instance, the specific long-range

innervation of RSNP cells. The behavior of the model depends

critically on the network architecture and connectivity but, as

already mentioned, preliminary results indicate that a similar

behavior could be reproduced in networks with less complex

model neurons and synapses.

In conclusion, our results indicate that the bistable oscillatory

regime has interesting properties and that modularization of a

cortical network model is important for the type of dynamics it

displays. We demonstrate that depending on whether or not there

is a prominent synchrony at the time-scale of the gamma period

significantly affects the fit to experimental data on cortical firing

patterns and population oscillations. Our results suggest that a lack

of synchrony at millisecond timescales between gamma oscillators

is, in fact, important for stabilizing global cortical activity states.

This is at odds with current theories of phase locking of gamma

oscillations over longer distances [32] and further experimental

and large-scale modeling studies are required to achieve a more

coherent understanding of these phenomena.

Methods

The network model
We used a biophysically detailed network model of cortical layer

2/3, which was developed previously [17,38,41]. It had both a

hypercolumnar and a minicolumnar organization (Figure 1).

Neurons within a hypercolumn were organized in 49 non-

overlapping subpopulations (minicolumns). The network was

composed of 9 such hypercolumns. Such a columnar organization

has anatomical [42] and functional [43] support in data from

prefrontal cortex. The minicolumns were spread out on a two-

dimensional square grid with a 1.5 mm side and each minicolumn

had a diameter of 30 mm. All pyramidal cells of a certain

minicolumn shared the same x and y coordinates but where

uniquely spread out on the z-axis along 500 mm. Interneurons

were placed near the center of each minicolumn with respect to

the z-axis.

The cells included were layer 2/3 pyramidal cells and two

different types of inhibitory interneurons, assumed to correspond

to fast spiking, horizontally projecting and soma targeting basket

cells and regular spiking, vertically projecting and dendrite

targeting cells (RSNP), e.g. double bouquet cells [25,27–29]. Each

minicolumn contained 30 pyramidal cells [22,23], one basket cell

and two RSNP cells [24–26].

Connectivity
As in previous studies, the connectivity was set up to store non-

overlapping memory patterns, here 49 different patterns, each

comprising 9 equal-selectivity minicolumns in different hypercol-

umns. However, recent studies have demonstrated that also

overlapping patterns can be stored robustly in this network

(unpubl. obs.).

Pyramidal cells in a minicolumn connected to 25% of the other

pyramidal cells in their own minicolumn [44] as well as to the

eight closest basket cells in their own hypercolumn. The rest of

their connections targeted pyramidal cells or RSNP neurons in

other hypercolumns. The RSNP cells projected locally to the

dendrites of the pyramidal cells in their own minicolumn. They

provided disynaptic long-range inhibition from minicolumns of

dissimilar selectivity in other hypercolumns. Basket cells provided

feedback inhibition targeting the cell soma of 70% of all pyramidal

neurons within their hypercolumn non-selectively. Each basket cell

also connected to 70% of the other basket cells in the same

hypercolumn. In vivo chemical synapses between basket cells seem

abundant [45]. We did not have gap junctions between the

inhibitory interneurons in our model. We studied the network

both with and without such basket to basket cell connectivity.

Connections between pairs of neurons were randomly generated

according to the connection densities. A connection was always

carried out by a single bouton and all connections of a neuron

onto itself were removed.

For all local connections within a hypercolumn, we constrained

the network connectivity and EPSP sizes with biological data,

mostly from Thomson et al. [44]. For long-range connections

there is a relative lack of data, as this type of connectivity is quite

difficult to measure quantitatively. We therefore extrapolated the

available experimental data, based on theoretical considerations,

to arrive at a plausible amount of global excitation. From levels of

activity and total number of pyramidal synapses onto a layer 2/3

pyramidal cell we estimated the number of connections from other

active pyramidal cells to be in the order of one hundred. This

resulted from the fact that a layer 2/3 pyramidal cell receives on

average some 10 000 synapses and that roughly 1% of pyramidal

cells in cortex fire at an elevated rate while the rest are almost

silent [46–48], which gives at least (for totally non-specific

connectivity) around one hundred active synapses from other

pyramidal cells onto a layer 2/3 pyramidal cell. Out of these, less

than ten (assumed 25% connectivity [44] and 30 cells in the layer

2/3 portion of a minicolumn [22,23]) on average are from within

the cell’s own minicolumn. The connections originating outside

the local minicolumn were thus estimated to be about ten times

more numerous, but interestingly their EPSPs are also significantly

weaker than local ones [49]. In the current model the local to

global EPSP were 3:1 in magnitude. A pyramidal cell had 90

excitatory synapses from other distant pyramidal cells with equal

selectivity as the minicolumn it was part of. An RSNP cell had 30

excitatory synapses from distant pyramidal cells for each pattern

with different selectivity than its own minicolumn. Using these

figures implied that for the foreground pyramidal cells in an active

state, global and local excitation was approximately balanced.

Neuron model
Our model neurons were multi-compartmental and conduc-

tance-based, following the Hodgkin-Huxley and Rall formalisms.

Pyramidal cells consisted of 6 compartments (soma, basal

dendritic, initial segment, and three apical dendritic) and

interneurons of 3 (soma, dendritic, and initial segment). The

potential in a compartment was calculated by integrating the

currents

dE

dt
~

(Eleak{E)gmz
P

(Ecomp{E)gcorez(Eex{E)gextzIchannelszIsynzIinj

cm

ð1Þ

where cm is the capacitance of the membrane, gm is the membrane

leak conductance, Eleak is the equilibrium potential of the leak

current, gcore is the core conductance between connected

compartments, which is dependent on compartmental cross

ð1Þ
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section (equal for basal and apical dendrites, smaller for initial

segment). gext is a non-specific excitatory conductance with reversal

potential Eex, Ichannels is the active currents from the different ionic

channels in the membrane of the compartment, including voltage-

dependent Na+, K+, and Ca2+ channels as well as Ca2+-dependent

K+ channels. Isyn is the current through glutamatergic and GABA-

ergic synapses on the compartment and Iinj is injected current.

Parameters were tuned to mimic the spiking behavior of the

respective neuron type. Pyramidal cells were strongly adapting,

basket cells almost non-adapting and RSNP cells had intermediate

adaptation. For individual cells of a certain type all parameters

were fixed except size, which varied 610% according to a uniform

distribution. This introduced a moderate variability in cell

excitability. A detailed account of all ionic channel equations

and parameters used is further given in the supplementary

information (Text S1).

Synapse model
The pyramidal to pyramidal and pyramidal to RSNP

connections had both AMPAR and voltage dependent NMDAR

components. Synapses formed by pyramidal cells onto basket cells

were purely AMPAR-mediated while the inhibitory cells formed

GABAA type synapses. Excitatory inputs (including noise) were

placed on the second apical and on the basal dendritic

compartment, while the inhibitory basket cells connected to the

soma. The inhibitory synapses from RSNP cells connected to the

second apical dendritic compartment. The synapses formed by

pyramidal cells were fully saturating in the sense that the

conductance Gsyn during repetitive firing could only sum up to

the peak conductance resulting from a single presynaptic spike. In

order to allow comparison with a delayed match to sample task,

where memory attractors were expected to be stable for several

seconds, synaptic depression between pyramidal cells included in

the original model was disabled in the simulations performed here.

After a synaptic event, conductance decays back to zero with a

time constant tsyn that is characteristic of each type of synapse.

Here, tAMPA = 6 ms, tGABA = 6 ms, as AMPA and GABAA has

been reported to have similar time constants [50], and

tNMDA = 150 ms. Reversal potential was zero for AMPA and

285 mV for GABA. Robustness was tested for tGABA up to 25 ms

and a GABA reversal potential up to 270 mV. The axonal

conduction speed was 0.2 m/s and the synaptic delay 0.5 ms.

Since model neurons operated at low rates (less than 3% of inter-

spike intervals between 6–12 ms), the AMPA saturation did not

play an important role and could be removed without affecting the

results.

Noise and input from layer 4
Pyramidal cells received noise input through excitatory AMPA

synapses activated by simulated Poisson spike trains with an

average firing of 300 s21 but with very small conductances

(0.08 nS, ,10 times smaller than local pyr-pyr conduction). This

source alone made the pyramidal cells spike at ,8 s21. Single

minicolumns could be selectively stimulated by pyramidal cells

mimicking layer 4 input cells. Each minicolumn had five such cells

and these were activated (60–100 s21) by spike trains generated by

Poisson processes and innervated the 30 layer 2/3 cells with

feedforward connections (50% connectivity). This setup was found

adequate for activating our layer 2/3 model, though more

elaborate models of layer 4 to 2/3 connectivity exist [51].

Activity
By modulating the level of overall inhibition we made the

network bistable [8]. Therefore, it did not engage in specific

activity spontaneously, as reported previously [17], but stayed in

the ground state until a memory fragment was stimulated and the

corresponding complete memory pattern activated. The retrieved

memory was then maintained active through recurrent excitation

until adaptation mechanisms (if strong enough) terminated the

attractor. . In order to allow comparison with a delayed match to

sample task we promoted persistent activity in memory attractors

by a decreased NMDA calcium influx (15% of what was used in

the original model [21]) to reduce calcium-dependent adaptation

currents.

Testing bistability
We used the layer 4 input to test the range of bistability of the

model in the following fashion: First we simulated 3 seconds of

activity to test that the ground state was stable, then we added

stimulus for 300 ms on a fraction of the minicolumns in a pattern

(5 out of 9) to see if the pattern was completed. After that followed

a 3 second period with no stimulus to see if the pattern was stable

(3 seconds is much longer than any adaptive mechanism in the

network). If the network passed this test with up to twenty different

random seeds it was said to be bistable for the specific parameters.

Measuring balance of currents
Since we had a multi-compartmental cell model the balance of

excitation and inhibition could not be measured simply as the

currents through synapses (which were spread out on the different

compartments). We had to take into account all current influx to

the soma. During persistent activity when the dendritic targeting

RSNP cells in the foreground minicolumns were almost silent, the

influx from dendrites was dominantly excitatory, but in the ground

state this influx was a mixture of excitation and inhibition. Using a

method modified from [52] the inhibitory current was calculated

by setting the sum of all current fluxes into the soma to zero,

gFS(EGABA{Esoma)~

gm(Er{Esoma){gcore(EdendzEbasal{2Esoma)zIinj

where Iinj is a negative current injection into soma to keep the cell

silent and gFS, the conductance through the basket cell synapses, is

the only unknown. The first term on the right hand side is the leak

current and the second term represents the current influx from the

proximal dendritic compartment.

Simulation
We used the SPLIT simulator [53], a simulator developed for

simulations of large, biophysically detailed network models which

can run on a single processor as well as on massively parallel

machines. The model presented has been scaled up to the size of

22 million neurons and 11 billion synapses on a Blue Gene/L

supercomputer [38]. The network simulated here consisted of

14553 cells and 1.8 million synapses. Simulations were typically

performed on 128 nodes of the Blue Gene/L computer at the

Center for Parallel Computers at KTH. It took 81 seconds to

simulate one second of network activity.

Synthetic LFP
LFP was estimated by calculating the potential difference

between the soma and the first dendritic compartment of all cells

in a local population in each time step, similar to a previous

method [54]. This method relies on the assumption that dipoles

are the main source of the LFP signal, and that they are produced

by currents in the geometrically aligned apical dendrites of
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pyramidal cells. The average of this signal was then subtracted

before a spectrogram was produced in Matlab.

Statistical analysis
From the series formed by the inter-spike intervals (ISIs) of each

spike train we computed a local measure of ISI variability, CV2.

CV2 is computed by comparing each ISI (ISIn) to the following ISI

(ISIn+1) to evaluate the degree of variability of ISIs in a local

manner [55]:

SCV2T~
1

N{1

X

n

CV2(n),CV2(n)~
2DISInz1{ISInD
ISInz1zISIn

A Poisson spike train has a CV2 of 1. The CV2 measure was used

since it is not rate dependent in the dynamical range of the

network, as the CV measure turned out to be (giving lower

variability for low rate Poisson spike trains).

Supporting Information

Text S1 Model equations.

Found at: doi:10.1371/journal.pcbi.1000803.s001 (0.16 MB

DOC)

Acknowledgments

We are grateful to Dr Pawel Herman for assisting with the analysis of data

related to Figure 4 and for preparing this figure.

Author Contributions

Conceived and designed the experiments: ML AC AL. Performed the

experiments: ML. Analyzed the data: ML. Contributed reagents/

materials/analysis tools: ML AC AL. Wrote the paper: ML AC AL.

References

1. Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory.

Science 173: 652–4.

2. Gnadt JW, Andersen RA (1988) Memory related motor planning activity in
posterior parietal cortex of macaque. Exp Brain Res70: 216–20.

3. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual

space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61: 331–49.

4. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal
structure in neuronal activity during working memory in macaque parietal

cortex. Nat Neurosci 5: 805–811.

5. Compte A, Constaninidis C, Tegnér J, Raghavachari S, Chafee MV, et al.
(2003) Temporally irregular mnemonic persistent activity in prefrontal neurons

of monkeys during a delayed response task. J Neurophysiol 90: 3441–3454.

6. Joelving FC, Compte A, Constantinidis C (2007) Temporal properties of
posterior parietal neuron discharges during working memory and passive

viewing. J Neurophysiol 97: 2254–2266.

7. Shafi M, Zhou Y, Quintana J, Chow C, Fuster J, et al. (2007) Variability in
neuronal activity in primate cortex during working memory tasks. Neuroscience

146: 1082–1108.

8. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local
structured activity during delay periods in cerebral cortex. Cereb Cortex 7:

237–252.

9. Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of
working memory. Nat Neurosci 3 Suppl: 1184–91.

10. Wang XJ (2001) Synaptic reverberation underlaying mnemonic persistent

activity. Trends Neurosci 24: 455–63.

11. Compte A (2006) Computational and in vitro studies of persistent activity:
edging towards cellular and synaptic mechanisms of working memory.

Neuroscience 139: 135–151.

12. Tsodyks MV, Sejnowski T (1995) Rapid state switching in balanced cortical
network models. Network: Comput Neural Systems 6: 111–124.

13. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with

balanced excitatory and inhibitory activity. Science 274: 1724–1726.

14. Renart A, Moreno Bote R, Wang XJ, Parga N (2007) Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural Comput 19:

1–46.

15. Roudi Y, Latham PE (2007) A balanced memory network. PLoS Comput Biol 3:
e141.

16. Barbieri F, Brunel N (2007) Irregular persistent activity induced by synaptic

excitatory feedback. Front Comput Neurosci 1: 5.

17. Lundqvist M, Rehn M, Djurfeldt M, Lansner A (2006) Attractor dynamics in a
modular network model of the neocortex. Network: Comput Neural Systems 17:

253–76.

18. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic
mechanisms and network dynamics underlaying spatial working memory in a

cortical network model. Cereb Cortex 10: 910–23.

19. Tegnér J, Compte A, Wang X-J (2002) The dynamical stability of reverberatory
neural circuits. Biol Cybern 87: 471–481.

20. Wang X-J (1999) Synaptic basis of cortical persistent activity: the importance of

NMDA receptors to working memory. J Neurosci 19: 9587–9603.

21. Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-
fire neurons with low firing rates. Neural Comput. Oct 1; 11(7): 1621–71.

22. Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with

special reference to the GABA population. Brain Res 609: 284–292.

23. Peters A, Yilmaz E (1993) Neurological organization in area 17 of cat visual

cortex. Cerebral Cortex 3(1): 49–68.

24. Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit
of cat primary visual cortex. J Neurosci 39: 8441–8453.

25. Markram H, Toledo-Rodriguez M, Wang Y, Silberberg G (2004) Interneurons

of the neocortical inhibitory system. Nat rev Neurosci 5: 793–807.

26. Peters A, Sethares C (1997) The organization of double bouquet cells in monkey

striate cortex. J Neurocyt 26: 779–797.

27. Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of

nonpyramidal cells with parvalbumin-and calbindin D28k-immunoreactive

neurons in layer V of rat frontal cortex. J Neurophysiol 70: 387–396.

28. Douglas RJ, Martin KAC (2004) Neuronal curcuits of the neocortex. Annu Rev

Neurosci 27: 419–51.

29. Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry.

Front Neurosci 1,1: 19–42.

30. Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network

model of object working memory dominated by recurrent inhibition. J Comput

Neurosci 11: 63–85.

31. Ermentrout B (2003) Dynamical consequences of fast-rising, slow-decaying

synapses in neural networks. Neural Comput 15: 2483–2522.

32. Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends in Neurosci 30:

309–316.

33. Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between

human extrastriate areas during visual short-term memory maintanance.

J Neurosci 21: RC177.

34. Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, et al. (2005) Inhibitory

postsynaptic potentials carry synchronized frequency information in active

cortical networks. Neuron 47: 423–435.

35. Ray S, Crone NE, Niebur E, Franaszczuk PE, Hsiao SS (2008) Neural correlates

of high-gamma oscillations (60–200 Hz) in macaque local field potentials and

their potential implications in electrocorticography. J Neurosci Nov 5; 28(45):

11526–11536.

36. Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, et al. (2008)

Spontaneous high-frequency (10–80 Hz) oscillations during up states in the

cerebral cortex in vitro. J Neurosci 28: 13828–13844.

37. Brunel N, Wang XJ (2003) What determines the frequency of fast network

oscillations with irregular neural discharges? I. Synaptic dynamics and

excitation-inhibition balance. J Neurophysiol 90: 415–30.

38. Djurfeldt M, Lundqvist M, Johansson C, Rehn M, Ekeberg Ö, et al. (2008)
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