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Abstract

A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a
CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic
simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop
and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced
representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains.
CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase
resemble those of other reduced representations; non-native structures are observed with energies similar to those of the
native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in
deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the
smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in
stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational
transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and
transitions between well-defined structural states.
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Introduction

Despite continuing advances in computing power, atomistic

simulation remains a considerable challenge at increasingly large

time and length scales for processes of biological importance such

as protein folding, conformational change and assembly. Coarse-

grained (CG) approaches have therefore enjoyed popularity, in

which the polypeptide can be modeled using a reduced

representation of one or more, sometimes fewer, interaction sites

per residue. Early CG models employed a binary code, classifying

interactions between combinations of hydrophobic and polar (HP)

residues [1]. HP models suffered from having a degenerate global

energy minimum with as many as 103 conformations. An

important remaining objective therefore is the construction of a

sophisticated CG potential that recapitulates the thermodynamics

of the conformational landscape and identifies the native state as a

stable global energy minimum consistent with energy landscape

theory [2]. Such a CG potential would be of value not only to the

protein folding and structure prediction communities but could

prove extremely useful in general simulations of protein dynamics

and conformational change.

Despite an ever-growing repertoire of independent coarse-

graining approaches they still have not rivaled all-atom potentials

in structure prediction [3]. Nevertheless, CG models have

achieved surprising success in diverse areas of protein modeling.

This success is made possible by the introduction of bias towards

the native state. Elastic network models are the most restrictive

example, in which backbone alpha carbons within some cutoff

distance of each other in the native structure are assigned pairwise

harmonic restraints. Elastic network calculations have reproduced

the low frequency functional motions of a large variety of proteins

[4]. Less restrictive are Gō models [5], where backbone alpha

carbons in proximity in the native state are attracted via a

Lennard-Jones (LJ) potential:
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in which the location and depth of the attractive minimum

between particles i and j are given by rmin and e, respectively.

Unlike harmonic restraints, LJ interactions can spontaneously

dissociate in order to visit unfolded conformations. Gō models

have been successful in predicting folding mechanisms because

they mimic the minimally frustrated funneled energy landscape of

evolved proteins, in which non-native interactions play a minimal

role [6,7]. Lastly, general CG models have employed simple LJ

interactions between all residues in the protein chain but rely on

additional native dihedral or hydrogen bond restraints to

counteract energetic frustration and thereby ensure structural

stability during simulation of the native state [8–13].

Current efforts aim to improve the physical accuracy of CG

nonbonded interaction schemes in order to alleviate the need for

native structure restraints. Accurate CG interactions would
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provide for a correct description of protein dynamics and

conformational change for large deviations from the native state

as well as protein-protein interactions. Ongoing parameterization

endeavors include various schemes. Certain empirical approaches

parameterize ad hoc LJ functional forms using thermodynamic data

such as density, surface tension, solvation energy and oil-water

partition coefficients [9,14–16], which have previously been used

with some success in CG models of lipid bilayers [17]. Folding-

inspired approaches utilize known folding behavior to tune CG

parameters that will result in a properly folded protein [18–22]. In

a somewhat similar fashion, knowledge-based methods invoke

statistical potentials derived from distributions of residue-residue

interactions and secondary structure in all known protein

structures [3,13,23–27].

The remaining class of CG model development involves

parameterization against all-atom reference simulations. Some of

these approaches are based on obtaining the pairwise potentials of

mean force (PMFs) between amino acid sidechains. Scheraga and

colleagues have employed atomistic umbrella sampling to obtain

PMFs for different packing arrangements of sidechain analog

dimers [28]. Analytical approximations to the orientation-

dependent, pairwise PMFs empower the UNRES model for

structure prediction [29]. Another single site sidechain model for

structure prediction has recently been developed by Betancourt

and Omovie with pairwise PMFs obtained from atomistic

simulations of all 210 amino acid pairs [30]. A model consisting

of up to two interaction sites per sidechain has been developed for

protein docking based on PMFs estimated from atomistic

simulations of the 20 amino acid homodimers [31].

The goal of the present work is the construction of an accurate

CG interaction model for the amino acids in which the packing

energetics of sidechain rotamers is properly maintained using

multiple interaction centers per sidechain. The CG potential is

developed from forces generated from atomistic simulation, a

process sometimes referred to as force matching (actually a force

‘‘renormalization’’), using the multiscale coarse-graining (MS-CG)

method [32–37]. MS-CG is a variational procedure for determin-

ing the many-body potential of mean force for the CG variables

(the CG ‘‘potential’’) that reproduces the equilibrium probability

distribution observed in the atomistic configurational ensemble

[35]. No assumptions are made about the functional forms of the

pairwise interactions between CG sites [37], and multibody

correlations [36] are implicitly taken into account in the resulting

effective pairwise CG potential. In these respects MS-CG has a

similar objective as the other multiscale methods iterative

Boltzmann inversion [38] and inverse Monte Carlo [39], in which

the effective pairwise potential is iteratively refined until

satisfactory agreement with the atomistic radial distribution

functions (RDFs) is obtained [40]. A key difference, however, is

that MS-CG uses molecular scale forces as its input and not the

two-body RDFs (rather, the latter is a prediction, not input, from

the MS-CG model).

A challenge with multiscale methods is that the resulting CG

model may be limited in applicability to the substates, or region of

conformational space, sampled in the reference atomistic simula-

tions used to construct the CG model. Previous MS-CG models

have been used to accurately describe specific configurations of

selected peptides [41–43]. In contrast, the approach used here is to

apply MS-CG to a variety of peptide equilibria to obtain a general

set of CG interaction potentials for the amino acids that can then

be used in simulations of proteins of arbitrary sequence. The MS-

CG potentials are compared and combined for atomistic

simulations of the unfolded ensembles of polyalanine, polyleucine

and the miniprotein Trpzip, as well as the self-association of amino

acid dipeptides.

The force field is then validated by performing CG simulations

of Trpzip, Trp-cage and adenylate kinase (AdK). Parallel

tempering, or replica exchange molecular dynamics (REMD)

[44], is used to characterize the folding energy landscapes of the

three CG proteins. REMD takes advantage of simultaneous

simulations at high temperature to overcome local energy barriers.

Extensive sampling with CG-REMD was employed to determine

the global energy minimum and illustrate potential strengths and

limitations of the model. Finally, conventional constant temper-

ature molecular dynamics (MD) is performed to demonstrate the

stability of the native state and the promise of the CG force field

for modeling protein dynamics.

The present work attempts to address for the first time the

question of whether protein folding and dynamics can be captured

with a generic reduced representation of the sidechains derived

from real physical forces. In contrast to backbone centric

approaches that have had some success in predicting the global

minimum of helical bundles [18,21,22], the current sidechain

centric approach appears to be more useful for simulating the

native state dynamics of diverse helical and b-sheet proteins.

Evaluation of our model in comparison to backbone centric

models yields insight into the relative influence of the backbone

and sidechains on folding and dynamics and illustrates the

limitations of pairwise additive residue-level interactions in

reproducing folding cooperativity.

Methods

CG model construction
The polypeptide backbone was represented using a single CG

site per residue placed at the Ca position in order to reasonably

maintain the backbone conformational degrees of freedom

[45,46]. MS-CG was also attempted with three backbone sites

Author Summary

Biological function originates from the dynamical motions
of proteins in response to cellular stimuli. Protein dynamics
arise from physical interactions that are well-predicted by
detailed atomistic simulations. In order to examine large
protein complexes on long timescales of biological
importance, however, coarse-grained simulation ap-
proaches are needed to complement experiment. Previous
coarse-grained models have proved successful for inves-
tigations involving a given protein’s native structure,
including protein folding and structure prediction. We
construct a model capable of simulating proteins regard-
less of their sequence or structure. The present coarse-
grained model was, however, developed rigorously from
the underlying atomistic forces as opposed to knowledge-
based or ad hoc parameterizations. Examination of the
model predictions on various accessible timescales reveals
successes and limitations of the model. While functionally
relevant conformational transitions can be studied, the
coarse-grained representation has some difficulty with the
ab initio folding of the peptide chain into its proper
structure. Our observations highlight the complex molec-
ular nature of a protein’s underlying energy landscape,
offering rigorous insight into the information missing in
reduced representations of the peptide chain. With these
caveats in mind, the physical interaction–based, coarse-
grained model will find application in simulations of a wide
variety of proteins and continue to guide future coarse-
graining efforts.

Coarse-Graining the Energy Landscape
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per residue as in previous work on hydrogen bonding [41–43] but

not included in the model; the resultant potentials were repulsive,

likely due to the approach of averaging over all orientations

present in the unfolded ensemble rather than a purely attractive

native basin. MS-CG was performed by matching the instanta-

neous total atomistic force on the alpha carbon. As many as four

CG sites were chosen for each sidechain to describe the essential

orientational degrees of freedom and maintain a consistent

mapping of two or three heavy atoms per site (Figure 1). MS-

CG was used to determine the 15 pair potentials between

combinations of five assigned CG site types (backbone, apolar,

polar, positive, negative). The grouping of sidechain sites

according to type was a necessary approximation in order to

obtain converged pair potentials using the MS-CG algorithm. MS-

CG was performed by matching the sum of the instantaneous

forces on all atoms in a given sidechain site.

The solvent degrees of freedom were integrated out making this

a ‘‘solvent-free’’ CG force field [47,48]. No atom was involved in

the definition of more than one CG site, thereby allowing for

consistency in momentum space as well as configuration space

between the all-atom and CG many-body PMF [35]. Absolute

timescales in the CG dynamics are difficult to obtain from the

model, however, due to the reduced number of degrees of

freedom, lack of explicit solvent molecules and smooth energy

surface.

Bonded terms were obtained directly from the atomistic

distributions rather than the force matching results with MS-

CG, allowing for residues to be treated uniquely regardless of site

Figure 1. Mapping of CG site types for the amino acids. The backbone is represented by a single site at the alpha carbon (green). Sidechain
sites are assigned to the mass centers of polar (light blue), apolar (gray), positive (blue) and negative (red) functional groups consisting of two or
three heavy atoms. CG sites are connected by bonded interactions (red lines).
doi:10.1371/journal.pcbi.1000827.g001

Coarse-Graining the Energy Landscape
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type to give a full description of steric packing. Potentials for bond

lengths, bending angles and torsions in each amino acid were

obtained using Boltzmann inversion:

U(r)~{kT ln p(r)=r2
� �

ð2Þ

U(h)~{kT ln p(h)=sin h½ � ð3Þ

U(w)~{kT ln p(w) ð4Þ

where kT is the thermal energy and p is the probability distribution

observed in atomistic MD; the volume normalization factors r2

and sin h were needed to properly represent all distributions. Bond

and angle potentials were fit to harmonic or fourth order

polynomials where appropriate; otherwise, custom bond tables

were employed in GROMACS [49]. The angle from sidechain

and backbone sites of residue i to backbone residue i21 was

treated separately from the angle to backbone residue i+1.

Torsions involving sidechains were unrestricted excepting trypto-

phan and tyrosine rings, which were fit with improper torsions to

maintain planarity. Backbone angles between three successive

alpha carbons were represented using a single sequence-indepen-

dent fourth order polynomial allowing rapid interconversion

between a-helix and b-sheet values (see supporting Figure S1A).

Backbone torsions between four successive alpha carbons were

represented using a set of sequence-dependent potentials devel-

oped from fitting the inverted distributions of known structures in

the Protein Data Bank [50]. These consisted of 202 fourth order

cosine series, one fit for each possible permutation of the middle

two residues involved in the torsion. All statistical potentials were

scaled by a constant factor of 0.54, chosen to give good agreement

with the polyalanine distribution from all-atom MD (Figure S2A).

The inverted distribution of polyleucine in all-atom MD was well

predicted by the resulting scaled statistical potential (Figure S2B).

The final set of backbone torsions allowed rapid interconversion

between a-helix and b-sheet, with rates generally decreasing with

sidechain bulk in the order Gly:Ala:Cb-branched:Pro. Developing

the bonded potentials separately from the nonbonded interactions

was ultimately justified by the satisfactory agreement between

bonded distributions in all-atom and CG simulations (e.g., see

Figures S1, S2A).

Force matching atomistic simulations
All-atom MD was performed using the OPLS [51] protein force

field with SPC solvent in the GROMACS [49] simulation

package. The default parameters were employed with particle

mesh Ewald for long-range electrostatics and a 1.2 nm cutoff for

grid-based short-range neighbor searching. Constant NVT

simulations were performed using the Nosé-Hoover thermostat

with a 0.5 ps relaxation time constant. Bonds to hydrogens were

constrained using LINCS and a 2 fs integration timestep was used.

Each peptide system was simulated in a (4 nm)3 periodic box with

a peptide:water concentration of 10%. Coordinates and forces of

protein atoms were recorded at intervals of 1 ps or longer for use

in MS-CG force matching.

In order to derive a general set of CG potentials from the

unfolded ensemble, peptide systems were simulated at 498 K to

enhance conformational sampling. Given the modest temperature

dependence of interaction potentials generated from atomistic

simulation [52,53], polyalanine is comparably shown to exhibit

modest temperature sensitivity with the MS-CG scheme employed

in the present work (Figure 2). Nevertheless, the higher

temperature used in the simulations to define the model CG

potentials will tend to ‘‘smooth out’’ the resulting interactions.

Potentials were developed separately for different peptide systems

and compared to assess the efficacy of a single potential being used

independent of sequence. Ten or more independent simulations

approximately 50 ns in length were performed starting from

different random configurations of the following peptide systems to

yield a composite simulation length of at least 0.5 ms for each

system (Table 1). Five Ala15 peptides were simulated in a box of

water molecules at 300 K as well as 498 K. Three unfolded Leu15

peptides were simulated in one water box. Three molecules of the

miniprotein Trpzip2 [54] were simulated in another water box.

Lastly, 25 dipeptides were randomly placed in a single water box,

one for each amino acid with the exception of two for alanine,

glycine and lysine and three for aspartate. To ensure ample

exchange between sidechain association partners and convergence

in the developed MS-CG potentials, 200 independent simulations

Figure 2. Pairwise interaction potential between nonbonded backbone alpha carbons generated from atomistic force matching.
Unfolding (498 K) simulations of Trpzip (red), Leu15 (green) and Ala15 (blue) as well as 300 K MD of Ala15 (pink) yield attractive potentials that share
a minimum at ,0.6 nm. Inset (same xy scale): Correspondence in the interaction potentials between apolar sidechain sites for Trpzip (red) and a
dipeptide solution of the 20 amino acids (black).
doi:10.1371/journal.pcbi.1000827.g002

Coarse-Graining the Energy Landscape

PLoS Computational Biology | www.ploscompbiol.org 4 June 2010 | Volume 6 | Issue 6 | e1000827



of the dipeptide solution were performed for a composite length of

9 ms. A few remaining bonded terms were obtained from

distributions in all-atom unfolding simulations of two Trp-cage5b

[55] proteins in water and five AACHMFVAA peptides in water,

although neither system was force-matched. A single natively

structured Trpzip molecule was also simulated in water at 300 K

for comparison of structural fluctuations between all-atom MD

and CG-MD with the final model. Excepting the dipeptides, each

terminus was uncapped and charged. Unfolded starting configu-

rations were generated by randomly orienting the peptides in

Cartesian space and then equilibrating for 2 ns at 700 K; the

random number generator was employed with varying seeds.

The force matching of the atomistic reference simulations in the

MS-CG method was performed using the program MSCGFM

[56], a fast and flexible implementation of MS-CG. A linear spline

basis set was employed for least squares optimization of

nonbonded interaction pairs separated by less than 2 nm and

more than three bonds. The computation was made feasible by

employing the block-averaging procedure of combining separate

solutions for disjoint sets of configurations (blocks) [37]. Blocks

consisted of 2,000 or more frames for each peptide system

depending on memory requirements. The resulting pairwise force

curves were integrated and smoothed using a cubic B-spline to

obtain tabulated potentials for input in GROMACS. Repulsive

positive-positive and negative-negative interactions were switched

linearly to zero over the range 1 nm to 1.2 nm, resulting in

,1 kJ/mol error over the switching region. Convergence of the

nonbonded interactions was checked by repeating the MS-CG

calculation with half the configurations and ensuring the force

curves were similar excepting high frequency noise.

CG molecular dynamics
CG simulations were performed in GROMACS 4 [49] using

Langevin dynamics with a 2 ps inverse friction constant to

maintain thermal equilibrium and a 2 fs integration timestep.

Tabulated nonbonded interactions were updated every step and

calculated between all CG sites separated by at least three bonds

using a 1.2 nm distance cutoff. A single set of 15 site-site CG

potentials, chosen as most representative across peptide systems,

was employed for all CG proteins.

CG-MD of polyalanine was performed on five copies of Ala15

placed in a 40 Å periodic box for 50 ns starting from a random

configuration obtained from the endpoint of a 58 ns atomistic MD

run at 498 K described above. Polyalanine aggregation was

monitored by computing the pairwise RDF of inter- and

intramolecular alpha carbons separated by at least three bonds.

Native state CG-MD simulations of Trpzip, Trp-cage and the

open and closed forms of AdK were begun from NMR structures

1LE1.pdb [54] and 1L2Y.pdb [55] and crystal structures

4AKE.pdb and 1AKE.pdb, respectively, and performed for

200 ns at 0.6 T0
f , where T0

f is the reference temperature for the

CG model. The reference temperature was defined as the folding

transition, or melting, temperature observed in CG-REMD

folding simulations of Trpzip.

CG-REMD folding simulations were performed with exponen-

tially spaced temperature replicas spanning 100–700 K. The

number of replicas was chosen to maintain an exchange frequency

between 20% and 40% throughout the simulation and was first

estimated using Pdes [57]. CG-REMD of Trpzip and Trp-cage

required 16 replicas while AdK required 48 replicas. Conforma-

tional exchanges between temperature windows were attempted

and snapshots recorded for Trpzip/Trp-cage every 200 ps and for

AdK every 20 ps. For Trpzip and Trp-cage two independent

simulations of 3 ms or longer were performed starting from an

extended structure to bring the total simulation length to 6 ms per

replica. To check convergence 3 ms was then performed starting

from the native state. Trp-cage simulations converged to a

common structure. Two additional simulations were performed

with it as the starting point to verify the global minimum. For the

more complex folding landscape of AdK, four independent

simulations were performed for 80 ns, each starting from

extended, closed, open or a 50/50 mixture of open and extended

states. Extended starting structures were generated from equili-

bration in CG-MD at 700 K for at least 10 ns.

Folding landscapes were characterized by computing the root

mean square deviation (RMSD) from the native structure of

replica conformations corresponding to 0.6 T0
f . The RMSD from

the CG representation of the native state was computed for a

subset of backbone or sidechain sites after superimposing the

backbone alpha carbons of the region of interest. CG-REMD was

also performed with position restrained backbone alpha carbons

starting from the native structure to determine the distribution of

sidechain rotamers (3 ms for Trpzip/Trp-cage and 80 ns for open

and closed AdK). The mean and standard deviation of the RMSD

of sidechain sites from the native structure were computed over the

fixed backbone CG-REMD simulations as well as the unrestrained

CG-MD, both at 0.6 T0
f . CG conformations were visualized using

VMD [58].

Results

Transferable CG interactions
The most significant approximations used in construction of the

present CG model are threefold. Atomistic reference simulations

were performed at elevated temperature to denature the protein

ensemble and allow for rapid interchange between association

pairs in aggregated peptides. Secondly, site-site interaction

potentials were obtained from different peptide systems in order

to obtain a single force field applicable across protein sequences.

Lastly, the through-space interactions constitute an average over

the chemical diversity of the amino acids grouped into five CG site

types. These assumptions enabled the construction of a versatile

model for simulating proteins of arbitrary sequence and

conformation.

Overall, a reasonable correspondence was observed between the

CG potentials developed separately from different peptide systems

for a given interaction. Figure 2 shows the similarity in Ca-Ca and

apolar-apolar interactions across peptide sequences. For each of

the 15 nonbonded interaction pairs in the model the MS-CG

potential was employed that was most representative across

Table 1. Peptide systems employed in all-atom reference
simulations.

Sequence T (K) Peptidesa Total ms

Ala15 300b, 498b 5, 5 1.7, 0.6

Leu15 498b 3 0.5

Trpzip 300, 498b 1, 3 1.2, 0.6

Trp-cage 498 2 0.5

dipeptide solution 498b 25 9.2

AACHMFVAA 498 5 0.6

aNumber of peptides placed in the (4 nm)3 water box.
bSystem was used for force matching nonbonded interactions. Bonded

interactions were obtained from all systems via distribution fitting.
doi:10.1371/journal.pcbi.1000827.t001
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peptide systems. The one exception is the case of positive-negative

salt bridges. Force matching of Trpzip and the dipeptide solution

yielded potential minima of 210 kJ/mol and 237 kJ/mol,

respectively, likely due to the influence of the hydrophobic

environment; the former was adopted in the CG model to avoid

large forces. Figure 2 also illustrates that the temperature

dependence of the developed CG potential for polyalanine is

comparable in magnitude to the variation between different

sequences. The modest temperature dependence of CG potentials

obtained from atomistic data has been noted previously [52,53].

The final set of CG potentials employed (Figure S3) have profiles

similar to atomistic PMFs obtained at room temperature [28].

When arranged according to strength and location the attractive

minima follow an expected relationship to polarity (Table 2).

Role of CG temperature
As is well appreciated from atomistic MD studies with

continuum solvent, surface tension can be an elusive property in

implicit solvent models and is often approximated as a simple

function of the solvent accessible surface area [59]. Typically, CG

potentials for protein folding are scaled by a constant factor so that

Tf matches experiment [50]. Simulations with the present CG

model exhibited a higher effective surface tension than atomistic

simulations at the same temperature, as evidenced by a greater

tendency to aggregate. As inferred from CG-MD of polyalanine

aggregation, increasing the temperature can reproduce the

pairwise RDF of nonbonded alpha carbons from atomistic MD

(Figure 3). In the statistical mechanical framework of MS-CG

temperature corrections should not be needed [35], and their use

may reflect inadequacies in the pairwise CG potential or basis set

employed in the optimization [36,60]. Excessive peptide aggrega-

tion with pairwise CG PMFs has been reduced elsewhere by the

inclusion of explicit waters [61,62]. The high sampling temper-

ature, peptide concentration and sequences of the atomistic

reference simulations are also sources of error in the developed

CG potential.

To determine the appropriate temperature range for protein

simulations using the CG model the temperature dependence of

the heat capacity was computed for Trpzip, Trp-cage and AdK

from CG-REMD folding simulations (Figure 4). Unfolding

transitions occurred at temperatures as low as 200 K. CG

simulations of the native state were therefore performed at 0.6

T0
f , where T0

f is the folding transition temperature defined by the

maximum in the heat capacity observed in Trpzip simulations.

CG Trpzip/Trp-cage exhibited transition temperatures of 218 K/

198 K, equal in ratio to their experimental melting temperatures

345 K/315 K [54,55]. The designed miniprotein Trpzip has an

experimental melting temperature typical of natural proteins and

was therefore used to define the reference temperature of the CG

model. Since the CG potential is less ‘‘rough’’ than the actual

atomistic potential, it is perhaps not surprising that a lower

temperature is required for the CG protein simulations in order to

effectively compensate for this feature of the model. Nevertheless,

this aspect of the modeling is not completely satisfactory and will

therefore be a focus of future improvements in the methodology

and CG model.

CG-REMD folding landscapes
Parallel tempering was used to characterize the CG energy

landscape. Performing REMD over a wide temperature range

(100–700 K) starting independently from unfolded as well as

native states enabled near-canonical sampling of low energy

conformations, some of which were non-native as judged from

structural RMSD. Ensemble simulations were used to evaluate the

accuracy of the force field in identifying the native structure as the

global energy minimum.

The sampling convergence of CG-REMD folding simulations

can be seen in Figure 5. Trpzip simulations starting from the

unfolded state (7.1 Å Ca RMSD from native) rapidly convert to

and exchange between three stable native-like conformations

(Figures 5A,D). The conformation with 2.5 Å Ca RMSD consists

of a proper b-hairpin backbone, though the Tryptophan zipper

occurs on the wrong side of the b-sheet (Figure S4A). The 4 Å and

6 Å Ca RMSD conformations contain the Trp zipper on the

correct side of the b-hairpin but allowed for distortions in the

Table 2. Location and depth of attractive minima in
nonbonded interactions between CG site types.

Interaction Pair rmin (Å) e (kJ/mol)a

positive-negative 3.2 9.6

Ca-Ca 5.4 3.6

apolar-apolar 4.4 3.2

Ca-positive 4.8 2.4

Ca-polar 4.4 1.9

polar-polar 4.2 1.7

apolar-polar 4.4 1.6

Ca-apolar 4.8 1.4

polar-positive 4.0 1.1

Ca-negative 4.6 0.1b

polar-negative 5.1 0.1b

apolar-negative 5.8 0.1b

apolar-positive 6.5 0.1b

positive-positive 5.5 0.1b

negative-negative 5.5 0.1b

aEach tabulated potential had a softer core repulsion [16] than the LJ function
with the same minimum.

bPotential was predominantly repulsive. See Figure S1.
doi:10.1371/journal.pcbi.1000827.t002

Figure 3. Temperature correspondence in CG-MD simulations
of polyalanine aggregation. The RDF between nonbonded alpha
carbons is shown for CG simulations at 300 K (black dash), 498 K (pink),
600 K (blue) and 700 K (cyan) and atomistic simulations at 300 K (solid
black) and 498 K (red).
doi:10.1371/journal.pcbi.1000827.g003
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backbone of varying degrees (Figure S4A). Trp-cage simulations

starting from the unfolded state (6.4 Å Ca RMSD from native)

converge to a stable global minimum with 5.8 Å Ca RMSD

(Figures 5B,E). The global minimum resembles the native helix-

coil motif, albeit with a distorted helix (Figure S4B).

In contrast to 12-residue Trpzip and 20-residue Trp-cage, the

CG energy landscape of 214-residue AdK is indicative of a

frustrated random heteropolymer. Conformations with Ca

RMSDs spanning the range 7–19 Å were visited with equal

frequency once simulations starting from different initial structures

Figure 4. Heat capacity as a function of temperature for CG-REMD folding simulations of Trpzip (A), Trp-cage (B) and AdK (C). The
reference temperature for the CG model is taken to be the folding transition temperature observed for Trpzip (T0

f ), defined by the maximum in Cv(T).
Line and data point thickness denote error.
doi:10.1371/journal.pcbi.1000827.g004

Figure 5. CG-REMD folding landscapes collected at 0.6 T0
f . The Ca RMSD from the native state is shown versus composite simulation time (A–

C) or potential energy (D–F) for independent simulations (different colors) of Trpzip (A,D), Trp-cage (B,E) and AdK (C,F). Simulations were started from
extended and native structures as well as their common final configuration in the case of Trp-cage. AdK simulations were started from extended,
closed, open and a mixture of open and extended states; RMSD is computed from the closed crystal structure. Large structural changes between
snapshots, such as folded to misfolded transitions, correspond to conformational exchanges between replicas of similar energy.
doi:10.1371/journal.pcbi.1000827.g005
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converged (Figures 5C,F). The non-two-state nature of AdK’s

glassy folding transition is underscored by the lack of a sharp

melting transition in the heat capacity curve (Figure 4). Such

deviations from the funneled landscape attributed to evolved

proteins [2] emphasize the role of non-native interactions (contacts

not present in the native state), whose repulsive nature must be

underestimated in the coarse-grained representation. The high

degeneracy of AdK’s global energy minimum compared to Trpzip

and Trp-cage is likely due to its large domain size and vast number

of possible backbone conformations.

Native state is stable in CG-MD
Successes and failures in ab initio folding notwithstanding, the

goal of the present work was the construction of a CG force field

for modeling proteins in known structural states. Conventional

constant temperature simulations were therefore performed at 0.6

T0
f to assess the stability of the native state under CG-MD. Trpzip

and Trp-cage exhibited structural stability with final configura-

tions of 2.6 Å and 4.7 Å Ca RMSD, respectively, from the starting

native structure after 200 ns of CG-MD (Figure 6). A slight

bimodal distribution was observed in RMSD, but this was mainly

due to fraying in the residues at the N- and C-termini

(Figures 7A,B).

Conformational transition in AdK
Atomistic simulation was recently used in conjunction with

umbrella sampling to characterize the oft-studied open to closed

conformational transition of AdK [63], in which the LID and

NMP domains undergo a 14 Å relative hinge bending motion

about the CORE domain. The study suggested in the absence of

ligand AdK fluctuates about the open crystal structure, occasion-

ally visiting conformations near the closed crystal structure.

Binding of an adenosine polyphosphate substrate analog to the

arginine-lined active site was observed to dramatically stabilize the

closed conformation. To examine the suitability of the current CG

force field for studying conformational transitions, CG-MD was

performed for 200 ns at 0.6 T0
f starting from both the open and

closed AdK structures.

The CORE, LID and NMP domains are stable in CG-MD of

both the open and closed states (Figure 8), each of which

individually has a structural RMSD between the open and closed

crystal structures of less than 2 Å when domains are superimposed.

The open to closed conformational transition was monitored in

AdK simulations using the reaction coordinate DDRMSD [63],

defined as the RMSD of backbone and sidechain sites from the

open state minus their RMSD from the closed state. The

simulation of the closed conformer undergoes limited structural

rearrangement (4.6 Å final Ca RMSD to starting structure)

compared to the simulation starting from the open conformer

(8.0 Å final Ca RMSD to starting structure). Indeed, values of the

reaction coordinate approach positive DDRMSD (become more

closed-like) in simulations of the open state (Figure 9).

The dynamics of AdK in CG-MD can be understood in terms

of surface tension. Just as polyalanine exhibited an exaggerated

surface tension for a given temperature, Trpzip, Trp-cage and

AdK are more compact than the native structure under low

temperature folding conditions in CG simulations (Table 3). Even

under unfolding conditions, the peptide chains are disordered in

compacted globules up to temperatures exceeding 500 K (Table 3),

as can also be seen by the long tails in the heat capacity curves up

to 700 K (Figure 4). Under CG-MD, the open state of AdK

rapidly adopts a more compact and stable conformation that is

structurally similar to the closed crystal structure, though the LID

and NMP domains are not in contact. The simulation starting

from the closed state also adopts a compacted structure in which

the LID and NMP domains are in closer contact (Figure 7C).

Besides surface tension, other possible explanations exist for the

incorrect relative arrangement of the LID and NMP domains

during CG simulations. The negatively charged substrate needed

to counteract repulsion in the arginine-lined binding pocket is

absent from the simulations. Experimentally, the LID and NMP

domains exhibit reduced thermodynamic stability compared to the

CORE domain [64]. The open to closed conformational transition

requires many subtle backbone rearrangements in the hinge

regions connecting the three domains [64–66]. Lastly, an

alternative explanation is that the reduced bulk of the low

resolution interaction sites in the CG model fails to fully account

for the effect of the underlying atomistic steric clashes. Structural

compaction in peptide coarse-graining has been reported

previously [42]. The reduced temperature used in the simulations

could also be a contributor to structural compaction.

In the case of large conformational transitions in which the

rearrangement can be viewed as a local refolding event [64,66],

the CG force field could potentially benefit from the addition of a

loose elastic network to maintain the backbone topology analogous

to previous work [10,67]. Backbone restraints could also be used in

order to predict sidechain configurations for low resolution

experimental structures in which only the backbone Ca positions

are known. Indeed, parallel tempering of Trpzip, Trp-cage and

AdK with fixed native backbone topology yielded improved

distributions of native sidechain configurations (Table 4, Figure

S5). The fact that sidechain packing is reproduced to within 3 Å

RMSD suggests that the CG description constitutes a reasonable

representation of sidechain sterics and polarity, although higher

resolution models [15,68] are expected to improve accuracy.

Discussion

A CG force field for the amino acids was developed based on

microsecond all-atom simulations of peptide folding and associa-

tion. Previously, the accuracy of CG functions has been assessed

based on their ability to identify the native state as lower in

potential energy than decoy structures [14,25,27,30]. The present

CG model was evaluated based on analysis of folding energy

landscapes generated from REMD simulations. Non-native

structures were observed with energies similar to that of the native

state, which is in accord with replica exchange investigations of

Figure 6. Native state CG-MD at 0.6 T0
f . The instantaneous Ca

RMSD from the native state is shown for simulations starting from the
native structure for Trpzip (A) and Trp-cage (B). By comparison, all-atom
MD of Trpzip at 300 K yielded a mean Ca RMSD of 0.860.2 Å.
doi:10.1371/journal.pcbi.1000827.g006
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other CG representations for folding [18] and structure prediction

[69]. Deviations from the funneled landscape indicate that the

smooth landscape of CG interactions may fail to capture the

effective repulsion between non-native contacts in the rugged

atomistic landscape. The current sidechain centric model

emphasizes sequence at the expense of detailed backbone

hydrogen bonding, both of which in conjunction have been

shown to determine the tertiary structure of proteins [70]. At the

other end of the spectrum, backbone centric models contain three

or more backbone interaction sites per residue to incorporate

geometric hydrogen bond constraints at the expense of sidechain

rotamers, which are represented by a singe site at the beta carbon

position [18,21,22]. Backbone centric models have successfully

predicted the structure of certain a-helix bundles excepting

topological degeneracy. In contrast, the current sidechain centric

approach consisting of a single site per backbone and multiple sites

per sidechain was demonstrated to be more useful in simulating

the dynamics of diverse helical and b-sheet proteins.

Figure 7. Backbone Ca-trace structures at the end of native state CG-MD at 0.6 T0
f for Trpzip (A), Trp-cage (B) and AdK (C). Starting

native structures are shown in cyan for Trpzip/Trp-cage and as a ribbon diagram for closed AdK. Tryptophan and proline sidechains are shown in blue
(A,B). The LID/NMP domains of the AdK endpoint conformations are colored green/pink for simulations starting from open AdK and orange/blue for
simulations starting from closed AdK.
doi:10.1371/journal.pcbi.1000827.g007
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The limited success of pairwise alpha carbon interactions in

folding prediction can be attributed to the fact that pairwise

additive interactions at the residue level are not adequate to

describe the highly cooperative process of protein folding [71]. Ca

Gō models, for instance, require the introduction of either a

desolvation barrier [72] or native dihedral backbone angular

restraints to ensure a cooperative folding transition [7]. Desolva-

tion of neighboring water molecules can be considered a

multibody effect, as can the angular dependence of backbone

hydrogen bonding. That the pairwise potentials developed and

tested in the present work lack an appreciable desolvation barrier

(Figures 2, S3) offers an additional explanation for their limited

success in folding prediction.

Misfolded structures have also been observed with high

probability in atomistic folding studies employing implicit solvent

models [59,73–75], suggesting surface tension and solvation effects

are critical in reproducing the energy landscape of proteins. With

current computational resources, the ability of modern all-atom

force fields to capture the energy landscape can now be assessed in

explicit solvent simulations using replica exchange methods

[76,77]. Obtaining the delicate balance between a-helix and b-

sheet energetics is challenging, but ongoing all-atom efforts are

showing promise [78,79].

Whether a single CG force field is capable of reproducing the

full thermodynamic landscape of structurally diverse proteins

remains a difficult question. A variety of useful CG models do exist

for studying protein folding mechanisms [7] and structure

prediction [3]. The present work describes a general CG force

field derived from molecular-scale interactions that is capable of

stable native state simulations without the need for additional

structural restraints, an improvement over existing CG models.

Improved structural stability can be attributed to the explicit

treatment of sidechain rotamers, their steric packing and

energetics, resulting in the native state being a local energy

Figure 8. Native state CG-MD at 0.6 T0
f starting from the open

(A) and closed (B) forms of AdK. The instantaneous Ca RMSD from
the starting structure is shown for the CORE (dark gray), LID (light gray)
and NMP (black) domains.
doi:10.1371/journal.pcbi.1000827.g008

Figure 9. Conformational transition in AdK expressed as the
difference in RMSD from the open and closed states. Simulations
starting from the open structure (black circles), DDRMSD = 27 Å, are seen
to partly converge toward simulations starting from the closed
structure (gray trace), DDRMSD = +7 Å.
doi:10.1371/journal.pcbi.1000827.g009

Table 3. Distributions of radius of gyration in folding
simulations.

Protein T (K) ,Rg/RN
g .a s Resolutionb

Trpzip 148 0.86 0.02 CG

Trp-cage 148 0.86 0.01 CG

AdKclosed 139 0.91 0.01 CG

Trpzip 300 0.97 0.02 AA

Trpzip 366 0.98 0.05 CG

Trp-cage 366 0.98 0.04 CG

AdKclosed 361 0.97 0.03 CG

Trpzip 498 1.16 0.17 AA

Trp-cage 498 1.28 0.20 AA

Trpzip 540 1.10 0.13 CG

Trp-cage 540 1.12 0.14 CG

AdKclosed 546 1.77 0.33 CG

aRadius of gyration is shown relative to that of the native structure (RN
g ).

bCG-REMD simulations are shown compared to all-atom (AA) reference
simulations at selected temperatures.

doi:10.1371/journal.pcbi.1000827.t003

Table 4. Distributions of sidechain RMSD in native state
simulations at 0.6 T0

f .

Domain
Fixed backbone
,RMSDSC. sRMSD

Unrestrained
,RMSDSC. sRMSD

Trpzipb 3.5 0.3 6.6 0.5

Trp-cage 3.6 0.2 6.8 0.8

COREopen 3.0 0.2 6.0 0.3

LIDopen 2.9 0.2 5.0 0.4

NMPopen 2.9 0.2 5.2 0.4

COREclosed 2.9 0.1 5.0 0.2

LIDclosed 3.3 0.2 4.4 0.1

NMPclosed 2.9 0.2 6.6 0.3

aThe RMSD (Å) of sidechain (SC) sites from the native structure was monitored
in native state simulations with fixed backbone (CG-REMD) or no restraints
(CG-MD).

bBy comparison, unrestrained all-atom MD of Trpzip at 300 K yielded a mean
sidechain RMSD of 2.560.5 Å.

doi:10.1371/journal.pcbi.1000827.t004
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minimum. Future refinements of the model to better describe

backbone hydrogen bonding are expected to improve its

performance. However, the current force field may also prove

useful in the modeling of protein complexes and their transitions.

Supporting Information

Figure S1 Backbone angle distributions. (A) The inverted

probability distributions are shown for all individual angles

between three successive alpha carbons in all-atom MD of all

proteins studied: Ala15, Leu15, Trpzip and Trp-cage. (B) The

inverted distribution is shown for each backbone angle in Trpzip

under CG-REMD at 0.6 T0
f . Angles corresponding to a-helix (red)

or b-sheet (black) structures could be weakly stabilized with equal

probability. A single fourth order polynomial potential (green) was

employed for all backbone angles in the CG model independent of

sequence.

Found at: doi:10.1371/journal.pcbi.1000827.s001 (0.32 MB

TIF)

Figure S2 Backbone dihedral distributions. (A) The

inverted probability distribution is shown for the pseudodihedral

angle between four successive alpha carbons in all-atom MD of

Ala15 at 300 K (black) and 498 K (green). Sequence dependent

statistical potentials derived from the PDB were scaled by a

constant factor so that good agreement is obtained for polyalanine

(pink). The result from CG-MD of Ala15 is shown in blue. (B) The

inverted backbone pseudodihedral distribution of polyleucine in

all-atom MD (black) is well predicted by the scaled statistical

potential (pink).

Found at: doi:10.1371/journal.pcbi.1000827.s002 (0.29 MB

TIF)

Figure S3 Tabulated nonbonded interaction potentials
employed between CG site types. (A) Five potentials are

shown for alpha carbons paired with the five site types: alpha

carbon (green), apolar (black), polar (cyan), positive (blue) and

negative (red). (B) Similarly, potentials are shown for apolar sites

paired with four site types: apolar (black), polar (cyan), positive

(blue) and negative (red). (C) Potentials are shown for polar sites

paired with site types: polar (cyan), positive (blue) and negative

(red). (D) Lastly, potentials are shown for three site pairings:

positive-positive (blue), positive-negative (red) and negative-

negative (pink). All 15 potentials have softer core repulsions than

an LJ potential. Model parameters are available upon request.

Found at: doi:10.1371/journal.pcbi.1000827.s003 (0.48 MB

TIF)

Figure S4 Energy minima in CG-REMD folding simu-
lations. Representative snapshots are shown corresponding to the

three energy minima of Trpzip (A) and the global minimum of

Trp-cage (B), along with their Ca RMSD from the native

structure. Backbone Ca-traces are shown in yellow along with

Trp, Pro and other sidechains in blue. The Trp-cage native

structure is shown in cyan (backbone). Snapshots were obtained

from CG-REMD folding simulations collected at 0.6 T0
f (see

Figure 5).

Found at: doi:10.1371/journal.pcbi.1000827.s004 (1.99 MB

TIF)

Figure S5 Sidechain prediction with CG-REMD. The

final configuration is shown after 80 ns of CG-REMD at 0.6 T0
f

with the backbone (yellow) fixed in open AdK. Sidechain sites

(blue) exhibited final RMSDs of 2.9 Å, 3.1 Å and 2.9 Å from their

starting native positions (cyan) for the LID (A), CORE (B) and

NMP (C) domains, respectively.

Found at: doi:10.1371/journal.pcbi.1000827.s005 (2.35 MB

TIF)
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