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Abstract

The set of regulatory interactions between genes, mediated by transcription factors, forms a species’ transcriptional
regulatory network (TRN). By comparing this network with measured gene expression data, one can identify functional
properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph
consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression
data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in
response to environmental changes and genotypic mutation. Subnets with fewer changes in their expression pattern have a
higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the
TRN consists of several scales of regulatory organization: (1) subnets with more varying gene expression controlled by both
transcription factors and post-transcriptional RNA regulation and (2) subnets with less varying gene expression having more
feed-forward loops and less post-transcriptional RNA regulation.
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Introduction

An interesting topological feature of the transcriptional regula-

tory network (TRN) of the bacterium Escherichia coli is its almost

tree-like structure with only few loops (see [1] for a detailed

discussion and comparison with the TRN of the yeast Saccharomyces

cerevisiae). This observation has several consequences. First,

hierarchical levels in the network can be meaningfully defined

and analyzed. Second, it leads to the question, on which level of

organization information processing takes place in the TRN given a

dominant directed flow dictated by the network’s architecture. On

a local scale, substructures in the TRN that appear significantly

more often than in corresponding randomized networks—so-called

network motifs [2,3]—have been found to match specific

information processing steps. Particularly feed-forward loops have

been theoretically proposed [4] and experimentally supported [5,6]

to function as noise-suppression units and delay devices.

Here we dissect the TRN into topological modules. We define

the subnet of a node (root) as the subgraph consisting of all nodes

topologically downstream of the root, including the root node itself

(see Figure 1 for an illustration of the concept). Subnets can extend

over multiple hierarchical layers if they contain a hierarchy of

transcriptions factors (TFs). Moreover, they can overlap if genes

are regulated by TFs from different subnets. Some network motifs

such as the feed-forward loop or the single input motif are subnets

themselves and therefore fully contained in at least one subnet.

This approach is possible due to the topological properties of the

E. coli TRN: apart from the few small cycles in the network (see

Results), most subnets are directed acyclic graphs.

The search for the imprint of the transcriptional regulatory

network in gene expression profiles is a search for very weak

signals, often masked by the broad range of additional biological

processes (beyond the regulation via transcription factors) shaping

the expression of a gene. In two previous studies [7,8], the

consistency between expression profiles and pairwise interactions

in the TRN has been shown to be surprisingly low. The

consistency on a larger scale has been studied for a specific type

of subnets, named ‘origons’ [9]. There, the authors find that genes

in some origons are selectively affected by specific environmental

signals. In this contribution, we study patterns of subnet usage for

two markedly different genome-wide gene expression data sets. As

is [9], we use microarray expression profiles from the ASAP

database, where wild-type expression under standard growth

conditions is compared to a variety of profiles with external stimuli

and genetic alterations. As a second data set, we use the time-

course data of [10]. Here, E. coli strains are exposed to different

media and stresses, and profiled at up to 16 time points. We

analyze subnets with respect to their responsiveness to altered

conditions in both data sets and classify them according to the

observed subnet usage patterns.

PLoS Computational Biology | www.ploscompbiol.org 1 July 2010 | Volume 6 | Issue 7 | e1000836



E. coli employs different scales of regulatory control to establish

homeostasis (see, e.g., [11]) or to adapt to external stimuli.

Recently, we introduced the concept of digital and analog control

to differentiate between the regulatory response coordinated by

dedicated TFs and DNA architectural proteins, respectively [12].

We found that as soon as one form is limited (by TF mutations or

changes in the DNA superhelicity), the other form of control

compensates, exhibiting a balance of regulatory control. An

analysis employing methods from point process statistics has been

able to further support the interplay of digital and analog control

by analyzing gene distributions [13]. In the following, we want

to delineate the interplay between the subnet usage as a TF

mediated, topologically based form of control, and two other

scales of regulatory control: translational inhibition and mRNA

degradation induced by small non-coding RNAs (sRNAs) and the

dynamic coordination of nodes connected in a feed-forward loop.

Results

Networks
We consider the most complete prokaryotic TRN available, the

TRN of the bacterium E. coli. Nodes in our network correspond to

genes (and the respective TF) while a directed edge represents a

regulatory interaction mediated by a TF. Based on the version 6.3

of the Regulon database [14], the TRN comprises 1515 nodes and

3171 links, with 162 regulators (i.e. nodes which regulate at least

one other gene) and 1432 target nodes (i.e. nodes which are

regulated by at least one other gene).

We dissect the TRN into subnets, defined as subgraphs

consisting of a root node with at least one regulatory interaction,

and all downstream nodes (see Figure 1A for an illustrative

example network consisting of three subnets). The 162 subnets of

the TRN are overlapping and of very different sizes and

hierarchical complexities (see the frequency distribution of subnet

sizes in Figure 2A and the histogram of relative subnet overlap in

Figure 2 in Text S1). Let us consider three examples: the ihfAihfB

subnet (see Figure 2B and Figure 1 in Text S1 for a highly resolved

version) is the largest subnet in the E. coli TRN with 1021

downstream nodes, among them many regulators, organized in

seven hierarchical levels. For the genes ihfA and ihfB, we consider

only one subnet, since their regulatory action is mediated by the

IHF hetero-dimer, formed by the gene products of both genes. In

contrast to older versions of RegulonDB, release 6.3 contains eight

mutual interactions between gene pairs, and one 3-node cycle (see

Materials and Methods), leading to subnets with many shared

downstream nodes (as shown in Figure 2B for fnr-arcA). An

exemplary small subnet is shown for the TF agaR in Figure 2B. It

contains no regulators and can thus be depicted as a tree with only

two hierarchical levels: the root node agaR at the top and all ten

target nodes in the bottom layer.

Subnet usage
We want to analyze the importance of subnets as information-

processing units in the TRN. To this end, we map large-scale

expression profiles from microarray experiments onto the TRN.

First, we consider a data set where either wild-type E. coli strains

are compared to strains with genetic alterations and with cells

under environmental stress, or wild-type and mutant strains are

compared under aerobic and anaerobic growth conditions. We

will refer to this data set as the static data (see Materials and

Methods for a detailed description of the data used). For each

condition, we identify differentially expressed genes (with a

statistical analysis of microarrays as introduced in [15],

FDRƒ0:3, see Materials and Methods) and determine subnets

significantly enriched (Fisher’s exact test at FDRƒ0:3, see

Materials and Methods) with those genes. In Figure 3A, we plot

a hierarchically clustered (see Materials and Methods for clustering

details) subnet usage matrix, where a deep blue entry represents a

subnet significantly enriched with differentially expressed genes.

For example, the comparison of wild-type and fnr mutant strains

under aerobic growth conditions (denoted as ‘aerobic FNR’ in the

usage matrix labels) yields 17 subnets with enriched differentially

expressed members: arcA, argR, birA, cueR, cusR, cysB, envY, fnr, fur,

gatR2gatR1, glnG, modE, narL, oxyR, pdhR, purR, trpR. We assume

that these subnets are directly associated with the fnr deletion,

either due to the TF action of FNR (the roots arcA, narL, and pdhR

are direct targets of FNR) or via signal transduction cascades

induced by the presence or absence of FNR. Interestingly, not all

Author Summary

Bacterial cells can adapt to various genomic mutations and
intriguingly many environmental changes. They do this by
adjusting their gene expression profile to meet the
requirements of a new condition. In this work, we study
the interplay of different mechanisms of gene regulatory
control driving this adaptation in the bacterium E. coli. We
deconstruct the network of all transcription factor
mediated regulatory interactions into subnets, topologi-
cally defined subgraphs which we expect to act as
information processing units. Indeed, we find that many
subnets react coordinately to cellular stress, and are used
by the cells to account for mutations. In these subnets, we
also find many small RNA targets. In contrast, those
subnets that do not act in a coordinated fashion are highly
enriched with feed-forward loops, a 3-node network motif
with important information processing properties. Our
approach reveals correlations and anti-correlations of three
scales of regulatory control: subnets, feed-forward loops,
and small RNA.

Figure 1. Illustration of the subnet approach. A subnet is defined
as the subgraph induced by all nodes downstream of a root node,
including the root node. The network in this figure contains three
subnets: the subnet of root a comprises all nodes in the network,
organized in three hierarchical layers. The subnet of root b contains b
and all downstream nodes c, e, f, g. The subnet of root d contains d, g,
h, i, k. Notably, the subnet of root a contains a feed-forward loop
formed by nodes a, b, and c, while the subnet of root d constitutes a
single input motif.
doi:10.1371/journal.pcbi.1000836.g001

Subnet Usage in the TRN of E. coli
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subnets embedded in the fnr subnet show significant differences in

the expression of their genes. These phenomena may occur due to

missing data in RegulonDB or due to interactions that rely on

specific conditions and are not active under aerobic growth (like

co-activators or TF conformations). A functional hypothesis is that

the downstream genes of the respective root are collectively

shielded from the rest of the fnr subnet, or that the regulatory

control of the respective node exceeds the pure promoter binding

mechanism (as the analog control [12] of the known architectural

protein H-NS, see also e.g. [16]).

The overall pattern of subnet usage for the different conditions

is rather homogeneous for all compared profiles: between 6.8%

and 20% of the subnets are used in each condition. However, we

find a hierarchy of usage at the subnet level and coordinately used

subnets. A clustering of subnets with respect to their subnet usage

will be discussed in the next section.

We want to compare our results with another, fundamentally

different data set consisting of time series, and an independent

analysis approach based on the collectivity of a subnet’s response.

The data used in [10] contains time courses of E. coli transcriptome

responses to diverse stimuli (like UV and gamma radiation,

norfloxacin, and different concentrations of indol-acrylate),

measured with whole-genome DNA microarrays. For each time

series we quantify the collectivity of the response of the subnet’s

genes and compare it to randomly sampled subnets by calculating

the Shannon entropy of the eigenvalues of a singular value

decomposition (see Materials and Methods for details). Subnets

responding collectively are marked in Figure 3B as deep blue

entries.

During the different time courses, the subnet usage varies

between no subnet usage at all (0%) and a maximum of 26%. The

first 14 experiments in the matrix (including all radiation exposure

experiments and indol-acrylate treatments in different concentra-

tions) exhibit a subnet usage below 0.5%. Apparently, for these

experiments, E. coli masters the adaptation to the imposed stress

with other forms of regulatory control. In experiments where

subnets are more frequently used, we find again blocks of

collectively used subnets that differ between sets of experiments.

Clustering
Using hierarchical clustering, we identify clusters of subnets with

distinctly different patterns of subnet usage in both data sets. In the

subnet usage matrix derived from the static data (Figure 3A), a

substantial part of the subnets are never significantly enriched with

differentially expressed genes, further on called the ‘null’ cluster.

On the contrary, subnets in the ‘strong’ cluster are on average used

Figure 2. Subnets in the transcriptional regulatory network (TRN) of E. coli. The TRN can be decomposed into subnets, defined by the root
node, comprising all nodes topologically downstream. (A) Histogram of subnet sizes, binned on a logarithmic scale. We only consider subnets of five
nodes or more to allow for significantly enriched subnets. (B) The ihfAihfB subnet is the largest subnet in the TRN, comprising 1021 nodes organized
in seven hierarchical levels. The transcription factors arcA and fnr regulate each other and therefore share 650 downstream nodes. The agaR subnet
has only 11 nodes, organized as a single input motif.
doi:10.1371/journal.pcbi.1000836.g002

Subnet Usage in the TRN of E. coli
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in 25% of the experiments. The ‘medium’ cluster in between has

an average usage of 6.0%. In the time-course data matrix

(Figure 3B), we also identify three clusters with markedly different

subnet usage, further similarly denoted as ‘strong’ (20% average

subnet usage), ‘medium’ (3.8%), and ‘null’ (0.0%).

The overlap—with respect to the subnet roots—between

clusters from the two data sets is shown in Figure 4. We find

that the clusters in the different experiments often share subnets

(75% for the ‘strong’, 48% for the ‘medium’, and 54% for the two

‘null’ cluster). Only some subnets in the ‘strong’ cluster of the static

data appear in the ‘null’ cluster of the time-course data (3.8%

overlap), the static ‘null’ cluster and the time-course ‘strong’ cluster

are disjunct (0% overlap). The fact that the cluster composition

differs between the two data sets may rely on the different external

stresses applied. Maybe even more importantly, in the time-course

data, an E. coli colony adapts spontaneously to a environmental

change applied. In contrast, strains that have already adapted to a

different environment or a genetic mutation are compared in the

static data. Still, the large overlap between the clusters, derived

from experiments with independently sampled environmental

conditions, is remarkable.

To assess the cluster composition from a functional perspective

and detect biological plausible components, we conducted a gene

ontology (GO) enrichment analysis (see Materials and Methods for

details). On the level of subnet roots, we find no enriched GO

terms at all. If we include the nodes within the subnets in each

cluster, we find several enriched categories. In the ‘strong’ clusters

of the static and time-course data, ‘iron ion binding’ and the

Figure 3. Subnet usage matrices. The subnet usage matrix consists of subnets (rows) and conditions (columns) for the static ASAP data (A) and
the time-course data of Sangurdekar et al. [10] (B). A deep blue entry represents a subnet significantly enriched with differentially expressed genes
under the respective conditional change (A), or a subnet with collectively responding genes during the given time-course (B), respectively.
doi:10.1371/journal.pcbi.1000836.g003

Subnet Usage in the TRN of E. coli
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‘generation of precursor metabolites and energy’ appears. The less

overlapping ‘medium’ clusters share no enriched annotations. The

‘null’ clusters, finally, share enriched metabolic processes (carbo-

hydrate, fucose, D-gluconate) and transporter activity (carbohy-

drate, sugar).

We study the sizes of the subnets contained in the different

clusters and find that the subnet composition is highly heteroge-

neous in both the static (Figure 5A) and the time-course data

(Figure 5B): while the ‘strong’ and ‘medium’ clusters contain

subnets of all size, including large subnets with hundreds of nodes

spanning most of the TRN, the ‘null’ clusters contain preferen-

tially small subnets with only tens of nodes (see Figure 5). Similarly,

the out-degrees of the subnet roots substantially differ. While the

master regulators fnr in the ‘strong’ and crp in the ‘medium’ cluster

control 275 and 418 nodes, respectively, the maximum out-degree

of ‘null’ cluster subnets is 28 for marA in the static case, and 57 for

cpxR in the time-course data.

Motifs
Can we infer topological differences between the conditionally

used subnets and the unused subnets in the ‘null’ cluster beyond

subnet size and a root’s out-degree? We analyzed the 3-node motif

composition of the subgraphs induced by the subnets of each

cluster (see Figure 3 in Text S1) by computing the z-score (see

Materials and Methods for a detailed description of the z-score

calculation) with respect to randomized graphs [2]. All subnets

show a normalized triad significance profile [17] characteristic for

bacterial regulatory networks (see Figure 4 in Text S1). However,

consistently in both data sets we find in the ‘null’ cluster an

enrichment of feed-forward loops, a well-studied motif with

interesting dynamical properties (see Figure 6). Depending on

the actual design as a coherent or incoherent feed-forward loop,

this motif can serve as a sign-sensitive delay or an accelerator in

transcriptional networks [4]. Here, the feed-forward loop z-scores

of 31:6 and 29:9 for the static data and the time-course data ‘null’

cluster, respectively, distinctly exceed the z-score of the feed-

forward loop in the full TRN (10:5). The z-scores of all other

clusters lie below this threshold (see Figure 6).

To check whether enriched feed-forward loops are an artifact of

the cluster-induced subgraph sizes, we apply two null models to

the static data: First, we induce a subgraph of the TRN by

randomly sampling the same number of nodes as contained in the

‘null’ cluster (that is, 221). Second, we randomly choose the same

number of subnets as contained in the ‘null’ cluster (that is, 30) and

therein induce subgraphs with a size distribution similar to the one

in the ‘null’ cluster. We generate 100 samples and find that the

feed-forward loop z-score of the ‘null’ cluster exceeds both null

model averages (pƒ0:01 and p~0:01, respectively, see Figure 5

in Text S1). This indicates that the feed-forward loop enrichment

is a specific property of the identified ‘null’ cluster and no size

effect.

We test the robustness of our finding with regard to the data

used in two different ways: First, we apply a meta analysis on the

466 E. coli experiments available in the Many microbes microarray

database [18]. We analyze this data with the entropy approach by

interpreting the set of experiments as a time series. Interestingly,

the homogeneously responding subnets show no distinct feed-

forward loop enrichment (z~8:3) while the subnets with no

Figure 4. Subnet cluster overlap. Relative overlap between the
different subnet clusters of the static data and the time-course data.
The relative overlap is calculated as the number of subnets present in
both clusters, divided by the smaller total number of subnets in the two
clusters under consideration.
doi:10.1371/journal.pcbi.1000836.g004

Figure 5. Subnet size composition of the clusters. For the static data (A) and the time-course data (B), the ‘null’ cluster is composed of subnets
with less than 100 nodes, while all other clusters contain both small and large subnets.
doi:10.1371/journal.pcbi.1000836.g005

Subnet Usage in the TRN of E. coli
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coordinated response are, similarly to the ‘null’ cluster subnets,

highly enriched with feed-forward loops (z~51). Second, to test

the robustness of our findings against incomplete data, we

implement the time-course data analysis on the last four version

of RegulonDB (6.1–6.4). We find that irrespective of the

RegulonDB version used in our analysis, a prominent feed-

forward loop enrichment in the null cluster appears (see Figure 6

in Text S1). Notably, the number of vertices (V) and links (L) in the

TRNs increased considerably from V~1468,L~3040 (Regu-

lonDB 6.1) to V~1540,L~3223 (RegulonDB 6.4).

Small RNA target enrichment
A rather recently discovered mechanism of regulatory control

are small noncoding RNAs (sRNAs) [19]. In E. coli, up to 100

sRNAs may exist [20], primarily as regulators of mRNA stability

and translation. We first investigate the sRNA mediated control on

network motifs. Comparing the number of 3-node motifs with at

least one sRNA target with randomly sampled sets of targets of the

same size, we identify seven motifs with significantly (z§2)

enriched occurrence of sRNA targets (see Figure 7 in Text S1).

Among them, we find the feed-forward loop (motif ID 38), and a

motif (ID 110, see Figure 7 in Text S1), which has been implicated

previously with an enrichment of microRNA targets in a

mammalian signaling network [21].

To infer the interplay between subnet mediated control and

sRNA regulation, we map the target transcripts from RegulonDB

6.3 onto the TRN and infer 13 subnets with a significantly

enriched (Fisher’s exact test, FDRƒ0:05, see Materials and

Methods) number of sRNA target genes: arcA, cspA, envY, evgA, fnr,

gadE, gadW, gadX, hns, ihfAihfB, rutR, torR, ydeO. In relative numbers,

we find that 11% of all TRN subnets are enriched with sRNA

targets. With regard to the clusters of different subnet usage,

enriched subnets are intriguingly absent in the cluster with unused

subnets: We find no enriched subnet in the ‘null’ cluster of the

static data, and only one (envY) in the time-course data (see

Figure 7). At the same time, enriched subnets are present in the

medium and strong cluster, respectively.

We draw two important conclusions from that finding: First, the

clusters inferred from the subnet usage analysis establish categories

on the set of subnets that appear to have markedly different

Figure 6. Feed-forward loop enrichment. Analysis of the feed-forward composition of the subnet clusters identified in the static data (A) and the
time-course data (B) respectively. In both data sets, we find that the z-score of the feed-forward loop composition is highest in the ‘null’ cluster
induced by non-responding subnets.
doi:10.1371/journal.pcbi.1000836.g006

Figure 7. sRNA target enrichment. Relative number of subnets with enriched sRNA targets in each cluster in the static data (A) and the time-
course data (B) respectively. In the full TRN, we find 13 out of 117 subnets significantly enriched with sRNA targets (Fisher’s exact test with
FDRƒ0:05), resulting in an average sRNA target enrichment of 0.11 (dashed line). In both data sets, we find that subnets in the ‘null’ cluster are
depleted with sRNA targets.
doi:10.1371/journal.pcbi.1000836.g007

Subnet Usage in the TRN of E. coli
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topological and regulatory properties. Second, regulatory control

on the subnet level coincides with sRNA mediated control, while

feed-forward loop dynamics seems less dependent of the impact of

sRNA.

Discussion

The rationale of our analysis has been to explore the internal

logic of gene regulation by looking at different scales within the

transcriptional regulatory network of E. coli. The post-transcrip-

tional regulation mediated by sRNAs coincides with the subnet-

wide control conferred by TFs. In contrast to this correlated

regulatory control, we obtain an anti-correlated pattern for subnet

usage and the occurrence of feed-forward loops: when the scale

dominates (high subnet usage) few regulatory devices on the

smaller scale are found (low feed-forward loop occurrence).

Similarly to our previous data-driven study on the buffering of

digital and analog control [12], our results indicate a systematic

interplay between distinct regulatory mechanisms. However, in

contrast to the concept of analog and digital control, there is no

evidence for a balancing between the induction of subnets and the

usage of feed-forward loops. Rather, from the static data analysis

(see Figure 3A) we see that upon mutation of a root node of a

strongly responding subnet, other subnets compensate for the

compromised control. The reason for that may be the difference in

scales: while both analog and digital control can operate on sets of

up to hundred genes, there is a huge functional discrepancy

between the genome-wide regulation of large subnets and the

dedicated dynamical tuning of few nodes by a feed-forward loop.

Our study expands previous approaches to link topological

properties of the TRN with expression profiles. Subnets as

topologically defined units of the TRN are groups of genes that

deal coordinately with conditional or environmental changes due

to shared regulatory interactions. The ‘regulon’ concept, where

genes are pooled if they share a common transcription factor, is

extended by taking into account the full downstream regulation

instead of only the first hierarchical layer. ‘Origons’ [9] are the

subset of subnets with no regulatory input at the root node and

have been defined on an operon-based version of the TRN (that is,

genes with the same promoter are treated as one node). Based on

the assumption that every TF is able to sense signals in the cell, the

subnet notion is a natural generalization of the origon concept: It

allows for the identification of used subnets within larger unused

subnets (which may be origons) and, vice versa, small unused

subnets within larger used origons.

In a complementary, subsequent investigation, one could study

the sRNA target enrichment and feed-forward loop usage across

the different experimental conditions, similarly to the study of

[22]. This would require to distinguish the different types of

coherent/incoherent feed-forward loops [6] and quantify their

usage. Here we introduced the subnet notion, verified our

approach with two types of large-scale expression data, and

compared distinct scales of regulatory control in clusters with

different subnet usage.

Materials and Methods

The workflow of our analysis is illustrated in Figure 8, with

details as follows.

Network data
We use the RegulonDB 6.3 [14] data on TF-gene interactions

to construct the E. coli TRN. Dimer TFs (e.g. flhCflhD and the

corresponding genes flhC and flhD) are merged to a single node in

the network, phantom genes (i.e. a gene that at a previous time it

was thought to be a gene, but more recent analyses indicate it is

not) are removed. The resulting TRN comprises 1515 nodes with

3270 interactions including 99 self-loops.

Subnet construction
Within the TRN, 162 nodes have outgoing links to other nodes.

The corresponding genes confer regulatory control to other genes

via TF binding, and are called roots further on. Each subnet is

defined by a root node and all the nodes topologically

downstream. The level of a node within the subnet is defined as

the maximal distance of this node to the root node. Pairs of genes

regulating each other share the same level. In Regulon 6.3, we find

eight two node cycles (arcA<fnr,crp<fis,gadE<gadW ,gadE
<gadX ,galR<galS,gutM<srlR,marA<marR,marA<rob )

and one 3-node cycle (gadW?gadX?hns?gadW ). Subnets can

overlap, if they share downstream nodes (see Figure 1A). To allow

for significant enrichment in our expression analysis, we only

consider subnets with five nodes or more (see Figure 2 for a

histogram of the subnet sizes), ending up with 117 subnets out

of 162 contained within the TRN. The subnets are deposited in

Text S2.

Expression data
We consider two different expression data sets to study patterns

of subnet usage. As static expression profiles, we use Affymetrix

chip data contained in the ASAP database (https://asap.ahabs.

wisc.edu/asap/home.php) [23], namely the data sets ‘Aerobic

shift’, ‘Calibrator’, and ‘Affy data’. In each data set, we compare

different environmental (like ‘heat-shock’) or genotypic (like ‘fnr

deletion’) conditions with the respective wildtype experiments,

ending up with 39 chip comparisons. In the ‘Aerobic shift’ data set,

we first calculate the estimated transcript copy numbers (ETCNs)

and compare mutant strains with wildtype strains under both

aerobic and anaerobic growth conditions.

For time-course expression profiles, we use data from [10].

There, E. coli strains are cultured and subsequently analyzed on

whole-genome microarrays under diverse conditions like ‘normal

growth’, ‘suboptimal growth’, ‘transient arrest’, or ‘severe arrest

and killing’. We use 32 time-course data sets, the number of time

points varying from experiment to experiment between 2 and 16.

Subnet usage
Due to the different experimental setups we apply two different

approaches to quantify the subnet usage.

For the static data, we first determine differentially expressed

genes between two experimental conditions. For all three data sets

(‘Aerobic shift’, ‘Calibrator’, ‘Affy data’), we compare a specific

condition with its corresponding wild-type condition (e.g., we

compare the anaerobically grown FNR deletion mutant with the

anaerobically grown wild-type strain). Additionally, we regard the

various mutants under aerobic and anaerobic conditions (e.g., we

compare the OxyR mutant expression profiles with and without

oxygen supply from the ‘Aerobic shift’ data). In each of the 33

resulting data set pairs (condition vs. wild-type and aerobic vs.

anaerobic, respectively) we determine differentially expressed

genes by applying the ‘Statistical Analysis of Microarrays’ (SAM)

algorithm introduced in [15] with a Wilcoxon rank statistics and a

False Discovery Rate FDRƒ0:3. We disregard experiments with

no genes below the significance level (10 out of 33). We then

calculate a p-value for the enrichment (that is, a higher fraction of

differentially expressed genes within the subnet as compared to the

whole TRN) with Fisher’s Exact Test. After multiple testing

correction, we call subnets with FDRƒ0:3 significantly enriched
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and mark them in dark blue in the subnet usage matrix in

Figure 3A.

For the time-course data, we use a similar approach as

described in [10]. To evaluate, if the genes of a given subnet

respond collectively during time to the stimulus applied, we

calculate the Shannon entropy S of the normalized eigenvalues ei

of a singular value decomposition (SVD) of the T time-points vs. L
genes matrix, as described in [24]:

pi~e2
i =
XL

k~1
e2

k ,S~
{1

log (L)

XL

i~1
pi log(pi):

Collectively corresponding genes give rise to a dominant

principal eigenvalue e and a small S. For each subnet and each

time-course experiment, we randomly sample pseudo subnets (that

is, we randomly choose the same number of genes as contained in

the respective subnet) 1000 times and calculate a z-score (the

deviation of the subnet’s entropy S from the mean m of the

sampled distribution, divided by the standard deviation of the

sampled distribution s, z~
S{m

s
). From the 117 subnets under

consideration, we take only those with three or more genes

included in the data set from [10], reducing the number of

analyzed subnets to 100. In order to keep the overall number of

insensitive subnets comparable to the static data (25%), we choose

a z-score of {2:4 as cutoff. Collectively corresponding subnets are

marked in dark blue in the subnet usage matrix in Figure 3B. We

validate our results with the four latest versions of RegulonDB

(6.1–6.4), where we keep the size of the ‘null’ cluster constant at

25% and adapt the z-score cutoff accordingly.

As an additional meta analysis, we take the 466 E. coli

experiments available in the Many microbes microarray database

(M3D) [18]. We analyze this data with the entropy approach by

interpreting the set of experiments as a time series. Disregarding

the principal value in the SVD, and thus eliminating the vast chip-

wide differences between the 466 experiments included in M3D,

we compare the entropy of a subnet with the entropies of

randomly sampled subnets and calculate a z-score. Similarly to our

previous analysis, we interpret subnets with z-scores below and

above the threshold {2 as collectively (strongly) responding and

not responding (null), respectively. From these two sets of subnets,

we induce subgraphs and calculate the feed-forward loop

enrichment in the respective graphs. Interestingly, the strongly

responding subnets show no distinct feed-forward loop enrichment

(z~8:3) while the subnets with no coordinated response are,

similarly to the ‘null’ cluster subnets, highly enriched with feed-

Figure 8. Workflow. Static data and time-course data are analyzed differently up to the identification of subnets. Clustering and motif analysis is
applied similarly to the resulting subnets.
doi:10.1371/journal.pcbi.1000836.g008
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forward loops (z~51). Notably, disregarding the principal value in

the SVD in the analysis of the time-course data does not alter our

results.

Hierarchical clustering
From the analysis of subnet usage, we end up with two matrices,

one for the static data (177|39) and one for the time-course data

(100|32). The matrices contain a 1 for a subnet significantly

enriched with differentially expressed genes or significantly

correlated time-courses, respectively, and a 0 otherwise. We

hierarchically cluster the two matrices using the Manhattan

distance function (see e.g. [25]) and the Ward agglomerative

algorithm [26]. We end up with three clusters of subnets

with clearly different usage patterns throughout the different

experiments.

Gene Ontology enrichment
To infer GO term overrepresentation in the different clusters of

subnet usage, we use GOstat [27] with E. coli UNIPROT

identifiers and the ‘goa uniprot’ database. As parameters of the

statistical test we use a p-value cutoff of 0.01 with the Holm

multiple testing correction method and a GO-Cluster Cutoff

of {1.

Motif analysis
For each cluster, we induce a single subgraph of the whole TRN

by taking all nodes of the cluster’s subnets. We thus ensure that

every motif is counted only once in each cluster. We calculate the

z-scores of the network motifs of size 3 in the TRN and the cluster

induced subgraphs with MFINDER [3] (using 1000 random

networks). For this analysis we disregard the character of the

interaction (i.e. its activating or inhibiting impact).

sRNA enrichment
RegulonDB 6.3 contains regulatory information for 22 small

RNAs and 32 target transcripts. We map these onto the TRN and

find 22 target genes, within them the roots fhlA, gadX, and hns. We

map the targets on the TRN subnets and calculate the relative

overrepresentation with Fisher’s exact test. We correct for multiple

testing error and find 13 subnets enriched with sRNA targets at

FDRƒ0:05: arcA, cspA, envY, evgA, fnr, gadE, gadW, gadX, hns,

ihfAihfB, rutR, torR, ydeO. For each cluster, we calculate the relative

number of subnets with sRNA target enrichment and plot the

result in Figure 7.

Supporting Information

Text S1 Text S1 contains 7 supplementary figures.

Found at: doi:10.1371/journal.pcbi.1000836.s001 (0.95 MB PDF)

Text S2 The file contains all 117 subnets used in our study,

derived from RegulonDB 6.3. The first gene in each line

represents the root node of the respective subnet.

Found at: doi:10.1371/journal.pcbi.1000836.s002 (0.05 MB

TXT)
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12. Marr C, Geertz M, Hütt MT, Muskhelishvili G (2008) Dissecting the logical
types of network control in gene expression profiles. BMC Syst Biol 2: 18.
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