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Abstract

A recently published transcriptional oscillator associated with the yeast cell cycle provides clues and raises questions about
the mechanisms underlying autonomous cyclic processes in cells. Unlike other biological and synthetic oscillatory networks
in the literature, this one does not seem to rely on a constitutive signal or positive auto-regulation, but rather to operate
through stable transmission of a pulse on a slow positive feedback loop that determines its period. We construct a
continuous-time Boolean model of this network, which permits the modeling of noise through small fluctuations in the
timing of events, and show that it can sustain stable oscillations. Analysis of simpler network models shows how a few
building blocks can be arranged to provide stability against fluctuations. Our findings suggest that the transcriptional
oscillator in yeast belongs to a new class of biological oscillators.
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Introduction

Cells have to operate reliably under internal and external noise

in order to survive. Their robustness is partially a result of various

signal-processing sub-networks called ‘‘motifs,’’ embedded in the

transcriptional network of the cell that controls gene expression

[1–5]. Such motifs are employed by the cell to produce reliable

responses to internal and external signals: a negative auto-

regulation motif decreases response time and increases robustness

to noise [3,6,7]; a positive feedback generates bistability and thus

can act as a switch [8–10]; a coherent feed-forward loop with OR

logic acts like a capacitor, sustaining a high output when the input

signal is transiently lost [11]; and an incoherent feed-forward loop

allows adaptation to a sustained input signal [12].

It is known that combinations of some motifs such as positive and

negative feedback loops, can generate stable cyclic behavior

[1,10,13–19]. The exact mechanism underlying the oscillations

may vary [20–22]. Two examples have been particularly well studied.

In a negative feedback oscillator (X?R a X ), a sufficiently long time

delay in the negative feedback loop makes the system repeatedly

overshoot an unstable steady state [10,13]. In an activator-inhibitor

oscillator ( X?R a X ), a positive feedback loop creates bistability

and a negative feedback loop causes oscillations due to hysteresis

[10,13,15,16]. An important feature in these examples is the

spontaneous activation of X , which is required to avoid collapse to

a quiescent state. In a transcriptional oscillator, this corresponds to a

constant input signal (due, for example, to a constitutive promoter) or

positive auto-regulation sufficiently strong to cause levels of X to rise

to an active state as long as the inhibitor R is not present.

To our knowledge, all models of biological oscillatory networks

described in the literature, such as cyclin-cdc2 oscillations [23,24],

or circadian oscillations in Drosophila [25], require spontaneous

activation to sustain the oscillations [1,13,20,21]. This is also true

for synthetic examples such as the repressilator [26], (in which all

three genes have constitutive but repressible promoters), the E. coli

predator-prey system [27], and the synthetic gene-metabolic

oscillator [28]. The recently published transcriptional yeast

(Saccharomyces cerevisiae) cell-cycle oscillator [29], however, does

not seem to share this feature. The gene expression data suggest

that this oscillator relies mainly on a sequence of activations on a

long, slow positive feedback loop [29–31]. There does not appear

to be an element in this transcriptional network that is activated

spontaneously. Expression profiles also indicate that the period of

the oscillator is very close, if not identical, to the time it takes for

the wave of activations to cycle around the long positive feedback

loop. Here, we show how it is possible to maintain stable

oscillations within this architecture. We demonstrate that a slow

positive feedback loop coupled to certain stabilizing motifs can

sustain oscillations, and that a model of the transcriptional

oscillator associated with the yeast cell-cycle works in this fashion.

Oscillator stability is conventionally studied in the context of a

differential equation model [20,21]. On the other hand, the

essential organizing logic of regulatory networks can be studied

much more easily using Boolean models [29,32–40]. A drawback

of the standard synchronous Boolean approach is that it does not

permit the implementation of small perturbations, i.e., noise, of the

type that would result from stochastic fluctuations of the number

of molecules of a given species or the rates of production of the

various species involved. Indeed, synchronous Boolean models are

known to produce many cyclic attractors that represent only

marginally stable behavior, which disappear in the presence of

noise [41,42]. Here we take an intermediate approach that
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emphasizes the essential Boolean logic of the system within a

continuous-time updating scheme that allows the modeling of

small perturbations [41,43–46]. We associate a time delay with

each link in the network of regulatory interactions that determines

the timing of activation and deactivation events. The stochastic

fluctuations thus appear in our model as deviations of the delay

times from their nominal values. Such models have been termed

autonomous Boolean networks [47,48] to distinguish them both from

models based on synchronous or random asynchronous timing of

updates and from Boolean Delay Equations [49,50] that do not

account for finite response times. The results presented here apply

as well to appropriately constructed ordinary differential equation

(ODE) models [46].

Regulatory networks based on the cyclin/CDK-centered view

of the cell cycle [51] in S. cerevisiae [38] and Schizosaccharomyces pombe

[52] have been studied previously using a synchronous Boolean

framework. In those models, the intrinsic dynamics is not cyclic

and the transition sequence corresponding to the cell cycle must be

triggered by an external signal. We emphasize that the network we

study is based on the recent experiments [29,53] suggesting the

existence of a self-sustaining transcriptional oscillator in yeast.

The rest of the paper is organized as follows. We first define the

autonomous Boolean formalism and discuss the necessity for it.

We then demonstrate that it is possible to construct a stable

autonomous Boolean oscillator consisting of a long positive

feedback loop with two stabilizing motifs added. This toy oscillator

has topological features resembling the yeast cell-cycle oscillator.

We then describe numerical experiments demonstrating that these

features are the source of stability in the autonomous Boolean

version of the network of Orlando et al. [29]. We close with a

discussion of the implications of these findings. The details of the

computer simulations are provided in the Methods section.

Results

Model
In an autonomous Boolean network (ABN), each node takes one

of only two values at any given time: ON:1 or OFF:0. Updates

are executed in continuous time as follows. When a node, si,

changes its state, it signals all the downstream nodes directly

connected to its outputs. Each downstream node, sj , receives the

signal after a time delay, tij , which is a real (not necessarily integer)

value. When the signal is received, sj reevaluates its state according

to its assigned Boolean function and adopts the resulting value,

sj(t)~f ½si(t{tij),sk(t{tkj), . . .�. If the new value is different from

its present value, a new signal is sent to its own downstream

targets. Nodes do not update at externally dictated times, as in the

synchronous model or various asynchronous versions. The update

dynamics is determined by the timing of events, delays, and the

topology of the network.

In principle, delays associated with activation (switch-on events),

ton, can be different from the ones associated with deactivation

(switch-off events), toff , because of the different physical processes

involved. The former characterizes multiple processes, including

transcription, and translation, folding, post-translational modifica-

tion, and spatial transport, while the latter can be attributed to

degradation of mRNAs and transcription factors. The difference

between ton and toff can cause a change in the duration of a pulse

of transcriptional activity as it propagates down a chain of nodes

[46]. Consider, for example, a simple cascade with two nodes,

where output of s1 regulates s2. Suppose we turn s1 on manually at

t~t0 and turn it off at t~t1, forming a pulse of width t1{t0, as

shown in Figure 1. The rising edge of this pulse arrives at s2 at

t~t0zton and the falling edge arrives at t~t1ztoff . When

ton
vtoff , the initial pulse grows as it propagates (Figure 1) and if

ton
wtoff , it shrinks.

Small perturbations due to stochastic fluctuations, or noise, can

significantly alter the dynamics of a network and can be used as a

mathematical tool for analyzing the stability of cycles. Noise is

incorporated by taking the time delay associated with a switching

event to be tijze, where the noise term, e for each propagating

signal is drawn at random from a uniform distribution on

½{emax,emax� with 0vemax%tij .

For present purposes, we take the intrinsic delays ton and toff to

be equal, allowing the noise to play a dominant role in

determining which cycles are stable. The choice of ton~toff

corresponds to the regime in which the asymmetry in propagation

times is small compared to emax, so that pulses grow or shrink

according to the relative values of e chosen for the leading and

trailing edges.

In certain cases, the noisy dynamics can generate a pulse of

negligibly small width, which we call a spike [41,47,48]. In the

present context, a spike would correspond to arbitrarily fast build-

up and degradation of transcripts and therefore is not realistic. We

employ a short-pulse rejection mechanism in the simulations,

discarding both pulses and dips with widths less than ls~0:1 time

unit. The Methods section below provides details of our computer

simulation of ABNs.

Oscillations on a Long Positive Feedback Loop
As mentioned above, the backbone of the oscillator in the

network of interest is a positive feedback loop, also known as a loop

of copiers or a simple loop because each node simply assumes the

value of its input after some specified time delay. To demonstrate

the need for a stabilization mechanism, we consider first the simple

Figure 1. A pulse traveling on a cascade of two nodes, in which
s1 feeds s2. Both nodes are in OFF state at the beginning. s1 is turned
on at t0 and turned off at t1 . The pulse on s1 propagates to s2 after a
time delay. Asymmetric delays for the speeds of activation and
deactivation events, ton

vtoff , cause the pulse to grow as it propagates.
doi:10.1371/journal.pcbi.1000842.g001

Author Summary

Technologies such as gene arrays enable acquisition of
large amounts of data on gene expression variations,
which reveal the structures of gene regulatory networks
that govern the metabolic and developmental machinery
in the cell. We study a model of an oscillatory gene
regulatory network that has been recently suggested to
play an integral role in maintaining the cell cycle in yeast.
The oscillator differs from other known biological and
synthetic oscillatory networks in that it seems to rely on a
long positive feedback loop. We show that the presence of
certain stabilizing sub-networks can account for the
robustness and the unusual architecture of this oscillator.
Our modeling approach elucidates both the logical
structure of the system and the importance of the timing
of update events.

Reliability of Transcriptional Cycles
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case of a loop of two copiers. We can assume without loss of

generality that the two links have identical delays, t. The network

cycles between the 01 and 10 states when one node is initialized

with a pulse of sufficiently large width. Setting that width equal to

t and setting the noise level to zero reproduces the dynamics of the

synchronous Boolean case.

To test the stability of the 01,10f g cycle, we apply arbitrarily

small random perturbations: each time a signal propagates across

a link, the delay is taken to be tze, where e%t is a random

number drawn from a distribution that is symmetric around zero.

Each perturbation causes the pulse width to grow or shrink as

explained above, so that the oscillation eventually collapses to

either the 00 or 11 fixed point (stationary state). Thus the 01,10f g
cycle is only marginally stable in the autonomous model and its

apparent stability under synchronous updating is an artifact of that

scheme.

Stabilizing Motifs
We identify two classes of motifs, [1,2,4], which we call rectifiers

and growers, that can correct small perturbations to the timing of

the updates and stabilize cycles on an autonomous loop of copiers.

A rectifier imposes an upper limit on the width of the pulse

traveling on the positive feedback loop. The simplest example of a

rectifier is auto-repression (Figure 2A), which cuts long pulses

down to a width equal to the delay on the auto-repressive link, l0,

and lets short pulses pass through unaffected [46]. Small

perturbations that cause the pulse width to exceed l0 will be

filtered by this motif as seen in Figure 2C. An incoherent feed-

forward loop of type 1 (I1-FFL in the notation of [1]), and a

negative feedback containing more than one node can also

function as rectifiers.

Grower motifs increase the duration of a pulse by a constant

amount, but do not adjust them to a particular value. One example

is the coherent feed-forward loop with OR logic (C1-FFL-OR [1,2])

shown in Figure 2B. This motif grows pulses by transmitting the

input pulse of width lin from s3 to s4 through two paths with time

delays that differ by Dt. The slower path sustains the output,

producing a pulse of width linzDt, assuming linwDt{ls. (If the

condition is not met, two pulses will be generated.) A diamond motif

[1] with OR logic, in which both paths connecting the input to the

output contain an intermediate node, functions in the same manner.

We also note that both C1-FFL and the diamond motifs function as

shrinkers when their output is an AND gate, shrinking the input pulse

by Dt or destroying it completely.

Figure 2. Dynamics on simple loops with stabilizing motifs. (A) A loop of copiers (a positive feedback loop) with an auto-repressive rectifier.
(B) The same circuit as in (A) with an addition of a coherent feed-forward loop that can act as a grower with OR logic. (C,D) Dynamics on the circuits
(A) and (B), respectively. Both circuits were initialized by a pulse of unit width on s1 at t~0, and all nodes were assumed to be OFF for tv0. First
cycles in both graphs show the time series for the single-pulse attractor, to which this initial condition leads. Circuits were perturbed on the second
and the fourth cycles to demonstrate how stabilizing motifs operate. Arrows indicate unperturbed pulse widths. The pulse-growing perturbation in
(C) is filtered by the rectifier and the dynamics recovers as it returns to the original attractor in the third cycle. However, the pulse-shrinking
perturbation in this circuit pushes the dynamics to a marginally-stable cycle as it cannot be corrected only by a rectifier. A grower-rectifier
combination in (B) can filter both pulse-shrinking and -growing perturbations: dynamics recover in the third and fifth cycles in (D). Note that the pulse
on the output of the grower, s4, is wider than that on the input, s3 . All tij~1 except t35~t54~0:7 in (B).
doi:10.1371/journal.pcbi.1000842.g002

Reliability of Transcriptional Cycles
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Combining a Grower and a Rectifier to Sustain Stable
Oscillations

A rectifier cannot prevent the collapse to the all-OFF state and a

grower alone inserted in a loop will keep growing the pulse until

the all-ON attractor is reached. The two motifs working in tandem

(Figure 2B), however, can act as a stabilizing module for cyclic

attractors, as seen in Figure 2D: both pulse-growing and pulse-

shrinking perturbations are filtered because the grower-rectifier

combination resets the pulse width to l0 after each cycle. Such a

network can sustain stable oscillations that have been started with

an external signal. The two motifs will be incompatible if

Dtwl0zls because the grower will generate two pulses from

each rectified pulse.

We note that there is no simple motif that acts as a low-pass

rectifier, allowing long pulses to pass unaffected while boosting

short pulse widths up to a specified value. Thus the shrinker motif

is of limited use for stabilizing oscillations. Furthermore, a grower-

shrinker combination cannot be a stabilizer as it simply acts either

as an overall grower or an overall shrinker.

If one allows ton and toff to be different, a pulse may grow or

shrink as it travels around a simple loop. When
P

ton
v

P
toff for

the links in the loop, we have a source of ‘‘intrinsic growth’’ that

may render a grower motif unnecessary, or just assist the grower in

restoring pulse widths more rapidly. In fact, it has been shown

using an ODE model with time delays that when switch-on events

propagate faster than switch-off events, an auto-repressive link can

by itself create a stable cycle on a loop of copiers [46]. Similarly,

when
P

ton
w

P
toff along the loop, a pulse will shrink as it

propagates. Stabilization in the presence of intrinsic shrinkage

requires a grower regardless of the noise level. We do not consider

intrinsic growth or shrinkage here, focusing instead on cases where

stochastic effects (noise) dominate over the intrinsic effects. Also,

we consider only the stabilization of single-pulse cycles, in which each

node along the loop (s1 through s4) turns on and off exactly once

per cycle time, which we define as the time required for a single

signal to propagate around the loop once. For a simple loop, the

cycle time is equal to the sum of the delays, but for more complex

circuits, it can depend on the pulse width.

An Oscillator without Frustration
A crucial feature of the oscillator architecture under consider-

ation here (Figure 2B) is that it does not rely on any constitutive

input or positive auto-regulation. Consider, for example, the

model of circadian oscillations in Drosophila [13,21,25], which

contains one protein, PER, whose biphosphorylated form

represses its own transcription. It is assumed that Per mRNA is

transcribed at the maximum rate in the absence of bipho-

sphorylated nuclear PER, thereby building up spontaneously.

Such an oscillator can be represented as a simple negative

feedback loop, Per?PERa Per with a long time delay on the

repressive link. A Boolean model of the oscillator can be

constructed by assigning a NOT function to Per indicating that

it builds up spontaneously, but only in the absence of PER; and a

COPY function to PER as it is produced only in the presence of

Per. This model has a cycle containing all four states of the circuit,

00?10?11?01?00.

From the Boolean perspective, the underlying principle for these

oscillations is the impossibility of satisfying all the Boolean

functions simultaneously, as the combination of an inverter and

a copier creates frustration [42]. For this reason, we refer to the

Boolean versions of such oscillators, which have no fixed points, as

frustration oscillators. The oscillator we propose in Figure 2B,

however, has the all-OFF fixed point attractor; there is no

frustration in its logic. It therefore belongs to a different class that

involves a stable transmission of a pulse on a loop of copiers, i.e., a

positive feedback loop. We refer to these as transmission oscillators.

The Yeast Cell-Cycle Oscillator
The recently published cell-cycle oscillator network in yeast

consists of nineteen interactions between eight transcription factors

and one cyclin, CLN3, which was used as a proxy for currently

unidentified transcription factors that complete the circuit

(Figure 3A) [29,30,53]. The regulatory logic functions of the

multi-input nodes are not known. This oscillator was studied using

a synchronous Boolean model with eight different ‘‘biologically

interpretable’’ logic configurations for the network given in

Figure 3A and Table 1 [29]. Each logic configuration was found

to support at most two out of the three possible cycles in addition

to the all-OFF fixed point. All three cycles match the sequential

order of the expression of the transcription factors. We emphasize

here, however, that these features may only be artifacts of the

synchronous update scheme and their stability requires further

investigation.

This version of the yeast cell-cycle oscillator is a complex

network that does not seem to be a frustration oscillator.

Expression profiles of transcription factors suggest that sequential

activations are triggered by immediate upstream regulators in the

network [29]. Therefore, the oscillations are unlikely to be driven

by a frustration oscillator that is either a part of or coupled to the

circuit. Several intertwined feed-forward and negative feedback

motifs in the network suggest that a grower-rectifier combination

may be at play in stabilizing the oscillations. Specifically, we

hypothesize that this network is a simple loop consisting of CLN3,

SBF, SFF, and ACE2 or SWI5 (since this is the loop of copiers

with the least number of links), and all other nodes conspire to

provide stabilizing motifs. We use computer simulations to test this

hypothesis. Briefly, we assign random delays to each link and start

the network by manually turning CLN3 on then off. The

distribution we choose for the delays roughly captures the

variation in delays seen in the experiments [29]. A broader

distribution would not qualitatively change the results. The details

of the simulations are described in Methods.

Dynamics. For all logic configurations tested, the long-term

behavior we observe in the simulations can be classified in three

categories: a) Collapse: the network settles onto all-OFF fixed point.

There is no all-ON fixed point because all of the logic possibilities

for SBF in Table 1 require that SBF turn off if YOX1 and YHP1

are both on. b) Periodic single-pulse (PSP) oscillations: the network

maintains a stable single-pulse oscillation on all nodes (Figure 3B).

c) Multi-Pulse or Complex oscillations: oscillations are either periodic

multi-pulse, with some nodes pulsating more than once per cycle

time, or complex, with strong variations in pulse widths and no

identifiable underlying period (Figure 3C) [49,50]. Determining

the character of complex oscillations is outside of the scope of this

paper. We consider the regime of complex oscillations to be

biologically unrealistic and limit our attention from here on to the

periodic single-pulse oscillations. The fraction of realizations that

yield PSP and complex oscillations is given for each logic

configuration in Table 1.

Testing for presence of stabilizing motifs. We

hypothesize that the stability of the yeast cell-cycle must be due

to a grower-rectifier combination. The rectifier candidates in the

network are the motifs that contain repressors YOX1 and YHP1.

For the given logic configurations, YHP1 is the repressor in three

intertwined rectifiers. YOX1 may also contribute to rectification of

the pulse width, but the rectifying motif is complicated by the fact

that YOX1 is activated only when both MBF and SBF are ON.

Both YHP1 and YOX1 are required for repression for logic

Reliability of Transcriptional Cycles
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configurations 1–4. The particular motif or the motif combination

that limits the pulse width depends on the response delays.

Consequently, some rectifiers will be redundant in some

realizations of the model.

Identifying the specific locus of growth and rectification in a

typical network realization is very difficult. The grower and

rectifier motifs in the network can be intertwined, and any specific

motif can be functional or redundant in a given realization. We

test for the presence of growth and rectification functions without

identifying the actual grower and rectifier motifs, using the

following reasoning and numerical procedure.

Any functional rectifier in the yeast cell-cycle oscillator model

has to contain YOX1 and/or YHP1, as they are the only

repressors. Removal of YOX1 and YHP1 will disable all possible

rectifiers in the network. As mentioned above, a loop with a

grower but no rectifiers keeps growing pulses and eventually

reaches the all-ON attractor. If it is true that the stabilization of

oscillations is due to rectification and growth, then all stably

oscillating realizations of the model should collapse onto the all-

ON attractor when YOX1 and YHP1 are removed. In other

words, the net effect of all motifs decorating the long positive

feedback loop that do not contain repressors must be growth.

In order to see whether there are functional grower-rectifier

combinations in the yeast cell-cycle oscillator, we selected from an

ensemble of 10000 network realizations only those for which a

single-pulse oscillation endures indefinitely, and removed the

repressors after the network settled onto the attractor. Specifically,

we turned the noise off after 90000 updates, ran the network for

another 35000 updates without noise, and checked for periodicity. If

the oscillations showed a PSP character, we ‘‘knocked out’’ the

repressors while the oscillator was running and observed the

dynamics to see whether the pulse grows from one cycle to the next.

Figure 3. Yeast cell-cycle network and the autonomous Boolean dynamics on it. (A) The network diagram and the regulatory logic
template for the yeast cell-cycle oscillator. Single-input nodes are copiers; logic functions for multi-input nodes are indicated. f1 , f2 , and f3 , may each
be either AND or OR as listed in Table 1 (B) A typical realization of the autonomous Boolean model with random delays for the network that sustains a
stable single-pulse oscillation. (C) A realization in which the network generates complex oscillations.
doi:10.1371/journal.pcbi.1000842.g003

Reliability of Transcriptional Cycles

PLoS Computational Biology | www.ploscompbiol.org 5 July 2010 | Volume 6 | Issue 7 | e1000842



The simulations show that for all eight logic configurations,

every realization that produces stable periodic single-pulse

oscillations does indeed go to the all-ON attractor when YOX1

and YHP1 are knocked out. The pulse width increases on each

cycle after repressors are disabled.

The pulse growth observed in the runs with disabled repressors

is not due to noise. First, convergence onto the all-ON attractor is

more rapid than the amplitude of the noise would permit. Second,

the noise can both grow and shrink the pulse, leading to a one-

dimensional random walk of the pulse width. For the considered

initial pulse width, the network would be much more likely to

reach the all-OFF attractor than the all-ON state if the dynamics

did not provide for pulse growth. We find that none of the selected

realizations of the yeast cell-cycle model collapses to the all-OFF

attractor when YOX1 and YHP1 are removed, showing that noise

is not the source of pulse growth in these models.

The results indicate that all realizations of the autonomous

model of the yeast cell-cycle oscillator that generate stable periodic

single-pulse oscillations contain functional growers and rectifiers.

Discussion

We have shown using an autonomous Boolean model, that a

long positive feedback loop can be turned into a stable oscillator

with the addition of two stabilizing motifs that can correct

fluctuations in the pulse width (the duration of activity of each

node in the network): a rectifier involving a repressor that limits

the width of the traveling pulse, and a grower that lengthens the

duration of a pulse so that it cannot shrink and disappear. In

combination, a grower and a rectifier ensure that the pulse width

returns to the same value after each cycle. The recently published

yeast cell-cycle oscillator [29] has a structure built around a long

positive feedback loop, on which waves of activation events

propagate. Numerical simulations of eight different logic config-

urations and multiple realizations of randomly assigned time

delays revealed the presence of grower and rectifier functions in

this network. To our knowledge, there is no other biological

oscillator model described in the literature that relies on a long,

slow positive feedback loop. We note that a proposed cell cycle

network for Caulobacter crescentus [54] has a structure reminiscent of

that of yeast, but no dynamical model of it has yet been reported.

Previous synchronous Boolean models of Drosophila segmenta-

tion network [39], or cyclin/CDK-based cell-cycle networks of S.

pombe [52] and S. cerevisiae [38] predicted essential features of the

robust dynamics of these networks [55]. We have demonstrated

that the autonomous Boolean framework can be used to further

study such problems, since it addresses important elements of the

regulatory dynamics associated with the timing of updates and the

effects of stochastic fluctuations. We note that ABNs have also

been used recently for analyzing chaos and the stability of periodic

orbits in digital electronic oscillators [47,48].

Our results also point to a drawback of fully asynchronous

Boolean models: a stable cycle in a continuous-time system such as

that of Figure 2D would not be observed in an asynchronous

model. In asynchronous models, cycles generated by loops

containing an even number of inverters cannot be sustained [42]

because there always exists a sequence of updates that leads to the

fixed point state. We have shown, however, that when appropriate

motifs are present, the autonomous rules for determining the order

in which nodes are updated never permit evolution to the fixed

point even in the presence of a substantial level of noise. In

analyzing the dynamics of gene networks containing feedback

loops, it is therefore important to take into account timing

information associated with signal propagation. For gene networks

containing feedback loops, results from discrete-time Boolean

models (both synchronous and asynchronous) should be interpret-

ed with care.

The stability of the oscillations we have observed is not an

artifact of the autonomous Boolean model. The presented results

are qualitatively compatible with ODE analogs involving explicit

time delays [56]. An ODE model of a similar system with explicit

time delays has already been shown to exhibit stable oscillations

very similar to our Boolean idealization when synthesis rates, Hill

coefficients, and time delays are large enough [46]. Our own

preliminary studies indicate that it is also possible to construct an

ODE model of a transmission oscillator without explicit time

delays by selecting appropriate parameters for the stabilizing

motifs.

Methods

To simulate the dynamics of an autonomous Boolean network,

we use an event-driven code. A time-ordered event queue is

established, in which each event represents the switching of an

input at a specified node. Each time an event is processed that

results in the switching of a node, events are added to the queue

according to the time delay associated with each output link from

that node. After each update of a node, we check to see whether it

creates a short pulse that should be rejected. If so, the queue is

purged of all events derived from the leading and trailing edges of

the pulse. To avoid causality problems coming from propagation

of a switching event that is later rejected, we choose the maximum

noise amplitude, emax, to be less than half of the short-pulse

rejection time (0:1 time unit).

To reveal the structure of the yeast cell-cycle oscillator, we study

numerical simulations of autonomous Boolean versions of the

network with the logic choices in Reference [29] and different

randomly selected sets of time delays. For each logic configuration,

we generate an ensemble of 10000 networks with quenched

random delays on each link. Delays were chosen from a uniform

distribution between 0:5 and 2 time units. The system was

initialized by turning CLN3 on at t~0 and turning it off at t~1:5,

while other nodes were OFF. All nodes were assumed to be OFF

for tv0. To simulate noise, a random value selected from a

uniform distribution on the interval ½{0:05,0:05�, was added to

Table 1. Regulatory logic selections and the simulation
results for the yeast cell-cycle oscillator.

Cfg. f1 f2 f3 Complex PSP

1 ^ ^ ^ 0 0

2 ^ ^ _ 0.05 0.13

3 ^ _ ^ 0.22 0.3

4 ^ _ _ 0.65 0.35

5 _ ^ ^ 0 0

6 _ ^ _ 0.01 0.04

7 _ _ ^ 0.05 0.14

8 _ _ _ 0.58 0.3

All logic configurations tested, which employ different Boolean function
combinations for repression, SFF and CLN3. Last two columns show the fraction
of realizations that exhibit complex (includes multi-pulse) and periodic single-
pulse oscillations in an ensemble of 10000 realizations of the network with
quenched random delays. The simulations employ noise and short-pulse
rejection. Standard errors in the fractions quoted are of O(10{2), which were
estimated by pooling the results into bins of 500 realizations each.
doi:10.1371/journal.pcbi.1000842.t001
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the delay associated with each update. We are interested in the

stability of a particular cycle, so we have chosen an initial

condition that is very likely to lie in the basin of attraction of that

cycle (if the cycle exists). A different initial condition, turning

CLN3 on at t~0 and letting a repressor turn it off, yields roughly

the same statistics reported in Table 1. We do not test the

network’s robustness to general changes in the initial condition

[38,39,57,58].

We run simulations up to 125000 updates with noise turned on

between the 800th and 90000th updates in order to eliminate

marginally stable oscillations. For single-pulse oscillations, this

typically translates into a runtime of O(104) time units under

noise. Periodic single-pulse oscillations that survive this long with

noise present are highly likely to be stable attractors. An oscillation

is considered to be PSP if pulse widths on two consecutive cycles

differ by less than 10{3 time unit on each node. We do not check

whether all nodes turn on and off once per cycle time, i.e., whether

the cycle is a single-pulse or a dual-pulse with identical pulse

widths. However, we never observed the latter in the inspected

realizations and believe that it is very unlikely to occur in this

circuit.

The numbers of oscillating realizations differ in the different

logic configurations for two reasons. First, an FFL or diamond

motif operates as a grower with OR logic and as a shrinker with

AND logic. When two logic configurations differ only by the

selection of f2 or f3, the one with OR logic always has a larger

number of oscillating networks. In configurations 1 and 5, both

SFF and CLN3 are AND gates, so the motifs they belong to will

act as shrinkers. The existence of two shrinkers in the network

should make oscillations very unlikely, and indeed we find that all

realizations in both configurations collapse on the all-OFF

attractor. On the other hand, configurations that contain a larger

number of AND logic for f2 and f3 generate mostly periodic single-

pulse oscillations and fewer complex ones. The second reason for

the difference in the number of oscillating networks is the logic, f1,

of the repressors. The f1~OR case gives a smaller total number of

oscillating realizations than f1~AND.
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