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Abstract

Most pairwise and multiple sequence alignment programs seek alignments with optimal scores. Central to defining such
scores is selecting a set of substitution scores for aligned amino acids or nucleotides. For local pairwise alignment,
substitution scores are implicitly of log-odds form. We now extend the log-odds formalism to multiple alignments, using
Bayesian methods to construct ‘‘BILD’’ (‘‘Bayesian Integral Log-odds’’) substitution scores from prior distributions describing
columns of related letters. This approach has been used previously only to define scores for aligning individual sequences to
sequence profiles, but it has much broader applicability. We describe how to calculate BILD scores efficiently, and illustrate
their uses in Gibbs sampling optimization procedures, gapped alignment, and the construction of hidden Markov model
profiles. BILD scores enable automated selection of optimal motif and domain model widths, and can inform the decision of
whether to include a sequence in a multiple alignment, and the selection of insertion and deletion locations. Other
applications include the classification of related sequences into subfamilies, and the definition of profile-profile alignment
scores. Although a fully realized multiple alignment program must rely upon more than substitution scores, many existing
multiple alignment programs can be modified to employ BILD scores. We illustrate how simple BILD score based strategies
can enhance the recognition of DNA binding domains, including the Api-AP2 domain in Toxoplasma gondii and Plasmodium
falciparum.
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Introduction

Protein and DNA sequence alignment is a fundamental tool of

computational molecular biology. It is used for functional

prediction, genome annotation, the discovery of functional

elements and motifs, homology-based structure prediction and

modeling, phylogenetic reconstruction, and in numerous other

applications. The effectiveness of alignment programs depends

crucially upon the scoring systems they employ to evaluate possible

alignments. For pairwise alignments, scores typically are defined as

the sum of ‘‘substitution scores’’ for aligning pairs of letters (amino

acids or nucleotides), and ‘‘gap scores’’ for aligning letters in one

sequence with null characters between letters in the other.

Substitution and gap scores may be generalized to multiple

alignments, i.e. those involving three or more sequences.

Most useful local pairwise alignment algorithms allow gaps and

explicitly assign them scores [1–4]. However, many local multiple

alignment algorithms do not allow gaps, or allow them only implicitly

as spacers between distinct ungapped alignment blocks. Indeed the

alignments recorded in some protein family databases are explicitly

constructed with ungapped alignment blocks separated by variable

length spacers [5], and it has been argued that this formalism

corresponds well to the observed relationships imposed by protein

structure [6]. Short ungapped blocks are also used in the DNA

context, to represent, for example, transcription factor binding sites.

Many pairwise substitution scores have been developed for

protein [7–20] and DNA [21,22] sequence comparison, and a

statistical theory for substitution scores has been developed for

local alignments without gaps [23,24]. It is not trivial to generalize

pairwise scoring systems to multiple alignments, and the following

four principal approaches have been proposed to this long-

standing problem: A) Tree scores. An evolutionary tree can be

defined relating the sequences in question, with each sequence

residing at one leaf of the tree. By reconstructing letters at the

internal nodes of the tree, the score for an aligned column of letters

is defined as the sum of pairwise substitution scores for all edges of

the tree [25,26]. B) Star scores. As a special case of tree-scores, a

single ‘‘consensus’’ letter can be defined for an alignment column.

The column score is defined as the sum of pairwise scores for the

consensus letter to each letter in the column. The tree in question

reduces to a star, with the consensus at the central node. C) Sum-of-

the-Pairs or SP scores. A column score can be constructed as the sum

of substitution scores for all pairs of letters in the column [27,28].

D) Entropy scores. Scores can be based on the entropy of the letter

frequencies observed in a column [29]; these scores have become

particularly popular for DNA alignments. All these approaches are

open to refinement, for example by weighting the pairwise scores

of the sequences involved.

All reasonable substitution scores for pairwise local alignment

are implicitly log-odds scores [23,30], which compare the
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probabilities of aligning two letters under models of relatedness

and non-relatedness, and the most popular are explicitly so

constructed [7,8,14]. We argue that multiple alignment column

scores should be similarly constructed, based upon explicit target

frequency predictions for columns from accurate alignments of

related sequences. For this purpose, we propose, the method with

the strongest theoretical foundation relies upon the specification

of a Bayesian prior, over the space of multinomial distributions

for describing alignment columns representing true biological

relationships [31,32]. We call column scores based on such a

formalism ‘‘Bayesian Integral Log-odds’’ or BILD scores.

Although these scores are implicit in earlier work, their full

generality and utility has not been recognized. They may be

calculated efficiently, and may be generalized to allow for the

differential weighting of sequences in a multiple alignment. We

also consider an alternative approach that allows log-odds

column scores to be derived from any pairwise substitution

matrix.

Given their form, multiple alignment log-odds scores can be

used directly to define the proper extent of multiple alignment

blocks, and to derive natural scores for profile-profile comparison.

We show that they also arise from the perspective of the Minimum

Description Length Principle [33], which allows them to be

combined naturally with other information theoretic measures.

Other direct applications are specifying when a sequence should

be included in a multiple alignment at all, and when an alignment

of many related sequences is better split into several alignments

each involving fewer sequences.

Efficient methods for calculating BILD scores allow them to be

incorporated into Gibbs sampling algorithms for ungapped local

multiple alignment. Most practical protein applications, however,

require provisions for gaps. We describe two methods for

extending an ungapped local multiple alignment produced by

the Gibbs sampling strategy to a gapped alignment, the first using

asymmetric affine gap costs, and the second hidden Markov

models. In the latter, column BILD scores inform the construction

of position-specific gap costs, and yield gapped alignments in

greater conformity with considerations of protein structure. We

illustrate the applications of the programs by using them to

uncover previously undescribed Api-AP2 domains of Toxoplasma

gondii and Plasmodium falciparum.

Multiple sequence alignment comprises a diverse set of

problems and approaches. Many sophisticated statistical inference

techniques have been applied to the multiple alignment problem

and to the related problem of phylogenetic reconstruction, e.g.

[34–37]. It is not our purpose here to develop a new multiple

alignment program. Rather, we seek only to argue that the

‘‘substitution scores’’ for multiple alignment columns which lie at

the core of most multiple alignment methods can in many cases be

improved. Although many statistical alignment methods are

Bayesian-based, the BILD scores directly implied by Bayesian

reasoning have been heretofore unrecognized.

Methods

Multiple Alignment Log-Odd Scores
Log-odds pairwise substitution scores can be written

si,j~log qi,j

�
pipj

� �
. Here, qi,j is the frequency with which residues

i and j correspond in accurate alignments of related sequences,

and pi is the background probability with which residue i occurs.

The base of the logarithm is arbitrary, and merely defines a scale

for the scoring system. We henceforth assume that unless the

natural logarithm is specified, all logarithms are base 2, and the

resulting scores are therefore in the units of bits [30]. Note that no

target frequencies qi,j are uniquely optimal for pairwise sequence

alignment, because different qi,j are appropriate for comparing

sequences diverged by different amounts of evolution [7,8,13,30].

This perception gives rise to families of substitution matrices, such

as the PAM [7,8] and BLOSUM [14] series for protein

comparison.

To generalize log-odds scores to multiple alignments, we first

develop some notation. We consider the alphabet A from which

the letters in our sequences are drawn to consist of L elements,

which for convenience we represent by the numbers 1 through L.

An ungapped column from a multiple alignment of M sequences

is a vector~xx, each of whose components x1 through xM takes on a

value in A. In essence, the log-odds approach compares two

theories, one in which all the letters aligned are related or

homologous, and the other in which none are. Each theory implies

a probability for observing any given set of data. For the alignment

column~xx, we define Q ~xxð Þ as the probability of observing the data

under the assumption of relatedness, and P ~xxð Þ under the

assumption of non-relatedness. Then the log-odds score for this

column is defined as

S ~xxð Þ~log
Q ~xxð Þ
P ~xxð Þ : ð1Þ

Assuming background probabilities p1 through pL for the various

letters, P ~xxð Þ is given simply by

P ~xxð Þ~P
M

k~1
pxk

: ð2Þ

We will consider one primary strategy for deriving Q ~xxð Þ. As with

pairwise scores, all sets of multiple alignment column scores with

negative expected value are implicitly log-odds scores [23,30].

However, unless their values for Q ~xxð Þ are explicitly constructed in

a sensible way, log-odds scores are unlikely to perform well in the

applications suggested below.

For alignments of more than two sequences, there are of course

other possibilities than for all or none of the sequences to be

related. However, as we will describe below, scores of the form of

equation (1) can be applied to the comparison of sequences where

Author Summary

Multiple sequence alignment is a fundamental tool of
biological research, widely used to identify important
regions of DNA or protein molecules, to infer their
biological functions, to reconstruct ancestries, and in
numerous other applications. The effectiveness and
accuracy of sequence comparison programs depends
crucially upon the quality of the scoring systems they
use to measure sequence similarity. To compare pairs of
DNA or protein sequences, the best strategy for construct-
ing similarity measures has long been understood, but
there has been a lack of consensus about how to measure
similarity among multiple (i.e. more than two) sequences.
In this paper, we describe a natural generalization to
multiple alignment of the accepted measure of pairwise
similarity. A large variety of methods that are used to
compare and analyze DNA or protein molecules, or to
model protein domain families, could be rendered more
sensitive and precise by adopting this similarity measure.
We illustrate how our measure can enhance the recogni-
tion of important DNA binding domains.

Log-Odds Scores for Multiple Alignment
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only a subset are related, by adding indicator variables to include

or exclude sequences.

Log-odds scores S for alignment columns immediately suggest

substitution scores R for aligning two different columns of letters.

Specifically, letting xy�! be the concatenation of the vectors ~xx and

~yy, define

R ~xx,~yyð Þ~S xy�!� �
{S ~xxð Þ{S ~yyð Þ~log

Q xy�!� �
Q ~xxð ÞQ ~yyð Þ : ð3Þ

These column-column alignment scores may be used consistently

in progressive alignment algorithms, which proceed by aligning

the most closely related sequences first [38,39], although as will be

discussed below problems may arise in the definition of gap scores.

They may also be used for profile-profile alignment, a topic of

considerable recent interest [40–48].

BILD Scores
For multiple alignments, perhaps the best approach to defining

and calculating Q ~xxð Þ is a Bayesian one [31,32]. (An alternative

approach, based on pairwise scoring matrices, is described in Text

S1.) Assume that the letters in a specific column from an accurate

alignment of related sequences are generated independently, but

with probabilities q1 through qL that in general differ from the

background probabilities. Assume further that it is possible to

assign a prior probability distribution H0 to the multinomial

distributions ~qq associated with columns of related letters. This

prior H0 can be derived from a detailed study of related protein or

DNA sequences.

Although the data~xx associated with a specific column generally

have no temporal or other privileged order, assume for

convenience that they are observed sequentially, in the order x1

to xM . Then we may apply Bayes’ theorem to transform the prior

distribution H0 to a posterior H1, after the observation of x1.

More generally, each subsequent observation xk can be seen to

transform the prior Hk{1 into a posterior distribution Hk. We

may then use the chain rule to write

Q ~xxð Þ~Prob ~xxDH0ð Þ~P
M

k~1
Prob xk DHk{1ð Þ: ð4Þ

The individual terms in this product may be calculated by

integrating over all possible multinomial distributions~qq:

Prob xk DHk{1ð Þ~
ð

qxk
Hk{1 ~qqð Þ d~qq: ð5Þ

Finally, combining equations (1), (2) and (4) yields

S ~xxð Þ~
XM
k~1

log
Prob xk DHk{1ð Þ

pxk

: ð6Þ

We call scores defined in this way Bayesian Integral Log-odds or

BILD scores. They can be understood simply as the sum of log-

odds scores for the individual letters observed in a column, with

the ‘‘target frequency’’ for each letter xk calculated based upon the

prior distribution H0, and the ‘‘previously observed’’ letters x1

through xk{1. Even though, by this formula, the log-odds score for

a letter varies with its position in the column, the total column

score is nevertheless invariant under permutation of the column’s

letters.

BILD scores have some conceptual connections to star- and

entropy-based multiple alignment scoring systems. The simplest

generalization of star scores imposes a prior probability distribu-

tion on the consensus letter, but still assumes a probabilistic

pairwise substitution model. As we describe in Text S1, this yields

a class of log-odds scores we call MELD scores. BILD scores arise,

in contrast, by thinking of the ‘‘consensus’’ not as an ancestral

letter, but rather as a generative probabilistic model, and by

integrating over a prior distribution placed on this model.

Given observed and background letter distributions ~qq and ~pp,

entropy scores have been defined variously, and conceptually

distinctly, as: i)
P

pj log 1
�

pj{
P

qj log 1
�

qj , the entropy differ-

ence between ~pp and ~qq; ii) log L{
P

qj log 1
�

qj , the entropy

difference between a uniform distribution on L letters and~qq; and iii)P
qj log qj

�
pj , the relative entropy of~qq and~pp. Definitions i) and ii)

differ only by a constant. One may refine any of these definitions by

taking~qq to be a posterior letter distribution, derived from a prior and

a set of observations. Both BILD and entropy-based scores can be

viewed as the sum of scores derived from the probabilities for

individual observations. The central distinction is that BILD scores

estimate the probability for a given such observation using only

‘‘earlier’’ ones, whereas entropy scores estimate this probability

using the complete collection of observations.

Dirichlet Distributions
Although the definition of BILD scores is valid for any prior

distribution H0 one wishes to specify, it is in general impractical to

calculate the Hk, or the integral in equation (5), except when H0

takes the form of a Dirichlet distribution [49], or a mixture of a

finite number of Dirichlet distributions [31,32]. In this case, as

described below, all the Hk are also Dirichlet distributions, or

Dirichlet mixtures, and Prob xk DHk{1ð Þ is easily calculated.

Therefore, for mathematical as opposed to biological reasons,

we always assume that BILD scores are defined using a Dirichlet

or Dirichlet mixture prior. The family of Dirichlet mixtures,

however, is rich enough that it can capture well much relevant

prior knowledge concerning relationships among the various

amino acids or nucleotides.

We review here the essentials of Dirichlet distributions. A

multinomial distribution on L letters is specified by an L-

dimensional vector ~qq, within the simplex defined by 0ƒqjƒ1,

and
PL

j~1 qj~1. The requirement that the qj sum to 1 renders the

space of multinomials L{1 dimensional. A Dirichlet distribution,

defined over this space, is parametrized by an L-dimensional

vector ~aa with all aj positive. We shall sometimes refer to such a

distribution by its parameters~aa, and we define a� as the sum of the

aj . The Dirichlet distribution~aa is given by the probability density

function

r ~qqð Þ~ZP
L

j~1
q

aj{1

j , ð7Þ

where the normalizing scalar Z~C a�ð Þ
.
PL

j~1 C aj

� �
ensures that

integrating r over its domain yields 1. Here C xð Þ:
Ð?

0
tx{1e{tdt,

is the Gamma function, and C nð Þ~ n{1ð Þ! for positive integral n.

The uniform density is a special case that arises when all the aj

are 1.

Dirichlet distributions have two convenient properties. First, the

expected frequency of letter a implied by ~aa is aa=a�. Second, the

posterior distribution yielded by Bayes’ theorem, after the

observation of the letter a, is a Dirichlet distribution
!
a0 with

a’a~aaz1, but with all other parameters equal to those of ~aa.

Log-Odds Scores for Multiple Alignment

PLoS Computational Biology | www.ploscompbiol.org 3 July 2010 | Volume 6 | Issue 7 | e1000852



To illustrate how to calculate BILD scores using these properties,

consider the case of DNA comparison (with the numbers 1 through

4 identified respectively with the nucleotides A, C, G and T), with

uniform background probabilities pj~0:25, and a Dirichlet prior

H0 given by the parameter vector (1,1,1,1). By equation (4), the

target frequency Q associated with the alignment column ‘‘AATC’’

is given by Prob ADH0½ �:Prob ADH1½ �:Prob TDH2½ �:Prob CDH3½ �
~ Prob Aj 1,1,1,1ð Þ½ � : Prob Aj 2,1,1,1ð Þ½ � : Prob Tj 3,1,1,1ð Þ½ � : Prob-

Cj 3,1,1,2ð Þ½ �~ 1

4
: 2

5
: 1

6
: 1

7
~

1

420
. Thus the score for the column is

{ log 420 z log 256 ~{0:714 bits. In contrast, for the column

‘‘AAAC’’, Q~
1

4
: 2

5
: 3

6
: 1

7
, and the score for this column is

{ log 140zlog 256~0:871 bits.

The essence of a Dirichlet distribution is perhaps best

understood through the alternative parametrization (~bb; b�), where

bj~aj

�
a�, and b�~a�. Because the bj must sum to 1, there are

still only L independent parameters. The vector ~bb describes the

center of mass of the distribution, while b� indicates how

concentrated the distribution is about this point. Large values of

b� correspond to distributions with most of their mass near ~bb,

whereas values of b� near 0 correspond to distributions with most

of their mass near the boundaries of the simplex. It is frequently

sensible, although not necessary, to choose a prior H0 whose ~bb is

identical to the background frequencies ~pp. In this case,

Prob x1DH0ð Þ~px1
, and the first summand in equation (6) is always

0. In other words, no letter in a column, considered in isolation,

carries any information as to whether the column represents a true

biological relationship.

Dirichlet Mixtures
Single Dirichlet distributions frequently are adequate for

capturing prior knowledge concerning ‘‘true’’ alignment columns

of related DNA sequences, but this is not the case for proteins.

Most simply, distinct regions of multinomial space, representing

different collections of amino acids, should have high prior

probabilities. In order to address the deficiency of single

Dirichlet distributions, Brown et al: [31] proposed the use of

Dirichlet mixture priors. A Dirichlet mixture is simply the

weighted sum of C distinct Dirichlet distributions. It is specified

by C positive ‘‘mixture parameters’’ m1 through mC that sum to

1, and a set of L standard Dirichlet parameters, ai,1 through ai,L,

for each of the C component Dirichlet distributions. (It will be

useful later to define a�i as
PL

j~1 ai,j .) In all, because of the

restriction on the sum of the mi, a Dirichlet mixture has

C Lz1ð Þ{1 independent parameters. The Dirichlet compo-

nents of a mixture generally are thought of as describing various

types of positions (e.g. hydrophobic, charged, aromatic) typically

found in proteins.

Bayes’ theorem implies that, given a C-component Dirichlet

mixture as a prior, the posterior distribution after the observation

of a single letter is also a C-component Dirichlet mixture [31,32].

Brown et al: [31] proposed Dirichlet mixture priors in the context

of deriving ‘‘substitution’’ scores for aligning amino acids to

columns from a multiple protein sequence alignment. This

restricted context can be understood as comprehending a single

summand from equation (6). BILD scores extend Brown et al:’s
sequence-profile alignment scores to comprehensive scores for

multiple alignment columns.

Generalizing the development above, we describe here how to

calculate the probability of a particular observation a given a

Dirichlet mixture prior Hk{1, and how to calculate the posterior

Hk resulting from this observation. First, given a Dirichlet mixture,

with parameters mi and ai,j , the probability of observing letter a is

given simply by

Prob að Þ~
XC

i~1

mi
ai,a

a�i
, ð8Þ

which follows directly from the definition of Dirichlet mixtures,

and the result for single Dirichlet distributions. Second, given the

observation of letter a, and a Dirichlet mixture prior parametrized

as above, the parameters m0i and a0i,j of the posterior distribution

may be calculated as follows:

ið Þ For i from 1 to C, define ~mmi : ~mi
ai,a

a�i
;

iið Þ For i from 1 to C, define m’i : ~
~mmiPC

i~1 ~mmi

;

iiið Þ For i from 1 to C and j from 1 to L, define

a’i,j : ~ai,jz1 if j~a,

and a’i,j : ~ai,j otherwise:

ð9Þ

In short, first multiply the mixture parameters mi by the Bayesian

factors ai,a

�
a�i and normalize, and then add 1 to each ai,a.

Mathematics establishing the validity of this procedure appears in

[32]. Their development is more complex than we require here,

because we modify the Dirichlet mixture parameters only one

observation at a time. We note that given the m0i and a0i,j , it is

simple to invert procedure (9) to determine the mi and ai,j . This is

useful for applications such as the Gibbs sampling algorithm

discussed below.

Many multiple alignment problems involve subsets of sequences

that are much more closely related to one another than to the

other sequences being considered, and this may yield suboptimal

results, because a large number of closely related sequences can

‘‘outvote’’ a few more divergent sequences. One remedy has been

to assign each sequence a numerical weight, with closely related

sequences down-weighted [50–61]. Also, subsumed in such

weights may be the recognition that the total number of effective

observations represented by an alignment column may be smaller

than the number of sequences it comprehends [4,62,63]. Thus, for

certain applications it may be desirable to generalize BILD scores

to weighted sequences. To do so, we need to define the concept of

the probability of a ‘‘fractional observation’’ of a letter, and

describe as well how a posterior distribution is calculated after such

a fractional observation. Arguments supporting how this may be

done can be extracted from the mathematical development in

[32]. Both equation (8) and the first step of procedure (9) involve

multiplication by the factors ai,a

�
a�i . For the fraction D of an

observation of letter a, these factors must be replaced by the

alternative factors

fi Dð Þ~
C ai,azDð Þ
C ai,að Þ

C a�i
� �

C a�i zD
� � : ð10Þ

Also, in the last step of procedure (9), the quantity D rather than 1

must be added to each ai,a. The factors fi Dð Þ are identical to the

original factors when D~1, and all fi Dð Þ approach 1 as D
approaches 0, as some reflection shows they must.

Finally, note that equation (10) may be applied to Dw1 as well

as Dƒ1, and may be useful even when all observations are

unitary. Thus, by aggregating observations, the BILD score for a

Log-Odds Scores for Multiple Alignment
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column containing L’ unique letters may be calculated with L’
summands, rather than the M summands of equation (6). For a

single Dirichlet prior, Q ~xxð Þ reduces to the simple formula

Q ~xxð Þ~ C a�ð Þ
C a�zc�ð ÞP

L

j~1

C ajzcj

� �
C aj

� � , ð11Þ

where cj is the count of letter j, and c� is the total count of all

residues. Only the numerator inside the product varies from

column to column within an alignment, yielding further efficiency

for calculation.

The Choice of Priors
Only the research team that first proposed Dirichlet mixtures

for protein sequence comparison has derived, from analyses of

large protein alignment collections, sets of Dirichlet mixture prior

parameters [31,32]. Twelve such sets, involving various numbers

of Dirichlet components, can currently be found at http://

compbio.soe.ucsc.edu/dirichlets/index.html. We list five of these

in Table 1, which we refer to as HA
0 through HE

0 .

Proteins diverged by different degrees of evolutionary change

are best studied using pairwise substitution matrices with different

relative entropies [30], and the analogous claim should hold for

Dirichlet mixture priors. A Dirichlet mixture prior implies a

background amino acid frequency distribution ~pp, as well as a

symmetric pairwise substitution matrix, by means of the formula

si,j~log Q i,jð Þ
�

pipj

� �
. The relative entropies D2 of the substitu-

tion matrices implicit in the priors HA
0 through HE

0 range from

1.44 bits, roughly equivalent to that of the PAM-80 matrix [7,8],

which is appropriate for fairly close evolutionary relationships, to

0.18 bits, roughly equivalent to that of the PAM-360 matrix,

which is appropriate only for extremely distant relationships

(Table 1).

As well as D2, one may calculate the mean relative entropy D̂D of

the multinomial distributions ~qq described by a Dirichlet mixture

prior to the background frequencies ~pp (see Text S2). For HA
0 to

HE
0 , D̂D ranges from 2:85 to 0:92 bits (Table 1). That D̂D has a much

greater value than D2 indicates that on average much more

information is available per position from an accurate multiple

alignment of many related sequences than from a single sequence.

We note that, in lieu of using different priors, the effective relative

entropy of a particular Dirichlet mixture may be tuned by scaling

the weights of the sequences to which it is applied [43].

Standard pairwise substitution matrices are constructed from

sets of proteins with certain background amino acid frequencies~pp,

and are non-optimal for the comparison of proteins with

compositions that differ greatly from~pp [64]. Similarly, a Dirichlet

mixture prior has an implicit background amino acid composition
~pp, and should not be optimal when applied to proteins with

compositions that differ greatly from ~pp. It is possible to adjust

standard matrices for use with non-standard compositions [64,65],

and we will discuss elsewhere an analogous strategy that can be

applied to adjust Dirichlet mixture priors.

Single Dirichlet priors may be appropriate for DNA sequence

comparison. The uniform density, arising when all aj~1 (a�~4),

has frequently been advocated in the absence of prior knowledge,

and ‘‘Jeffreys’ prior’’ [66], which is uninformative in a deeper

sense, corresponds to all aj~0:5 (a�~2) [33]. When specific prior

knowledge concerning an application domain is available,

however, there is generally not a strong argument for using

uninformative priors. For related DNA sequences, the columns of

accurate alignments are sometimes dominated by one or two

nucleotides, suggesting that all aj should be smaller than 1.

Furthermore, it usually makes sense for the aj to be proportional to

the background frequencies pj . If this is stipulated, the specification

of a Dirichlet prior reduces to the specification of a�. Assuming a

uniform nucleotide composition, the values of D2 and D̂D implied

by a� from 0:5 to 4:0 are given in Table 2. An empirical study of

transcription factor binding sites [67] concludes that, at least for

the analysis of such sites, a� should be 1 or lower.

Local Alignment Width and Local Multiple Alignment
A direct application of multiple alignment log-odds scores is to

determining local alignment width. As formulated by Smith and

Waterman [1], an optimal local alignment is one that maximizes

an alignment score but is of arbitrary width. Such scores should

fall on the log side of the ‘‘log-linear phase transition’’ [68], which

Table 2. Relative entropies for DNA sequence comparison.

a� D2 (bits) D̂D (bits)

0.5 0.792 1.387

1.0 0.451 1.062

1.5 0.294 0.860

2.0 0.208 0.721

2.5 0.155 0.621

3.0 0.120 0.545

3.5 0.096 0.485

4.0 0.078 0.437

See footnote to Table 1.
doi:10.1371/journal.pcbi.1000852.t002

Table 1. Dirichlet mixture priors for protein sequence comparison.

Name of prior
Name on
UCSC website

Number of
components D2 (bits)

Equivalent PAM
matrix D̂D (bits) Equivalent PAM matrix

HA
0

uprior 9 1.44 80 2.85 20

HB
0

byst 9 0.91 130 2.34 35

HC
0

recode3 20 0.61 175 1.88 55

HD
0

recode4 20 0.37 245 1.63 70

HE
0

fournier 20 0.18 360 0.92 125

D2 is the relative entropy [30] of the pairwise substitution matrix implied by the Dirichlet mixture prior. D̂D is the mean relative entropy of the multinomial distribution
(Text S2).
doi:10.1371/journal.pcbi.1000852.t001
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implies that for ungapped local alignments, substitution scores

must be of log-odds form [23,30].

Equation (1) explicitly generalizes pairwise log-odds scores to

the multiple alignment case. They are positive for some alignment

columns, negative for others, and must have negative expected

value. Therefore it is appropriate to define an optimal ungapped

multiple alignment as one with maximal aggregate log-odds score.

This immediately allows one to define the proper width or extent

of an ungapped multiple DNA or protein alignment, without

resorting to the ad hoc principles frequently required for other

scoring systems [69]. Although the Smith-Waterman algorithm

can be applied to optimize log-odds-scored local multiple

alignments, it is too slow for most purposes. Nevertheless, once

relative offsets have been fixed for a set of sequences, it is trivial to

determine an optimal ungapped local multiple alignment along the

single implied diagonal.

The ungapped local multiple alignment problem may be

formulated as seeking segments of common width W within

multiple DNA or protein sequences that, when aligned, optimize a

defined objective function. We take this function here to be the

aggregate log-odds score for the aligned columns. One way to

approach this optimization is by means of a Gibbs sampling

strategy, as described by Lawrence et al: [69]. Log-odds scores can

be used to adjust W dynamically, by applying the Smith-

Waterman algorithm to the diagonal implied by a provisional

alignment, without the need for an arbitrary parameter or an ad

hoc optimization. They may also be used to determine dynamically

whether or not a sequence should participate in the multiple

alignment at all, for which purpose it is useful first to consider log-

odds scores from the perspective of the Minimum Description

Length Principle.

Log-Odds Scores and the Minimum Description Length
Principle

The Minimum Description Length (MDL) Principle provides a

criterion for choosing among alternative theories for describing a

set of data [33,49]. To simplify greatly, it suggests that given a set

of alternative theories Ti to describe a set of data D, that theory

should be chosen which minimizes DLi, defined as the sum of

L Tið Þ, the description length of the theory, and L DDTið Þ, the

description length of the data given the theory. By convention,

description lengths are measured in bits.

From information theory [70], the information associated with

an event of probability p is {log2p bits. Focusing on actual

encoding schemes for probabilistic events can unduly complicate

MDL analyses. Accordingly, we here follow the approach of

section 3.2.2 of [33], in which description lengths are allowed to be

non-integral, and are identified with negative log probabilities.

Thus, if the data can be described probabilistically,

L DDTið Þ~{log Prob DDTið Þ½ �. The length of the theory L Tið Þ is

defined as the number of bits needed to specify the free parameters

of Ti, i.e. those that are fitted to the data [33].

For local multiple alignment, the theory T0 that the input

sequences are unrelated has only the background probabilities

~pp as parameters, whose description length we will call Lp.

The data D is comprised of M sequences, with lengths N1

through NM , and consisting of the letters yi,j . Then

DL0~LpzL DDT0ð Þ~Lp{
XM

i~1

XNi

j~1
log pyi,j

. The theory

T1 states that segments of width W beginning at positions si

within the various sequences are related, and that the probability

of the data ~xxc within each column c of the implied alignment is

Q ~xxcð Þ; the probability of the rest of the data may be described with

the background frequencies ~pp. The free parameters are ~pp, the

vector of starting positions~ss, and W . Each si may take on one of

Ni{Wz1 values, so its description length is approximately

log Ni, if W is not too large compared to Ni. Thus, we have

L T1ð Þ~LpzLW z
XM

i~1
log Ni, where LW is the description

length of W . (If all feasible widths are taken to be equally

likely, LW is just log miniNi½ �. Other encodings have LW

grow slowly with W [33,49].) It is apparent that

L DDT1ð Þ~{
XW

c~1
log Q ~xxcð Þ{

X
log pyi,j

, where the latter

sum is taken only over those letters not participating in the local

multiple alignment. Everything simplifies when we consider the

difference in the total description lengths of the two theories:

DL0{DL1~S{
XM
i~1

log Ni{LW , ð12Þ

where S~
XW

c~1
log

Q ~xxcð Þ
P ~xxcð Þ

is simply the log-odds score for the

implied alignment. In other words, T1 is preferred whenever S

exceeds
XM

i~1
log NizLW . As described in Text S3, this

prescription is related to the statistical theory for ungapped local

alignments [23].

To allow one or more sequences to be excluded from the

multiple alignment, we consider not 2, but 2M theories,

distinguished by M binary indices Ii , which take on the value 1

to indicate that sequence i participates in the alignment, and 0
otherwise. These theories need not be a priori equally likely; if

necessary, for i from 1 to M we can specify prior probabilities pi

that sequence i contains a segment related to segments in the other

sequences. Let us consider the difference in the description lengths

of two theories, T ’0 and T ’1, that differ only in their index Ii.

Theory T ’1 incurs the cost { log pi for the prior probability that

Ii~1, and also requires describing the location of the related

segment, which costs log Ni bits. In contrast, theory T ’0 incurs only

the cost { log 1{pið Þ, so T ’1 costs di~log Nizlog
1{pi

pi

more

bits to describe than T ’0. Thus, for T ’1 to be preferred, the log-odds

score of the multiple alignment must increase by at least di when

the segment from the ith sequence is added. If pi is close to 1, di

can be negative, and is {? if pi~1. In short, the greater the

prior probability that a given sequence contains a relevant

segment, the lower the score of such a segment need be for

inclusion in the alignment.

The change in the log-odds score with the addition of a segment

from the ith sequence depends upon which other sequences, and

which of their segments, participate in the alignment. Conse-

quently, the values of the indicator variables Ii must be part of the

larger optimization, and their selection can be readily incorporat-

ed into a Gibbs sampling algorithm. The MDL Principle can also

be extended to the case where a single sequence may contain more

than one copy of a pattern, and, as previously described [62,71,72]

and discussed in Text S4, to the clustering of multiple alignments

into subfamilies.

Gap Scores
Although our central concern is to define a new type of multiple

alignment substitution score, many important applications require

the construction of gapped multiple alignments, and these

generally entail scores for insertions and deletions. Multiple

alignment gap scores should be defined in a manner consistent

with the substitution scores used [73], so we will consider what

type gap scores might fruitfully be paired with BILD scores.

Log-Odds Scores for Multiple Alignment
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Just as the log-odds perspective places pairwise substitution

scores in a probabilistic framework [7,8,23,30], so pairwise gap

scores can be viewed as specifying probabilities for insertions and

deletions within biologically accurate alignments [74–82]. For

pairwise alignments, ‘‘affine’’ gap scores, of the form { azbkð Þ
for a gap of length k [83–85], are those most commonly used

[3,4], although more complex gap scores have frequently been

proposed [86–89]. When there is an essential asymmetry between

the sequences being aligned, differing scores may be assigned to

gaps within the two sequences. Furthermore, when substitution

and gap scores are properly integrated and both expressed in the

units of bits, the two parameters of affine gap scores can be

understood to specify jointly the average frequencies and lengths of

gaps in the alignments sought [82]. If gaps are to be introduced

into the BILD score formalism, an immediate problem is which, if

any, letters from individual sequences should be understood as

insertions with respect to the ‘‘canonical’’ pattern. In other words,

it appears a canonical width for the multiple alignment must

somehow be chosen, with respect to which gaps arising in the

alignment of individual sequences can be assessed.

Profile-Sequence Alignment
For simplicity, suppose we have a ‘‘canonical’’ multiple

alignment A, i.e. one with a specified number of columns, to

which we wish to align a single sequence S, to produce a new

multiple alignment A’. It is reasonable to define the alignment

score of A’ as the pre-existing alignment score for A plus the

incremental pairwise score for aligning A and S. This pairwise

alignment involves substitutions (letters from S aligned to columns

from A), insertions (runs of letters from S that are not aligned to

any columns from A), and deletions (runs of columns from A that

are not aligned to any letters from S). BILD scores for the columns

of A’ arise naturally when one defines the substitution scores for

aligning A to S as incremental BILD scores. It remains then only

to define gap scores for insertions and deletions in the alignment of

A and S.

There is an essential asymmetry in gap scores for aligning A to

S, relevant in many biological applications. For proteins, the

columns of A represent canonical positions, present in most

sequences of a protein family, and it should accordingly be very

costly to delete any of these columns. In contrast, individual

proteins often contain long loops not present in the great majority

of related sequences [90,91], so even long insertions should not be

very costly. Uniform but asymmetric affine insertion and deletion

scores can capture this simple idea, and we have implemented

them in one program described in the Results section below.

These scores can be derived from the average frequencies and

lengths [82] of insertions and deletions with respect to canonical

protein family multiple alignments.

Just as incremental BILD substitution scores change as more

sequences are added to a multiple alignment, so it is possible to let

insertion and deletion scores change as well, and vary by position.

In the context of Hidden Markov Models [76–81], many methods

for doing this have been described. Below, we implement one

simple procedure that depends only upon the BILD scores of

multiple alignment columns, and not upon the relatively sparse

gaps observed in any particular alignment.

Progressive Multiple Alignment and Profile-Profile
Alignment

Formula (3) permits BILD substitution scores to be used for

progressive multiple alignment. However, as described above, gaps

scores pose a particular problem, because to define insertions and

deletions one needs to construct a canonical alignment, and this is

difficult for a small number of sequences. For example, when just

two proteins are aligned, it is quite possible that gaps in both

sequences would ultimately be seen as insertions with respect to a

model describing the whole protein family, but there is no obvious

way to determine this in advance. (The problem does not arise

when substitution and gap scores are defined using the sum-of-

pairs or SP formalism [27,28], for which no canonical alignment is

necessary [73].) Accordingly, the approach we take below is

eschew gaps at first, and thereby construct a canonical multiple

alignment whose columns represent positions present in the

majority of sequences. Only then do we realign individual

sequences to this model, allowing gaps.

There has been considerable recent interest in aligning profiles

that describe different protein families [40–48]. If BILD

substitution scores, defined by equation (3), are to be used for

this purpose, it would seem that we face the same problem for gaps

that we do for progressive multiple alignment. Specifically, an

insertion with respect to one profile is seen as a deletion with

respect to the other, so how may one determine which, if either,

perspective to adopt in a model describing both? However, so long

as this goal is only to compare pairs of profiles, and not to proceed

further, this problem may be elided. It is consistent to define

pairwise gap costs for the alignment of two profiles, just as one

would for the alignment of two sequences, without reference to a

canonical alignment, and the substitution scores of equation (3)

can be used sensibly with such gap costs. The gap costs chosen

may depend upon the profiles being aligned, and may therefore be

asymmetric and position specific. We leave for elsewhere the

comparative evaluation of profile-profile alignment using substi-

tution scores defined by equation (3), and those defined in other

ways [40–48].

Results

Substitution scores for multiple alignment columns form only

one element of successful multiple alignment programs. Depend-

ing upon their specific purposes, such programs may also employ

gap scores, sequence weights, heuristic optimization algorithms,

low-complexity filters, discontiguous patterns, provisions for no or

multiple copies of a pattern within a sequence, the search for

multiple distinct patterns, statistical assessments, etc. It is not our

purpose here to develop a fully realized program to outperform

existing state-of-the-art programs that involve multiple alignment.

Rather, we seek only to argue that the use of explicitly constructed

log-odds substitution scores can in many cases add values to these

methods.

The programs we consider below have been constructed for

evaluation purposes, to isolate the contribution of log-odds scores

as much as possible. These programs are parsimonious in their

complexity and use of free parameters, and employ various ideas

that have appeared frequently elsewhere, and for which no novelty

is claimed.

A. Ungapped Multiple Local Alignment Using Gibbs
Sampling

BILD scores find perhaps their purest application in the

ungapped local alignment problem described above, so it is worth

studying them in this restricted context. The Gibbs sampling

approach to finding optimal local multiple alignments was

introduced by Lawrence et al. [69], and this algorithm can easily

be modified to employ BILD scores. Potential advantages are

improved sensitivity and the automatic definition of domain

boundaries. Evaluation ideally requires a set of proteins with

ungapped domains whose correct alignment is structurally

Log-Odds Scores for Multiple Alignment
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validated, but such sets are unfortunately very rare. Nevertheless,

the collection of ungapped helix-turn-helix (HTH) domains in [69]

provides a limited test set for analyzing BILD scores in the absence

of gaps. As we describe in Text S5, with Tables S1 and S2, BILD

scores achieve success on two fronts. First, they have greater

average sensitivity than the entropy-based scores proposed by

Lawrence et al. [69], in yielding accurate alignment from fewer

sequences; second, they recognize with good precision the extent

of the structurally-defined domains, and therefore do not require a

prior specification of alignment width.

B. Extension to Gapped Local Alignment
Local multiple alignment programs generally must allow for

gaps, either implicitly or explicitly. However, even for aligning

gapped domains, the search for ungapped local alignments can be

a fruitful first step. BILD scores can play an important role at this

stage in defining the common core of a protein family, and can be

adapted in subsequent stages to score gapped multiple alignments.

As a proof of principle, we here develop a relatively simple

algorithm, Program 1, that uses BILD scores as part of a gapped

multiple alignment strategy. We describe this program’s architec-

ture and motivation below, and use a standard artificial test set to

evaluate its ability to recognize the boundaries of local motifs, and

to properly construct gapped local alignments. We then describe in

section C how Program 1 may be refined through the

consideration of features of protein structure, and illustrate the

application of our methods to the delineation of a protein domain

family.

Program 1 architecture. Input: A set of putatively related

protein sequences potentially containing zero, one, or multiple

instances of a common pattern. The sequences are in a standard

unaligned format such as fasta.

Goal: To find a gapped local multiple alignment that optimizes

an objective function defined as the sum of column BILD scores,

minus gap costs, minus costs for describing the start locations of

patterns. The user may specify whether a single or multiple

instances of the pattern in each sequence should be sought, as well

as whether the pattern may be absent in some sequences.

Heuristic algorithm:

a) Execute the Gibbs sampling strategy (Text S5) to determine a

preliminary pattern width, and a preliminary ungapped local

alignment, allowing at most one instance of the pattern per

sequence.

b) For each input sequence S, remove any and all segments of S
from the multiple alignment, and construct a BILD-score

based position-specific score matrix (PSSM) MS from the

remaining alignment. Allowing gaps with affine gap costs

[83,85], optimally align the whole of MS to a segment from

S, using for this purpose a generalization of the semi-global

alignment algorithm of Erickson and Sellers [92]. Consider

all sequences S, whether or not they were identified as

containing a pattern in the initial Gibbs sampling stage, or in

subsequent gapped alignment iterations. Asymmetric gap

costs for insertions and deletions may be specified. (Note that,

as described in the hidden Markov model (HMM) literature

[76–82], for bit scores to retain their meaning, a small

penalty, equivalent to the log probability of not initiating a

gap, must be assessed whenever a letter is aligned to a motif

column. For our purposes, this penalty is best viewed as an

additional ‘‘gap score’’, although it may be coded as a

modification to the substitution scores. Also, when a letter is

not aligned to a motif column, the number of observations

and aggregate BILD score for that column do not change.)

Retain the alignment if the score exceeds a calculated

threshold. Multiple non-overlapping segments within S that

align to MS can be found using a greedy approach.

c) Collect all the aligned segments from step b) into a new,

gapped multiple alignment, and return to step b). Iterate until

the objective score function stops increasing.

d) Adjust the width of the original pattern to optimize the

alignment score. Alternatively, this step may be inserted

between iterations.

Program 1 motivation. The initial search for ungapped

segments in the Gibbs sampling step can delineate a common core

pattern width, and provisional amino acid frequencies for each

column, shared by a set of sequences, even when most segments

are at first partially misaligned. For sequences containing repeated

or multiple distinct patterns, it may be useful to restrict the width

of the pattern sought. The MDL Principle can be used to

provisionally exclude some sequences from the alignment at this

stage, which may then be included later. Adopting this core

pattern generally minimizes the average number of gaps that

subsequently need to be introduced when aligning to members of

the family. Using Erickson-Sellers semi-global alignment conserves

the pattern width W , recognizing the importance of complete

domains, and thereby both reduces the noise from chance partial

similarities and aids the discovery of long insertions. Gapped

alignment avoids the imposition of a block structure that may not

be universally appropriate. However, columns are not added to

the evolving profile to represent insertions, which can be

idiosyncratic in length and location. Deletions may be present,

but these are generally short and in a small minority of the

sequences. Thus, the W concatenated aligned columns are densely

occupied by amino acid data and are highly informative. This

compressed type of profile, like the similar representation of

Neuwald and Liu [82], generally corresponds well to the core

structural elements of a domain. The use of asymmetric gap costs

(with greater penalties for deletions) captures the natural

asymmetry implied in aligning a sequence to such a core model.

Note that elsewhere Gibbs sampling has been extended directly to

the construction of gapped alignments [93,94], whereas Program 1

takes the simpler approach of confining the Gibbs sampling stage

to the discovery of a provisional ungapped pattern.

Program 1 performance. The evaluation of the perfor-

mance of a multiple alignment program requires a collection of

sequence sets for each of which the correct alignment is known

[95,96]. Multiple alignment programs may focus on the

construction of global alignments, or on the discovery of local

patterns, and different collections are accordingly appropriate for

their evaluation. Among those collections in common use, ‘‘ref1’’

from IRMBase [96], which we will call IRM-1, appears the most

appropriate for our gapped local multiple alignment program.

IRM-1 contains 60 sets of sequences, with the sequences in each

set containing a single, possibly gapped, local motif, embedded

within otherwise random sequence. The motifs were generated

artificially using the Rose program for simulated evolution [97].

This construction, although not completely realistic, means,

however, that the extent and correct alignment of the motifs

within the various sequences are precisely known. The 60 sets are

divided into three groups of 20, consisting respectively of sets of 4,

8 and 16 sequences.

First, we evaluated the ability of Program 1 to identify properly

the left and right motif boundaries within the 60 IRM-1 sequence

sets. The results, grouped by the number of sequences within the

various IRM-1 sets, are shown in Table 3, with positive deviations

referring to patterns identified by Program 1 that are too long.

Log-Odds Scores for Multiple Alignment
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Program 1 identifies 80% of the motif boundaries exactly, and

92% to within 1 residue. Furthermore, the accuracy of boundary

detection clearly improves as the number of sequences considered

increases.

Most multiple alignment programs do not explicitly identify in

their output conserved motifs as distinct from randomly aligned

sequence. However, the output of program DIALIGN-TX [98],

developed by the same research group that constructed IRM-1,

displays the significantly conserved residues within each sequence

in upper case letters, although these do not generally fall into

completely consistent aligned columns. We have used this feature

to compare the performance of DIALIGN-TX at identifying motif

boundaries with that of Program 1 (Table 3, with details in the

caption). DIALIGN-TX identifies 48% of motif boundaries

exactly and 78% to within 1 residue, but its performance appears

to degrade as the number of sequences considered increases. In

summary, although existing multiple alignment programs such as

DIALIGN-TX can do quite a good job at identifying the extent of

common motifs embedded within random sequence, the use of

BILD scores for this purpose can lead to noticeably improved

precision.

The IRM database has been used previously to evaluate the

performance of multiple alignment programs by computing how

accurately they align the letters that are, by construction,

‘‘homologous’’ [96,99]. Given a set of sequences S from IRM,

and the multiple alignmentM produced by a particular program,

the quality score for the program is defined to be the percentage,

taken over all pairs of sequences within S, of the homologous pairs

of letters, within the annotated IRM-1 motif, that are aligned in

M [99]. We used this measure to compare Program 1 to a variety

of multiple alignment programs representative of distinct strate-

gies: ClustalW [100]; PCMA [101]; MUSCLE [102,103];

ProbCons [104]; COBALT [99]; and DIALIGN-TX [98]. For

each program, various quality score statistics for IRM-1 are

presented in Table 4, along with aggregate program execution

time. As can be seen, Program 1 performs better than or

comparably to all the other multiple alignment programs, as

measured by the various quality score statistics, and also runs

substantially faster. Caution should be employed in interpreting

Table 4, since Program 1 was explicitly designed for discovering

single local patterns within otherwise unrelated sequences, while

the other programs were primarily designed to construct global

multiple alignments, and some use strategies or parameters that

are not well adapted to local multiple alignment.

C. Protein Structure Considerations
As mentioned above, real protein domains are subject, on

average, to much longer insertions than deletions, and this implies

the utility of asymmetric affine gap costs for Program 1. The

particular costs that are best will depend upon the statistical

properties of gaps, and a possible refinement of Program 1 would

be to adjust gap costs dynamically. From the analysis of a variety

of protein families, we have found empirically that reasonable gap

scores to use in conjunction with HD
0 Dirichlet mixture priors are

{8:5{k bits for a deletion of k motif positions (corresponding

[82] to an initiation frequency per motif position of 0.28%, and a

Table 3. The recognition of motif boundaries.

Program 1

Deviation from true boundary

IRM-1 subset ,23 23 22 21 0 1 2 3 .3

4 1 1 5 29 1 2 1

8 1 31 6 1 1

16 1 1 36 1 1

Total 1 1 2 6 96 8 3 2 1

DIALIGN-TX

Deviation from true boundary

IRM-1 subset ,23 23 22 21 0 1 2 3 .3

4 2 2 1 6 23 4 2

8 6 24 7 2 1

16 1 3 3 11 10 9 3

Total 3 2 4 15 58 21 13 4

Counts were made of the deviations found by Program 1 and DIALIGN-TX of the left and right pattern boundaries (120 total) for the embedded motifs within the 60
IRM-1 sequence sets, divided into the sets involving 4, 8, and 16 sequences [96]. At all 120 boundaries of the reported patterns, both programs align in register at least
50% of the sequences. This consensus allows us to determine to what extent the programs report conserved regions that are too long or too short. Positive deviations
in the table refer to patterns identified by the programs that are longer than the actual patterns. To make an equitable comparison of the two programs, several non-
default options and procedures were employed, as follows: (1) Asymmetric affine gap costs were inappropriate for Program 1 because the Rose program [97] used in
the construction of IRM-1 does not simulate the differential rates with which insertions and deletions occur within real protein motifs. Accordingly, we empirically
assigned all gaps of length k a score of {8:5{0:5k bits, which corresponds [82] to an average frequency of 0.67% for insertions (and similarly for deletions) beginning
at each motif position, and an average insertion or deletion length of 3:4. (2) We ran DIALIGN-TX at its least sensitive setting, using the ‘‘-l2’’ option, to avoid the
excessive extensions into randomly aligned flanking sequences that degrade the accuracy of motif boundary recognition with the more sensitive default setting. (3) For
DIALIGN-TX, we defined the boundary of a conserved motif as the maximum left or right extent to which all of the set of sequences aligned in register were reported as
conserved. An alternative criterion might be to take a majority vote on the left or right extent of the reported pattern, but this criterion often gave unreasonably long
extensions with DIALIGN-TX, and so was not used. For Program 1 run with the 16-sequence input sets, two outliers were found (columns headed v{3 and w3). These
are cases where roughly half the sequences in the set contained large insertions or deletions, leading Program 1 to misalign a substantial minority of sequences at one
of the boundaries.
doi:10.1371/journal.pcbi.1000852.t003
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mean length of 2.0), and {9:25{0:25k bits for an insertion of

length k into the motif (corresponding to a frequency of 0.87%,

and a mean length of 6:3).

Protein structure implies more than an asymmetry between the

frequency and length statistics of insertions and deletions.

Reflecting the evolution of secondary structure elements and

loops, certain motif positions are much less likely to be deleted

than others and, similarly, insertions are much less likely to occur

between certain pairs of motif positions than others. We describe

below an extension of Program 1 to an HMM-based Program 2

that relies only upon column BILD scores to calculate position-

specific gap score parameters. We then apply Programs 1 and 2 to

the detection of Api-AP2 domains.
Program 2 motivation and architecture. Protein families

or domains are often described by HMMs [76–81]. HMMs, in

addition to specifying the probabilities for amino acids to occur in

various profile positions, may specify distinct probabilities for

insertions or deletions to occur in various locations. A more

dynamic strategy for model construction than typical for HMMs

may be based on the approach described above. As an example of

a current strategy, the construction of a Pfam model [105–107]

starts with a manually-curated gapped multiple alignment of

selected members of the protein domain family, the ‘‘seed

alignment’’, from which an HMM profile is built. The seed

alignment and HMM are the static canonical entities that define a

Pfam family. Then, as a separate procedure, sequence database

search programs using this HMM are applied to identify and align

additional family members. In contrast, our approach does not

entail an initial manual alignment. We start with unaligned

sequences, which may include a large proportion of flanking

sequence and negative cases of proteins lacking the domain of

interest. Moreover, any interesting new proteins discovered can

readily be added to the input sequence set to compute a new

model. This facilitates a flexible strategy of model updating as

knowledge accumulates, although a static HMM could, of course,

be retrieved at any stage, if desired.

When translated into the HMM formalism, specifying the

asymmetric affine gap cost parameters of Program 1, two for

insertions and two for deletions, is equivalent to specifying average

frequencies and lengths for insertions and deletions [82], uniformly

along the HMM. An HMM’s free insertion and deletion

parameters generally are optimized for the seed alignment

provided. Given the sparsity of the seed data concerning the

location of gaps, care must be taken to avoid overfitting [108–

110]. In contrast, we here take the following approach to

restricting gap locations based solely upon the BILD scores for

columns in the core model, which are data-dense, combined with

a few fixed parameters motivated by basic ideas concerning

protein structure.

First, we observe that a high BILD score for a column C
correlates with the column’s importance, and indicates the column

is unlikely to be deleted, consistent with a general tendency for

conserved residues to occur within structural elements crucial for

the folding energetics. Let R Cð Þ be the mean incremental BILD

score for aligning a random residue to C. R Cð Þ is always negative,

and large negative values of R Cð Þ correlate strongly with large

positive BILD scores. We set the score (i.e. the log-probability) for

extending a deletion through column C to an empirically chosen

multiple F of R Cð Þ. By default, F is 2.5. This has the desired effect

of penalizing the deletion of columns with high BILD scores. An

additional cost D1 for the existence of a deletion (default: 8 bits) is

left uniform throughout the HMM.

Second, we recognize that insertions are relatively unlikely to

occur within regions of a protein that show a close clustering of

more conserved positions. Let the normalized score �BB Cð Þ be the

BILD score for column C divided by the number of sequences it

aligns. We simply disallow insertions anywhere between two

columns C and C’ separated by at most one intervening column,

when both �BB Cð Þ and �BB C’ð Þ exceed a set threshold TI (default: 1

bit). Otherwise, the existence and extension costs, I1 and I2 for an

insertion are left uniform throughout the HMM with default

values of 9.25 and 0.25 bits, as for Program 1. This treatment is

motivated by the typical unbroken patterns of local conserved

clusters often observed in domain alignments, e.g. the alternating

residues of a beta-strand face, or residue pairs within some turn

geometries and cap structures. It may be fruitful to extend this

insertion model, to conform with observed differences in the

frequencies of long and short gaps [89,111], or to explicitly model

the 3–4 spacing of conserved positions commonly seen in alpha-

helices.

This simple approach to HMM parameter construction can of

course be refined. Nevertheless, it captures central features of the

location of insertions and deletions within proteins, without relying

upon a preconstructed alignment, or on the relatively small sample

of gaps present in a particular data set. Program 2 proceeds

identically to Program 1, except that in place of the Erickson-

Sellers algorithm with asymmetric affine gap costs, it uses the

Viterbi algorithm to find an optimal path through the constructed

HMM.

Application to Api-AP2 domains. To illustrate how our

methods may be applied to typical problems, we consider the

sequence-specific DNA recognition domains from the Api-AP2

transcription factor family of apicomplexan parasites. Multiple

paralogous Api-AP2 domains in the translated proteomes of

Plasmodium and Cryptosporidium parasites were initially discovered

using PSI-BLAST searches by Balaji et al. [112], based on weak

Table 4. Multiple alignment accuracy.

Quality Score Statistics

Program Minimum Mean Median % Perfect
Execution
time (sec.)

Program 1 60.7 95.0 99.8 48 18

DIALIGN-TX 37.6 94.2 98.4 38 95

PCMA 2.0 16.7 92.3 98.4 23 376

COBALT 45.6 95.1 98.0 22 303

ProbCons 1.10 16.7 82.8 92.2 27 506

MUSCLE 3.6 0.0 38.0 31.5 3 115

ClustalW 1.83 0.0 8.0 3.9 0 27

Quality score statistics were measured in the 60 sequence sets of the IRM-1
database [96]. ‘‘Percent perfect’’ refers to the proportion of the 60 datasets in
which all homologous residues were correctly aligned. All programs were run
with default parameters, except that Program 1 and DIALIGN-TX used the
parameters detailed in Table 3. Because all programs other than Program 1
produce global multiple alignments as a matter of course, the quality score
credits them for aligned residues independently of whether these residues are
identified as lying within a conserved region. None of these programs explicitly
identifies such regions, although DIALIGN-TX does so implicitly, as described in
the caption to Table 3. Accordingly, in order not to artificially handicap Program
1 on this test, we calculated its quality scores by aligning, immediately adjacent
to the conserved pattern it identifies within each sequence, and without gaps,
all the residues deemed to lie beyond this pattern. In the small fraction of cases
where the identified pattern stops short of the boundary of the embedded
motif (see Table 3), this can produce a slightly better quality score than the
pattern, considered in isolation, would yield. CPU execution times are for
programs run on a Dual Pentium 4 Xeon 3.0 GHz CPU Linux computer with
64-bit architecture, and are averaged over three runs.
doi:10.1371/journal.pcbi.1000852.t004

Log-Odds Scores for Multiple Alignment
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similarity to the plant AP2 (APETALA2) transcription factors.

These domains also have weak similarity to part of the HNH

domain of homing endonucleases [113,114]. As the principal

known sequence-specific DNA binding domains of Apicomplexa,

Api-AP2 sequences represent a major lineage-specific gene

expansion within the alveolate protists and are currently a topic

of intense research [115,116]. They are believed to function in

transcriptional activation crucial for parasite biology and

development, and have potential as stage-specific anti-parasitic

drug targets, due to the absence of AP2 homologs in the

mammalian hosts. It is important to develop a system-level

understanding of the Api-AP2 factors, and a prerequisite for this is

to discover and annotate the entire complement of Api-AP2

proteins in each of these parasite genomes, possibly beyond the

lists obtained from PSI-BLAST and the current HMM-based

(Pfam model 00847) searches.

The Api-AP2 family presents a weakly-clustered pattern of

amino acid conservation at variable spacing within the typically

50–60 amino acid domain. This profile is present one to

approximately six times within otherwise extremely variable

protein sequences of typically more than 1000 amino acids. The

proteins show little significant homology outside the Api-AP2

regions: there are many low-complexity segments and occasional

recognizable domains of other types, but the latter do not show

any consistent relationship to the Api-AP2 regions. On the order

of 20 to 80 Api-AP2 domains are encoded in each apicomplexan

genome. Although relatively small, this domain has typical

globular protein structure with a 3-strand beta-sheet packed

against an alpha-helix, with several classes of beta-turn, and a

longer loop. The more conserved positions occur mainly within

the sheet, the helix and beta-turn structural elements. Conse-

quently, multiple alignment profiles tend to show a loosely-

patterned clustering of column scores, as is typical of globular

domains.

Using PSI-BLAST searches of apicomplexan translated genome

databases, we collected proteins containing at least one candidate

Api-AP2 domain from Toxoplasma gondii (53 proteins) and

Plasmodium falciparum (18 proteins; similar to the set identified by

[112]). These sequences were used as input to develop the features

of Programs 1 and 2 and to test their ability to construct protein

domain profiles and discover additional domains. The results are

outlined below, illustrated in Figures 1–3, and presented more fully

in Tables S3 and S4 and their caption.

To explore how Programs 1 and 2 can tolerate negative cases,

lacking the domain of interest, we spiked the Api-AP2 input sets

with various proportions of (a) random sequences constructed by

shuffling input sequences, or (b) real sequences lacking annotated

conserved patterns, or (c) sequences that shared a conserved

domain unrelated to Api-AP2. Spikes of types (a) and (b)

comprising half of the total input sequences did not affect the

final Api-AP2 models: the random and unrelated patterns in the

spike sequences were all rejected (Figure 1) during or after the

initial ungapped Gibbs sampling step, and this step runs faster if

one specifies a prior expectation that a fraction of the input

sequences do not contain the pattern of interest. If the Gibbs

sampling stage of either Program 1 or 2 is run with a prior

expectation that 10% of the input sequences do not contain an

instance of the pattern, then all the random sequences and five of

the Api-AP2 sequences are initially excluded, but subsequent

gapped alignment steps recover segments from the initially

rejected Api-AP2 sequences. The final result is the same whether

or not sequences are excluded in the initial stage. With some spikes

of type (c), the Gibbs sampling step converged on the competing

domain instead of the Api-AP2 pattern. This suggests that input

sequence domain parsing, e.g. by methods in [117,118], may

sometimes be beneficial.

The amino acid frequencies observed within the core Api-AP2

model were strikingly similar for Plasmodium and Toxoplasma

(Figure 2), consistent with an evolutionary expansion of this family

from a single ancestral gene within the Alveolata, as proposed by

[112]. Present day parasite lineages have evolved strikingly

different codon and background amino acid content arising from

genomic drift, e.g. in the very AT-rich Plasmodium and the more

GC-enriched Toxoplasma. This contrast in background frequencies

(Figure 2) demonstrates the value of log-odds scores for identifying

a subtle pattern in very different sequence contexts.

The Api-AP2 pattern is present more than once in many of the

input sequences as is often the case with eukaryotic multidomain

proteins, potentially enabling these transcription factors to

recognize combinations of DNA sites. The greedy algorithm

included in Programs 1 and 2 allows such repeated domains to be

identified. A total of 89 domains were found within the initial 53

Toxoplasma input sequences. Only 2 domains had borderline scores

and may be candidates for classification as degenerate pseudo-

domains. As shown in Table S3, repeats in the same protein can

be very diverse in sequence. Programs 1 and 2 found several

repeated domains additional to those reported in searches with

Pfam model 00847, including some that differ from the canonical

domain length by relatively long insertions in the central loop

region (Figure 3, Table S3).

We conducted further searches of the Toxoplasma and Plasmodium

databases based on the core Api-AP2 alignment obtained from

Programs 1 and 2. These revealed new candidate proteins with

Api-AP2 domains (Tables S3 and S4), not found with Pfam model

00847, some of which also show long loop insertions, but are

otherwise strongly similar to the canonical Api-AP2 domain

sequence (Figure 3). Including these new Api-AP2 cases, we have

identified a total of 68 proteins (103 domains) for Toxoplasma and

29 proteins (50 domains) for Plasmodium (Tables S3 and S4).

It is not yet known if Api-AP2 domains with long insertions are

active in DNA binding and transcriptional control, or whether any

are inactive pseudo-domains, or are artifacts from errors in gene

modeling. However, their occurrence illustrates that a relatively

small minority of members of a domain family may contain long

insertions, a general feature of protein evolution. Experimental

studies confirm that many such long insertions, when artificially

engineered into structural loops, have surprisingly low costs for the

free energy of folding and little effect on the functional interactions

of the proteins [90,91]. Thus, both the observed occurrence and

the statistical thermodynamics of long insertions justify our

treatment, described above, using asymmetric affine gap costs.

Discussion

We have described a natural generalization of log-odds

substitution scores for pairwise alignments to substitution scores

for multiple alignment columns. Multiple alignment log-odds

scores probably are best derived using a Bayesian approach,

yielding what we have called BILD scores. Log-odds scores imply

scores for aligning multiple alignment columns to one another, or

for aligning multiple alignment columns to single sequences, and it

was in this latter context that the Bayesian approach was first

formulated by Brown et al: [31]. In conjunction with the

Minimum Description Length Principle, log-odds scores provide

a means for determining the proper width or extent of a local

multiple alignment, and for deciding whether a segment should be

included in the alignment. They may also be used to cluster a set of

related segments into subclasses; see Text S4 and [62,71,72].

Log-Odds Scores for Multiple Alignment
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One may compute rapidly the BILD score for a multiple

alignment column, as well as the new score that results from the

addition or subtraction of a single letter. This permits BILD scores

to be used practically in Gibbs-sampling local multiple alignment

programs. They can improve the performance of such programs,

and remove the need for specifying the width of a pattern sought.

The proper description of protein domains in most cases

requires a provision for gaps. We have implemented two relatively

Figure 1. Distributions of bit scores from Api-AP2 domains and negative controls. The histograms in A and B represent data for both
positive and negative cases reported by Program 1 at different intermediate stages of a run. The input file contained 107 amino acid sequences
consisting of 54 T. gondii proteins with Api-AP2 domain candidates, and 53 random sequences obtained by shuffling the concatenated sequence of
53 of the 54 Api-AP2 proteins and cutting this shuffled string into the original lengths (method of [119]). The Dirichlet mixture prior HD

0 was specified.
A: Results after the initial Gibbs sampling stage. The ungapped local alignment with optimal aggregate BILD score had width 53. For each sequence,
we plot the incremental BILD score, resulting from the addition of a segment from that sequence to the alignment of all the other segments, minus
the log of the effective length of that sequence. Scores from the real and random sequences are shown respectively in red and blue. If a prior
probability for the existence of a domain in each sequence were specified, segments with scores below a calculated threshold would be rejected.
Here, however, the Gibbs sampling step includes one ungapped segment from each of the 107 input sequences in the initial pattern it constructs. B:
Results after the iterative gapped alignment stage. In each gapped alignment iteration of Program 1, the evolving length-53 pattern is aligned to
each input sequence, perhaps multiple times, using a greedy application of the Erickson-Sellers algorithm. Incremental BILD scores are calculated
from the current multiple alignment, excluding the sequence to which it is being realigned. Deletions of length k are assigned a score of 28.52k bits,
and insertions of length k a score of 29.25–0.25k bits. The cost for the existence of a pattern is based on assuming a mean of one instance per
sequence, but with uniform probability at all positions of all sequences. In addition, the score for each aligned letter is adjusted slightly to reflect a
small cost for not having a gap. At each iteration, the program reports segments with score §225 bits, but only segments with positive score are
included in the next iteration. We show the data reported for the highest-scoring alignment; at this stage, at least one positively scoring segment
derives from each of the 54 real sequences but only 2 segments (each with score less than {19 bits) derive from the 53 random sequences. 88
positive-scoring instances of the pattern are found, at least one from each of the real sequences, but none from the random sequences. In addition,
19 instances of the pattern with negative score are found, 2 of which derive from the random sequences. For an aligned segment, a log-odds bit
score of 0 indicates an equal probability of being generated by the model implied by the other sequences, or at random by background amino acid
frequencies. In B, the bars are colored according to the presence (cyan) or absence (brown) of strong sequence matches to the 3 beta-strands and the
alpha-helix of the core Api-AP2 structure; the positions of these elements are shown in Figure 3. To qualify for a cyan bar, a sequence was required to
contain either identities or high-structural-propensity substitutions that match the strongly conserved amino acids (with column BILD score §1.5 bits
per residue) in the helix and at least 2 of the 3 beta-strands. The fairly clean separation, near 0 bits, of the cyan bars from the others indicates that a
positive score is a good criterion for nominating a segment as an Api-AP2 candidate.
doi:10.1371/journal.pcbi.1000852.g001
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simple programs for extending a core ungapped pattern or profile

to a gapped local multiple alignment. There are several key

elements to our approach. First, the initial maximization of

aggregate BILD scores using Gibbs sampling yields a core pattern

and pattern length for further refinement. Second, the semi-global

alignment of this pattern to the input sequences recognizes the

importance of complete occurrences of the pattern. Third, the use

of asymmetric affine gap costs (Program 1) recognizes that, with

respect to the core pattern, long deletions generally are much more

deleterious than long insertions. The placement of gaps can be

refined using position-specific gap costs derived from column

BILD scores (Program 2). Fourth, greedy alignment allows

multiple instances of a pattern to be found within a single

sequence. In conjunction with length-dependent gap costs, it

discourages alignments spanning more than one instance of a

pattern, but can still uncover long insertions. Fifth, iteration

permits the core model to be refined, improving the discrimination

of true relationships from chance similarities. This strategy,

Figure 2. Near-identical Api-AP2 profiles from two parasites with very different background frequencies. For P. falciparum (A, B) and T.
gondii (C, D), the logos [120] (http://weblogo.berkeley.edu/) represent the letters aligned in the columns of the core Api-AP2 patterns (A, C). In the
letter clouds (http://www.wordle.net/advanced) (B, D), the area occupied by each letter indicates the background frequency of an amino acid in the
input sequence set (compare Fig. 2.1 of [49]). Colors represent various amino acid classes. For both organisms, Programs 1 or 2, run with Dirichlet
mixture priors HB

0 , HC
0 or HD

0 , converged on essentially the same 53- to 54-column core models that correspond to these logos. Api-AP2 models and
logos almost identical to these were also obtained from other apicomplexan parasites Cryptosporidium hominis, Babesia bovis, Theilleria parva, and
from the basal alveolate Perkinsus marinus, whereas the distantly related plant AP2 domains and HNH homing endonuclease/integrase domains gave
distinct characteristic patterns similar in parts to Api-AP2 (data not shown). Thus, the core structural features of the Api-AP2 domain have been
strongly conserved in long-diverged members of the Alveolata, following an ancestral gene expansion, whereas the background amino acid content
of these organisms is strikingly different due to genome-wide drift.
doi:10.1371/journal.pcbi.1000852.g002

Figure 3. Large insertions in the central loop region of Api-AP2 domains. As a consequence of asymmetric gap costs, Programs 1 and 2
reported several positive Api-AP2 candidates which have long insertions but, in the other parts of the domain, show high-scoring matches to the
canonical pattern. Here, the sequence of T. gondii protein TGME49_06420, which has a 45 amino acid insertion in the central loop region, is shown
aligned with the two most-closely-matching domains of typical length. Program 2, run with Dirichlet mixture prior HD

0 and default parameters,
assigned the insertion to the central loop location shown, which avoided the more conserved columns of the secondary structural elements indicated
above the sequences. In contrast, Program 1 placed the same inserted residues in three separate locations, two of which would disrupt secondary
structure. Moreover, with an established HMM search method [80] (http://hmmer.janelia.org/), only the right end alignment of this TGME49_06420
domain was found, but with a negative score well below the rejection threshold. Structural assignments E (beta-strand) and H (alpha-helix) are based
on homologous experimental structures [121,122] (PDB codes 2gcc,3gcc,3igm).
doi:10.1371/journal.pcbi.1000852.g003
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informed by considerations of protein structure, has proved a

rapid and effective method for delineating protein families.

Although our programs were developed only for research

purposes, with the limited goal of testing the impact of BILD

scores, their code is available upon request.

We have sought here primarily to describe the construction and

potential uses of log-odds scores in the multiple alignment context.

However, many avenues for further research, involving the

development and benchmarking of complete multiple alignment

programs, remain. To what extent can BILD scores improve the

accuracy of profile-profile comparison programs? How does

Erickson-Sellers semi-global alignment [92], with uniform asym-

metric affine gap costs, compare to HMM [80,81] and other

methods [6] in recognizing related sequence in database searches?

We look forward to investigating some of these questions.

Supporting Information

Text S1 MELD Scores

Found at: doi:10.1371/journal.pcbi.1000852.s001 (0.05 MB PDF)

Text S2 The Mean Relative Entropy of Dirichlet Mixtures

Found at: doi:10.1371/journal.pcbi.1000852.s002 (0.05 MB PDF)

Text S3 The MDL Principle and Local Alignment Statistics

Found at: doi:10.1371/journal.pcbi.1000852.s003 (0.04 MB PDF)

Text S4 The MDL Principle and the Clustering of Multiple

Alignments

Found at: doi:10.1371/journal.pcbi.1000852.s004 (0.05 MB PDF)

Text S5 Gibbs Sampling Algorithms and HTH Proteins

Found at: doi:10.1371/journal.pcbi.1000852.s005 (0.05 MB PDF)

Table S1 Helix-turn-helix proteins.

Found at: doi:10.1371/journal.pcbi.1000852.s006 (0.02 MB PDF)

Table S2 Number of sequences misaligned by Gibbs sampling

programs. Sequence sets supplied to the BILD and Wadsworth

samplers consist of the first M sequences listed in Table S1. For

each sequence set, the BILD sampler determines an optimal motif

width W. Both BILD and Wadsworth samplers optimize

contiguous motifs of widths W, 17, 21 and 25. The number of

sequences misaligned by the Wadsworth sampler are given in the

table without parentheses; the number misaligned by the BILD

sampler within parentheses.

Found at: doi:10.1371/journal.pcbi.1000852.s007 (0.02 MB PDF)

Table S3 Tables S3 and S4 show Api-AP2 domains and bit

scores reported by Programs 1 and 2 for Toxoplasma gondii (Table

S3) and Plasmodium falciparum (Table S4). Also shown are the bit

scores obtained using HMMsearch database searches [Eddy SR

(1998) Bioinformatics 14: 755–763] seeded with aligned Api-AP2

domains and with the current Pfam AP2 model number 00847

(http://pfam.sanger.ac.uk/family?entry = PF00847). Programs 1

and 2 were run with the Dirichlet mixture prior and default

parameters described in the Results section and Figures 1 and 3.

As input, we collected 68 amino acid sequences from T. gondii and

29 from P. falciparum, based on inspection of low-threshold PSI-

BLAST and HMMsearch searches of the parasite genomic

translation databases of ToxoDB [Gajria et al. (2008) Nucleic Acids

Res 36: D553–556] and PlasmoDB [Aurrecoechea et al. (2009)

Nucleic Acids Res 37: D539–543] (http://eupathdb.org/eupathdb/).

These database searches were seeded with earlier alignments

produced (as described in the Results section and Figure 1 legend)

from more preliminary sets of 54 T. gondii and 18 P. falciparum

sequences. We anticipated that the larger sets of input sequences

might include some false positives; however, the final evolved

models included at least one positive score from each of the 68 and

29 sequences, totaling 103 Api-AP2 domain candidates for T.

gondii and 50 for P. falciparum. The corresponding core domain

alignments assigned by Program 2 are shown, denoted respectively

‘Tg-core’ (with 53 columns in the evolved model plus 2 adjacent

positively-scoring columns added from the left-flank) and ‘Pf-core’

(with 53 columns) respectively. These patterns exclude any

insertions in individual sequences: the number of inserted residues

is shown in a separate column. All of these domains have positive

bit scores with Programs 1 and 2, except for the special case of

domain 1.7, Table S3, which has been added manually to the T.

gondii alignment. This domain is notable because of its occurrence

within a multi-Api-AP2 protein and its strong match to the

canonical 53-column pattern; however, it also has an unusually

long insertion of 66 amino acids (assigned to the central loop by

Program 2), the cost of which results in an overall negative score.

The Tg-core (excluding domain 1.7) and the Pf-core alignments

shown in Tables S3 and S4 were used as seed alignments for

further analysis with HMMER version 2.3.2 (http://hmmer.

janelia.org). HMMbuild and HMMcalibrate were used with

default parameters to construct HMMs and calibrate their E-

value distributions, and HMMsearch was used with a permissive

E-value threshold of 100 to search the parasite genomic translation

databases against these HMMs. These searches gave positive bit

scores for the domains used for HMM construction (except

domain 1.8, which was not reported, Table S3), as shown in the

columns headed ‘bits (HMMsearch, Tg-core seed)’ and ‘bits

(HMMsearch, Pf-core seed)’. In some cases, HMMsearch

alignments encompassed only part of the Api-AP2 pattern, either

to the left or right of the central loop, denoted, respectively, ‘LH

only’ and ‘RH only’ in comments columns. Note that all of the

positively scoring sequences reported were present in the seed

alignment, and no new Api-AP2 domain candidates were found in

these HMMsearch database searches. HMMsearch scans of the

same databases were also seeded by Pfam model 00847 (converted

to a version 2.3.2 HMM with HMMbuild and HMMcalibrate as

described above). The resulting bit scores are given in the columns

headed ‘bits (HMMsearch, Pfam00847 seed)’. The Pfam00847

model seed alignment contains both plant and apicomplexan AP2

domains, including some from P. falciparum but none from T. gondii.

Consequently, the matches of Pfam00847 to the Api-AP2 domains

are generally weaker than the matches obtained with the more

specific models from Program 2 Api-AP2 core alignments,

resulting in substantially lower bit scores. Several domain

candidates (highlighted in color), 10 from T. gondii and 4 from P.

falciparum, were not reported by the Pfam00847 HMMsearch

above the E-value 100 threshold, and others (9 and 3 respectively)

were given negative scores (and non-significant E-values). These

low scores reflect misalignments (e.g. missed long insertions) in

some cases. In other cases, limited deviations from the canonical

conserved patterns occur, commonly in the first beta-strand.

However, such deviant residues appear to be structurally

compatible with the domain, with beta-strand-favoring propensi-

ties in most cases, suggesting that these examples may be authentic

but non-canonical Api-AP2 domains. HMMER methodology is

capable of identifying and aligning such domains if they are

included in the seed alignment, as shown by the bit scores given by

the Tg-core and Pf-core seeded searches. Indeed, the T. gondii

domain 62.1 (TGME49_062420), which is the example with a 45/

46 amino acid insertion shown in Figure 3, obtains a positive bit

score with HMMsearch (and 46 inserted residues) when it is

included in the Tg-core seed alignment (as in Table S3) but a

negative score and only a partial alignment otherwise, as indicated

in Figure 3 legend. In several cases, HMMsearch alignments

Log-Odds Scores for Multiple Alignment
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report different gap positions from Program 2, mostly with shorter

insertions. In the case of domain 66.1 (Table S3) the alignment

produced by HMMsearch appears to be more compatible with

beta-strand propensities than the Program 2 alignment shown in

Table S3, whereas in 6 other cases, the HMMsearch alignment

appears more disruptive of secondary structure. This observation

supports the potential benefit of incorporating secondary structure

prediction into an HMM-based domain recognition strategy, as

proposed by Won et al. [(2007) BMC Bioinformatics 8: 357]. Overall,

the HMMsearch results shown in these Tables, compared with the

Programs 1 and 2 output, show many more similarities than

differences: the two approaches can achieve very similar results

with appropriate inputs. Our examples also illustrate how the

relatively simple BILD score based approaches, by reducing the

strict dependence on seed alignments, might facilitate more

automated processes for the discovery and reporting of protein

domain families and more flexible updating strategies.

Found at: doi:10.1371/journal.pcbi.1000852.s008 (0.05 MB XLS)

Table S4 Api-AP2 domains and bit scores reported by Programs

1 and 2 for Plasmodium falciparum. For more details please see

caption to Table S3.

Found at: doi:10.1371/journal.pcbi.1000852.s009 (0.03 MB XLS)
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