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Abstract

It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average
behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt
at each step, not just on average. Here, we propose an analytical framework that reconciles issues of optimality, redundancy,
and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of
one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from
healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations
into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased
variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-
irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride,
while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only
strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a
specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal
function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic
control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that
healthy humans are not precisely ‘‘optimal,’’ but instead consistently slightly over-correct small deviations in walking speed
at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that
acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve
robust control while minimizing effort and allowing potentially beneficial motor variability.
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Introduction

Walking is an essential task most people take for granted every

day. However, the neural systems that regulate walking perform

many complex functions, especially when we walk in unpredict-

able environments. These systems continuously integrate multiple

sensory inputs [1–4] and generate motor outputs to coordinate

many muscles to achieve efficient, stable, and adaptable

locomotion. Establishing the fundamental principles that guide

this control is central to understanding how the central nervous

system regulates walking.

The principal idea used to explain how humans and animals

regulate walking has been energy cost [5–12]. At a given speed,

humans choose an average step length and frequency that

minimizes energy cost [7,9,10,12]. Small changes in either average

stride length or average stride time increase energy cost in humans

similarly (Fig. 1, and Supplementary Text S1) [7]. These

experimental findings have been supported by multiple computa-

tional models [9–11,13,14]. Such optimality principles have been

a major focus for understanding the control of complex

movements [15–20]. However, these optimization criteria have

been used primarily to predict average behavior, not to explain

the variability ubiquitously observed in movements like walking

[21–24]. Understanding the nature of this variability may be

critical to understanding how humans perform skilled movements

[25–34]. Most optimization approaches do not address whether

the nervous system must overcome all variability as a limiting

constraint [16,26,29,32], or instead exploits redundancy to regulate

variability in ways that help maximize task performance

[25,27,28,34].

Others have sought to determine how muscles are organized into

functional synergies to resolve the inherent redundancy of complex

movements [35–37]. These efforts likewise characterize average

behavior and so also provide few insights into movement

variability. Conversely, redundancy gives rise to equifinality: i.e.,

there are typically an infinite number of ways to perform the same

action [25,38]. Equifinality permits individuals to perform complex

tasks reliably and repeatedly while allowing variability in a

movement’s particulars. This is thought to facilitate adaptability

in motor performance [25]. Recent researchers have addressed this

issue experimentally using the geometry-based uncontrolled

manifold (UCM) approach [39,40]. A related concept, the
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minimum intervention principle (MIP) [27,28,41] ties these ideas

to stochastic optimal control theory and provides a concrete

computational framework for predicting precisely how trial-to-trial

movement variability arises in redundant motor systems perform-

ing tasks with well prescribed goals [18,27,28,41,42].

During walking, humans need to adapt at every step (not just on

average) to be able to respond to externally and/or internally

generated perturbations [23,43,44]. While the neurophysiological

mechanisms that enact these responses are well known [1–4], the

fundamental principles governing adaptation from stride to stride

remain unknown. Small stride-to-stride fluctuations in gait

dynamics are typically assumed to reflect random noise. Indeed,

there is ample evidence supporting multiple sensory and motor

sources of physiological noise [31,45–48]. However, stride-to-

stride variations in gait cycle timing exhibit statistical persistence

[22,49,50], which has been argued to be ‘‘indispensible’’ to healthy

physiological function [51,52]. Stride intervals become more

uncorrelated (i.e., less persistent) in elderly subjects and patients

with Huntington’s disease [53], but not in patients with peripheral

sensory loss [54]. Understanding how stride-to-stride control is

enacted therefore requires quantifying not only average magni-

tudes of variations across strides, but also the specific temporal

sequencing of those variations.

Here, we formulate goal functions [25] that give concrete

mathematical form to hypotheses on the strategies used to achieve

a given task. This provides a unifying framework for reconciling

issues of optimality, redundancy, and stochasticity in human

walking. Walking on a motor driven treadmill only requires that

subjects do not ‘‘walk off’’ either the front or back end of the

treadmill. While subjects must, over time, walk at the same

average speed as the treadmill, variations in speed due to changes

in stride length and/or stride time do occur and can be sustained

over several consecutive strides [23,24,55,56]. The main question

addressed here is how do people regulate these variations?

We present a mathematical definition of a specific hypothesized

task strategy [25,57] with the goal to maintain constant walking

speed at each stride. This yields a decomposition of stride-to-stride

variations into new gait variables explicitly related to achieving this

strategy. Time series analyses confirm that humans do indeed

adopt this hypothesized strategy. We similarly analyze three

alternative strategies that equally achieve the task requirements,

but make no reference to the hypothesized goal function. Humans

do not adopt any of these alternatives. Finally, we develop a

sequence of stochastic optimal control models of stride-to-stride

dynamics to determine if they replicate our observations. These

models confirm that healthy humans do carefully regulate their

movements explicitly to maintain constant speed at each stride.

However, humans do not use strategies that are precisely

‘‘optimal’’ with respect to the employed cost functions, but instead

slightly but consistently over-correct small deviations in walking

speed from each stride to the next.

Results

The primary task requirement for walking on a treadmill with

belt speed v is to not walk off the treadmill. The net change in

displacement, relative to the laboratory reference frame, for stride

n is determined by the stride length, Ln, and stride time, Tn, as

Ln{vTn. Thus, this task can be mathematically defined by:

{
LTM

2
v

XN

n~1

Ln{v Tnð Þvz
LTM

2
, ð1Þ

Figure 1. Predicted metabolic cost as a function of average
stride length (L) and average stride time (T). Contour lines
represent iso-energy level curves for average energetic cost of
transport: i.e., energy expenditure per distance walked per kg of body
mass (cal/m/kg). The optimum (i.e., minimal) cost [TOpt, LOpt] occurs at
the center of the figure. These contours were determined from the
empirical equations derived by Zarrugh et al. [7]. Representative results
are shown for the nominal gait pattern of one typical subject, after
subtracting the metabolic cost of standing [7]. The diagonal black line
represents the line of constant speed, v, which passes through [TOpt,
LOpt]. Horizontal and vertical error bars indicate the energetic
consequences of 67% errors in either T or L, respectively. These are
similar in amplitude to 63 standard deviations in each of these
variables, as observed experimentally (Fig. 3D–E), and thus approximate
the general range of stride-to-stride variations expected to be observed
in these measures. The horizontal and vertical axes are likewise scaled
to 612% change in each variable. These iso-energy contours are nearly
isotropic: i.e., relative changes in stride length incur nearly the same
energetic cost penalty as comparable relative changes in stride time.
(See Supplementary Text S1 for additional details).
doi:10.1371/journal.pcbi.1000856.g001

Author Summary

Existing principles used to explain how locomotion is
controlled predict average, long-term behavior. However,
neuromuscular noise continuously disrupts these move-
ments, presenting a significant challenge for the nervous
system. One possibility is that the nervous system must
overcome all neuromuscular variability as a constraint
limiting performance. Conversely, we show that humans
walking on a treadmill exploit redundancy to adjust
stepping movements at each stride and maintain perfor-
mance. This strategy is not required by the task itself, but is
predicted by appropriate stochastic control models. Thus,
the nervous system simplifies control by strongly regulat-
ing goal-relevant fluctuations, while largely ignoring non-
essential variations. Properly determining how stochasti-
city affects control is critical to developing biological
models, since neuro-motor fluctuations are intrinsic to
these systems. Our work unifies the perspectives of time
series analysis researchers, motor coordination researchers,
and motor control theorists by providing a single
dynamical framework for studying variability in the context
of goal-directedness.

Controlling Step Variability in Treadmill Walking
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where the summation is the net displacement walked over N strides

and LTM is the length of the treadmill belt. A key observation is

that any sequence of Ln and Tn that satisfies this inequality will

successfully accomplish the treadmill walking task. Many possible

strategies for generating such a sequence of Ln and Tn exist. The

simplest strategy can be formulated using the goal function [25]:

Ln{v Tn~0 ? Ln=Tn~v: ð2Þ

That is, subjects could attempt to maintain constant speed at each

stride. This goal function is not a ‘‘constraint,’’ however, because it

is not required by Eq. (1). It is instead only one possible movement

strategy. The solid line in Fig. 2 defines a ‘‘Goal Equivalent

Manifold’’ (GEM) [25] containing all [Tn, Ln] pairs that equally

satisfy Eq. (2). We hypothesized that humans minimize errors

relative to this GEM. Thus, for the present analyses, the relevant

stride-to-stride walking dynamics are entirely captured by the

impact Poincaré section [58,59] defined by the [Tn, Ln] plane

(Fig. 2).

The hypothesized GEM exists prior to, and independent of, any

specific control policy people might adopt to regulate their

stepping movements. To determine if humans adopt a strategy

that explicitly recognizes this GEM, we defined deviations tangent

(dT) and perpendicular (dP) to it and converted [Tn, Ln] coordinates

into GEM-specific [dT, dP] coordinates (Fig. 2B, Eq. 3). The dT

deviations are ‘‘goal equivalent’’ because they do not affect walking

speed, while dP deviations are ‘‘goal relevant’’ because they do. We

therefore hypothesized that subjects would exhibit greater

variability in dT than in dP [25,27,28]. We also hypothesized that

subjects would not immediately correct deviations along the GEM:

i.e., dT time series would exhibit statistical persistence [57].

Conversely, we hypothesized that subjects would rapidly correct

deviations perpendicular to the GEM: i.e., dP time series would

exhibit greatly decreased persistence [57], or anti-persistence.

Primary Dynamical Features of Treadmill Gait
To test GEMs of different location/orientation, subjects walked

on a motorized treadmill at each of 5 constant speeds, from 80%

to 120% of their preferred walking speed (PWS). Time series of

stride times (Tn), stride lengths (Ln), and stride speeds (Sn = Ln/Tn)

for all strides within each trial were obtained and analyzed.

As expected, when subjects walked faster, they increased stride

lengths (Fig. 3A), decreased stride times (Fig. 3B), and increased

stride speeds (Fig. 3C). Stride length variability (Fig. 3D) increased

slightly at speeds faster and slower than PWS, while stride time

variability (Fig. 3E) increased at slower walking speeds, and stride

speed variability (Fig. 3F) increased at faster walking speeds.

However, standard deviations only quantify the average magni-

tude of differences across all strides, regardless of temporal order.

They yield no information about how each stride affects

subsequent strides.

Therefore, to quantify temporal correlations across consecutive

strides, we computed scaling exponents, a, using Detrended

Fluctuation Analysis (DFA) [22,49,51,52] (see Methods). a.K
indicates statistical persistence: deviations in one direction are more

likely to be followed by deviations in the same direction. a,K
implies anti-persistence: deviations in one direction are more likely

to be followed by deviations in the opposite direction. a = K
indicates uncorrelated noise: all deviations are equally likely to be

followed by deviations in either direction. In the context of control,

statistical persistence (a.K) is interpreted as indicating variables

that are not tightly regulated. Conversely, variables that are tightly

regulated are expected to exhibit either uncorrelated or anti-

persistent fluctuations (a#,K).

Consistent with previous results [22,50,54], Tn and Ln time

series (Figs. 3G, 3H) both exhibited significant statistical

persistence (a.K). Conversely, Sn time series (Fig. 3I) exhibited

consistent and statistically significant anti-persistence (,0.4,

a,0.5). Thus, at all walking speeds, deviations in both Tn and

Ln were allowed to persist, while deviations in Sn were rapidly

Figure 2. Schematic representation of the goal equivalent
manifold (GEM) for walking. (A) Example stride time and stride
length data. Each dot represents the particular combination of stride
length (Ln) and stride time (Tn) for one individual stride. The solid
diagonal line defines the set of all combinations of Ln and Tn that
achieve the exact same speed, v. This line is the Goal Equivalent
Manifold (GEM) for walking (Eq. 2) at constant speed v. The dashed
diagonal lines represent 65% error in maintaining this constant speed.
(B) To facilitate the analyses, we non-dimensionalize the data by
normalizing the Ln and Tn time series each to unit variance. We then re-
define the goal function and the GEM accordingly. We define
orthonormal basis vectors, [êT, êP], aligned tangent to and perpendicular
to the GEM, respectively. We then transform the dimensionless Ln and
Tn time series into dT and dP time series of deviations in the êT and êP

directions, respectively, relative to the mean operating point, [T*, L*],
along the GEM. Note that the GEM is defined by the average walking
speed as set by the treadmill and is therefore independent of how data
points representing individual strides are distributed within the [Tn, Ln]
plane. The GEM exists prior to and independent of any notions of how
people actually control their stride-to-stride movements with respect to
it (if at all).
doi:10.1371/journal.pcbi.1000856.g002

Controlling Step Variability in Treadmill Walking
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reversed on subsequent strides. This provides indirect evidence

that subjects did not regulate Tn or Ln independently, but instead

adjusted both Tn and Ln in a coordinated manner to maintain

walking speed.

As expected [23,24,55,56], subjects did ‘‘drift’’ forward and

backward (Eq. 1) over time along the treadmill belt (Fig. 4A). Most

of these drifting movements remained contained within approx-

imately the middle one third of the treadmill belt (Fig. 4B). This

suggested that subjects adopted a more ‘‘conservative’’ walking

strategy than actually required by the inequality constraint of Eq. (1).

However, these movements also exhibited a high degree of

statistical persistence (,1.25,a,,1.55) at all walking speeds

(Fig. 4C). Thus, deviations in absolute position along the treadmill

belt were allowed to persist even more so than deviations in either

Tn or Ln. Thus, absolute position itself was not a tightly controlled

variable for this task.

GEM-Based Decomposition of Gait Variability
Plots of Ln versus Tn (e.g., Fig. 5A) exhibited distributions

elongated along the GEM. As hypothesized, subjects exhibited far

greater variability along the GEM than perpendicular to it

(F(1,16) = 139.93; p = 2.5361029; Fig. 5C). This contrasts with

what would be expected if the distributions of [Tn, Ln] points were

solely a reflection of average metabolic costs, given the nearly

circular energy contours seen in Fig. 1. Additionally, the dT time

series all exhibited standard deviations ..1, while the dP time

series all exhibited standard deviations ,,1 (Fig. 5C). Thus,

subjects consistently exhibited much greater dT variability and

much less dP variability than they did for either normalized

(i.e., standard deviation = 1) Tn or Ln time series.

The dT and dP time series exhibited temporal correlation

structures qualitatively very different from each other (Fig. 5B). As

hypothesized, subjects exhibited far greater statistical persistence

Figure 3. Primary gait parameters. Means (A, B, C), standard deviations (s: D, E, F), and DFA exponents (a: G, H, I), for stride length (Ln), stride
time (Tn), and stride speed (Sn) as a function of walking speed from 80% to 120% of preferred walking speed (PWS). Error bars indicate between-
subject 695% confidence intervals at each speed. At faster walking speeds, subjects adopted longer stride lengths (A) and faster stride times (B). The
variability in stride length (D) remained similar across speeds, while the variability in stride times (E) decreased at faster walking speeds.
Consequently, the variability in the stride speeds (F) increased slightly at faster walking speeds. Subjects exhibited significant stride-to-stride
statistical persistence (i.e., a..K) in both stride lengths (G) and stride times (H), suggesting that deviations in these measures were not immediately
corrected on consecutive strides. Conversely, subjects consistently exhibited slight anti-persistence (i.e., a,K) in stride speeds (I), suggesting that
this measure of walking performance was under tighter control. Note: Linear trend lines in (A)–(C) and quadratic trend lines in (D)–(I) are shown only
to provide a visual reference.
doi:10.1371/journal.pcbi.1000856.g003

Controlling Step Variability in Treadmill Walking
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for dT than for dP (F(1,16) = 368.21; p = 1.81610212; Fig. 5D).

Additionally, all subjects exhibited significant statistical anti-

persistence (i.e., 95% CI upper bounds for a,K) for the goal-

relevant dP deviations at all five walking speeds. Thus, subjects

rapidly corrected dP deviations from each stride to the next, while

allowing dT deviations to persist across multiple strides, indepen-

dent of the magnitudes of these fluctuations.

Surrogate Analyses – Plausible Alternative Strategies
One obvious question is whether these observed dynamics

represented the only viable strategy subjects could have used.

Rejecting this possibility requires only that we identify at least one

alternative strategy that still satisfied the fundamental task

requirements (Eq. 1), but was completely ‘‘ignorant’’ of the

proposed GEM defined by Eq. 2. Here, we present three such

alternatives using ‘‘surrogate’’ data [60,61] that each represent the

output of a particular type of data-based model of the observed stride-

to-stride dynamics. Each surrogate model directly tested a specific

null hypothesis that subjects could have successfully completed the

treadmill walking task (i.e., satisfied Eq. 1) using a strategy that

made absolutely no reference to the GEM.

The first alternative strategy was to choose a reference point,

[T*, L*] (e.g., Fig. 1), on the GEM and maintain sufficiently small

variance about this point to satisfy Eq. (1). Here, ‘‘control’’ would

consist entirely of suppressing variability in both Ln and Tn caused

by neuro-motor noise. This controller would therefore be

completely ignorant of the GEM. We implemented this hypothet-

ical controller by generating 20 randomly shuffled surrogates

[22,60,61] for each experimental trial. This procedure maintained

the exact same means and variances of the original Ln and Tn time

series (Fig. 6A). However, all effects of temporal order were

eliminated, yielding statistically uncorrelated time series (a<K;

Fig. 6B). By construction, all surrogates were constrained to not

‘‘walk off’’ the front or back end of the treadmill (Fig. 6C), thus

satisfying Eq. 1.

These surrogates exhibited approximately isotropic distributions

(i.e., no obvious directionality) about [T*, L*] within the [Tn, Ln]

plane (Fig. 6D). Likewise, dP and dT time series were qualitatively

very similar to each other (Fig. 6E). Standard deviations for dP and

dT were both<1 and not significantly different (F(1,16) = 2.614;

p = 0.125; Fig. 6F). DFA a exponents for dP and dT were both<K
and also not significantly different (F(1,16) = 0.413; p = 0.529;

Fig. 6G). Most importantly, these surrogates exhibited statistical

and dynamical properties drastically different from the experi-

mental data (Fig. 5). Thus, the null hypothesis that subjects used

this alternative ‘‘GEM ignorant’’ strategy to accomplish the

treadmill walking task was rejected.

Fig. 6 demonstrates unequivocally that the strategy subjects used

(Fig. 5) was not the only successful strategy they could have

adopted. They could have adopted a control policy that equally

achieved the task requirement defined by Eq. 1 without using the

GEM-based control strategy defined by Eq. 2. We also used

surrogate data techniques to test two additional model hypotheses

of how subjects might have controlled their stride-to-stride

dynamics. We tested a second alternative strategy that also

regulated Tn and Ln independently of the GEM, but in a way that

retained the statistical persistence observed in humans (Fig. 3G,H)

[22,53,54]. We then tested a third possibility that the covariation

observed in [Tn, Ln] (Figs. 5A,C) was not due to stride-to-stride

‘‘control,’’ but to simple biomechanics [42]: i.e., taking longer (or

shorter) Ln naturally required longer (or shorter) Tn. Subjects did

not adopt either of these two viable alternative control strategies.

Full details and results of these analyses are presented in

Supplementary Text S2.

Stochastic Optimal Control Models
To obtain more definitive conclusions about the underlying

control policies used, we first hypothesized that subjects controlled

their movements based on the minimum intervention principle

(MIP) [27,28,41,42]. We created a model ‘‘walker’’ (see Methods),

where a two-dimensional state variable, xn = [Tn, Ln]
T, defined

each stride. We implemented a stochastic optimal control policy

that directly corrected dP deviations at each stride, but ignored dT

deviations.

By construction, this MIP model walked with nearly the same

average stride parameters (Fig. 7A) and stride speed (Sn) standard

deviations (Fig. 7B) as humans. However, the MIP model

exhibited substantially greater variability in both Ln and Tn

(Fig. 7B). The MIP model also exhibited much greater statistical

Figure 4. Absolute distances walked on the treadmill. (A) Net
cumulative distance, dnet(n), walked (i.e., absolute position, Eq. 6) on the
treadmill over time for a typical trial for a typical human subject. Dashed
horizontal lines at 60.864 m indicate the front and back limits of the
treadmill belt. All subjects exhibited substantial deviations in absolute
position that were sustained across multiple strides, consistent with
previous findings [23,24,55,56]. (B) Histogram of maximum rearward
(2) and forward (+) distances walked by each subject during each trial
at all 5 speeds (166 total trials). Histograms for each individual speed
looked similar. Note that most subjects did not get close to reaching
the treadmill belt limits (60.864 m). (C) These stride-to-stride shifts in
absolute treadmill position exhibited very strong statistical persisten-
ce,approaching that of Brownian motion (i.e., integrated white noise:
a = 1.5), particularly at the faster walking speeds. Thus, these deviations
in absolute position were not tightly controlled. Note: the vertical scale
here is quite different from Fig. 3G–I. The quadratic trend line is shown
only to provide a visual reference.
doi:10.1371/journal.pcbi.1000856.g004

Controlling Step Variability in Treadmill Walking
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persistence for Ln and Tn than humans, while Sn was statistically

uncorrelated (Fig. 7C). Data points were aligned very closely to the

GEM (Fig. 7D). The dT time series exhibited both much greater

variability (F(1,39) = 6,076.51; p = 1.53610243; Fig. 7E,F) and more

persistent fluctuations (F(1,39) = 1,969.18; p = 2.40610234;

Fig. 7E,G) than did dP. Because no control effort was applied

along the GEM, consecutive strides exhibited approximately

random walk behavior, or Brownian motion, (i.e., a <1.5) in dT.

Thus, our hypothesis that subjects adopted this stochastically

optimal MIP control [27,28] was rejected.

However, the MIP model did not incorporate any additional

physiological and/or biomechanical constraints. Because human

legs have finite length, they cannot take extremely long steps

easily. Because they have inertia, they cannot easily move

extremely fast. Likewise, the MIP model incorporated no capacity

to minimize energy cost [5–12]. Each of these factors would act

to constrain the choices of Ln and Tn to a smaller range along the

GEM. We therefore hypothesized that subjects adopted a

different MIP-based control policy that also used a ‘‘preferred

operating point’’ (POP) on the GEM, where this POP, [T*, L*],

was assumed to be equal to the mean stride time and stride length

(Fig. 8).

By construction, this POP model also walked with nearly the

same average stride parameters (Fig. 8A) and variability (Fig. 8B)

as humans. Likewise, this model exhibited statistical persistence

(a.K) for both Ln and Tn that, while still greater, were much

closer to those of humans (Fig. 8C). This model did not, however,

capture the anti-persistence (a,K) exhibited by humans for Sn

(Fig. 8C). The POP model exhibited greater relative dP variability

than did the MIP model (Fig. 8D,E), very similar to humans

(Fig. 8F). The magnitudes of the dT fluctuations were much greater

than those of the dP fluctuations (F(1,39) = 2,916.30; p =

1.55610237; Fig. 8F). This model also exhibited larger DFA a
exponents for dT fluctuations than for dP fluctuations (F(1,39) =

597.27; p = 7.61610225; Fig. 8G). As expected, a exponents for dT

were greatly reduced compared to the MIP model. However,

this model still failed to replicate the anti-persistent (a,K) dP

fluctuations exhibited by humans (Fig. 8G). Thus, our hypothesis

that subjects adopted this modified control policy was partly

supported, but ultimately rejected.

The MIP and POP models both optimally corrected deviations

away from the GEM at the next stride. Thus, the dP fluctuations in

each case (Figs. 7G, 8G) reflected nearly uncorrelated white noise

(a<K). Conversely, humans consistently exhibited statistical anti-

Figure 5. GEM decomposition results. (A) Example GEM data from a typical subject. Individual dots represent individual strides. The diagonal line
represents the GEM (see Fig. 2). (B) Time series of dT and dP deviations for the data set shown in (A). Qualitatively, the dT deviations exhibit larger
amplitudes and also appear to show greater statistical persistence than the dP deviations. (C) Standard deviations for all dT and dP time series at all 5
walking speeds. Error bars represent between-subject 695% confidence intervals. Subjects exhibited significantly greater variability along the GEM
(dT) than perpendicular to the GEM (dP): F(1,16) = 139.93; p = 2.5361029. (D) DFA a exponents for all dT and dP time series at all 5 walking speeds. Error
bars represent between-subject 695% confidence intervals. Subjects exhibited significantly greater statistical persistence along the GEM (dT) than
perpendicular to the GEM (dP): F(1,16) = 368.21; p = 1.81610212. Additionally, all subjects exhibited significant anti-persistence (95% confidence interval
upper bounds all ,K) for the goal-relevant dP deviations at all 5 walking speeds.
doi:10.1371/journal.pcbi.1000856.g005

Controlling Step Variability in Treadmill Walking
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persistence (a,K) in their dP fluctuations (Fig. 5D). This suggests

that humans corrected these dP deviations more than would be

expected from a single stride optimal control policy. To test this

hypothesis, we implemented an ‘‘OVC’’ controller that slightly

over-corrected dP deviations at each successive stride (Fig. 9).

By construction, this OVC model walked with nearly the same

average stride parameters (Fig. 9A), stride variability (Fig. 9B), and

statistical persistence for both Tn and Ln (Fig. 9C) as humans. Unlike

the MIP and POP models, this OVC model did capture the anti-

persistence (a,K) exhibited by humans for Sn (Fig. 9C). The OVC

model yielded GEM decomposition results qualitatively (Figs. 9D,E)

and quantitatively (Figs. 9F,G) consistent with humans. Most

importantly, this model now exhibited the anti-persistent dP

fluctuations (Fig. 9G) observed in humans (Fig. 5D). Thus, our

hypothesis that subjects adopted a control policy that slightly over-

corrected deviations away from the GEM was supported.

Figure 6. Independently randomly shuffled surrogate walking. All error bars represent between-subject 695% confidence intervals. By
definition, these surrogates exhibited the same mean stride parameters (not shown) as the original walking data (Fig. 3A–C). (A) These
surrogates exhibited the same Ln and Tn variability as the original data (Fig. 3D–E). However, Sn variability increased slightly (compare to
Fig. 3F). (B) Unlike the experimental trials (Fig. 3G–I), these surrogates exhibited no strong temporal correlations (all a<K) for any of the basic
stride parameters (Note, the vertical scale is very different from Fig. 3G–I). (C) Histograms of maximum forward and backward distances walked
by all 20 surrogates for each trial. By construction, no surrogate walked beyond either the front or back edges of the treadmill belt (i.e.,
60.864 m). (D) A typical surrogate for the trial shown in Fig. 5A. The GEM (diagonal line) remains the same. However, the distribution of strides
around the GEM is now approximately isotropic. (E) Time series of dT and dP deviations for the surrogate trial shown in (D). Neither time series
exhibited obvious persistence. (F) Variability (s) for dT and dP deviations from the GEM was not significantly different (F(1,16) = 2.614; p = 0.125)
(Compare to Fig. 5C and note the different vertical scales). (G) There were no strong temporal correlations (a<K) for either dT or dP deviations
and a’s for both directions were not different from each other (F(1,16) = 0.413; p = 0.529) (Compare to Fig. 5D and note the different vertical
scales).
doi:10.1371/journal.pcbi.1000856.g006
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Discussion

This study set out to determine how humans regulate stride-to-

stride variations in treadmill walking. We specifically sought to

determine if the nervous system always overcomes all variability as

a fundamental performance limitation [16,26,29,32], or if it

instead exploits redundancy to selectively regulate the effects of

variability and enhance task performance [25,27,28]. We

demonstrate that formulating mathematical hypotheses on specific

strategies (e.g., Eq. 2) used to achieve task requirements (e.g., Eq.

1) can reconcile issues of optimality, redundancy, and stochasticity

in human walking. Our results reveal a new governing principle

for regulating stride-to-stride fluctuations in human walking that

acts independently of, but in parallel with, the principle of minimizing

energy cost [5–12].

We hypothesized that humans walking on a treadmill would

adopt a specific strategy [25,57] to maintain constant speed at

each consecutive stride (Eq. 2), something not absolutely

required to complete this task. This yielded a decomposition

of stride-to-stride variations into new gait variables (dP and dT)

(Fig. 2). Human subjects adjusted their steps specifically to

achieve this hypothesized strategy (Fig. 5). Moreover, they did

so across a range of walking speeds, demonstrating that this

strategy is robust to alterations in task requirements. Subjects

did not use perfectly viable alternative strategies, including three

that completely ignored the GEM (Figs. 6 and Supplementary

Text S2), and two based on optimal control models (Figs. 7–8).

Instead, stride-to-stride dynamics were directly consistent with

a control strategy that first seeks to minimize goal-relevant dP

errors (Fig. 7) [25,27], but then also weakly limits dT variations

(Fig. 8) and slightly over-corrects dP deviations (Fig. 9). These

results confirm that the neuromotor control of treadmill

walking is organized around the hypothesized goal function

(Eq. 2).

Figure 7. Stochastically optimal minimum intervention principle (MIP) model for step regulation. All error bars represent between-
subject 695% confidence intervals. In (A)–(C) and (F)–(G), HUM data are the experimental data from Fig. 3 for 100% PWS. (A) Mean stride lengths
(Ln), times (Tn) and speeds (Sn) for humans (HUM) and for the MIP model (MIP). (B) Within-subject standard deviations for Ln, Tn, and Sn. (C) DFA
exponents (a) for Ln, Tn, and Sn. (D) A typical trial for the MIP model. The diagonal line represents the GEM. As expected, the distribution of strides is
very tightly compressed along the GEM. (E) Time series of dT and dP deviations for the trial shown in (D). Note the substantial statistical persistence
exhibited by the dT time series. (F) Variability (s) for the MIP model data was significantly greater for dT deviations than for dP deviations
(F(1,39) = 6,076.51; p = 1.53610243). The MIP model exhibited much greater dT variability and much less dP variability than did human subjects (HUM).
(G) DFA exponents (a) for the MIP model were significantly larger for dT deviations than for dP deviations (F(1,39) = 1,969.18; p = 2.40610234). DFA
exponents (a) for dT deviations were ,1.5, reflecting Brownian motion (i.e., statistical diffusion) along the GEM. Conversely, a exponents for the dP

deviations were ,K, reflecting nearly uncorrelated fluctuations. These goal-relevant dP deviations did not exhibit the anti-persistent behavior seen in
the experimental data (Fig. 5D).
doi:10.1371/journal.pcbi.1000856.g007
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Beyond the five alternative control strategies clearly rejected by

our results (Figs. 6–8 and Supplementary Text S2), other plausible

alternatives were considered. One seemingly reasonable strategy

might be to try to stay at a fixed location on the treadmill. Such

absolute position control would necessitate regulating dnet(n) (see

Methods, Eq. 4), in contrast with the controllers derived here that

regulate stride speed, (Eq. 2). However, the statistical persistence in

the experimental dnet(n) data (Fig. 4A,C) strongly suggests that

people do not regulate their walking this way. Our stochastic

optimal control models demonstrate that the level of control

strongly determines the statistical persistence of a time series. For

both the MIP and POP models (Figs. 7–8), stochastic optimal

control with respect to the hypothesized GEM (Eq. 2) yielded dP

fluctuations with a(dP)<K (Figs. 7G & 8G). Increasing the control

gains above unity for the OVC model (so the model over-corrected

errors in dP) yielded a(dP),K (Fig. 9G). Likewise, decreasing these

control gains (so the model under-corrected errors in dP) would

yield a(dP).K. This phenomenon was also observed along the

GEM. The POP and OVC models that applied weak control along

the GEM yielded K,a(dT),1 (Figs. 8G & 9G). The MIP model

that applied no control along the GEM yielded a(dT)<1K
(Fig. 7G), as predicted. A value of a = 1K corresponds to

Brownian motion, where each deviation is simply a random

change from the previous value. Thus, a position controller that

minimized dnet(n) in a stochastically optimal way would similarly

yield a(dnet)<K. This was clearly not observed in our experiments,

where we instead found a(dnet)<1K (Fig. 4C). Thus, the possibility

of absolute position control was also rejected in favor of speed

control.

Minimizing energy cost has been the primary explanation for

how humans and animals regulate walking [5–12]. This criterion

predicts the presence of a single optimal operating point, [TOpt,

LOpt], in the [Tn, Ln] plane [7,9,10]. Deviations away from [TOpt,

LOpt], induced for example by neuromuscular noise [31,45–47],

would increase energy cost approximately equally for equivalent

relative changes in all directions (Fig. 1). If variability were merely

Figure 8. Stochastically optimal MIP-based model with ‘‘preferred operating point’’ (POP) for step regulation. All error bars represent
between-subject 695% confidence intervals. In (A)–(C) and (F)–(G), HUM data are the experimental data from Fig. 3 for 100% PWS. (A) Mean stride
lengths (Ln), times (Tn) and speeds (Sn) for humans (HUM) and for the POP model. (B) Within-subject standard deviations for Ln, Tn, and Sn. (C) DFA
exponents (a) for Ln, Tn, and Sn. (D) A typical POP model trial. The diagonal line represents the GEM. As expected, the distribution of strides is not
nearly as compressed along the GEM as for the MIP model (Fig. 7D). (E) Time series of dT and dP deviations for the trial shown in (D). The dT time series
appears to exhibit persistence. The dP time series does not. (F) Variability (s) for the POP model was still greater for dT deviations than for dP

deviations (F(1,39) = 2,916.30; p = 1.55610237). However, the variance ratio, s(dT)/s(dP), was much closer that of humans. (G) DFA exponents (a) for the
POP model were significantly larger for dT deviations than for dP deviations (F(1,39) = 597.27; p = 7.61610225). For dT deviations, these a were still .1.0,
reflecting substantial statistical persistence. Likewise, the a for dP deviations were still ,K, reflecting uncorrelated fluctuations. The dP deviations still
did not exhibit the anti-persistent behavior seen experimentally (Fig. 5D).
doi:10.1371/journal.pcbi.1000856.g008

Controlling Step Variability in Treadmill Walking

PLoS Computational Biology | www.ploscompbiol.org 9 July 2010 | Volume 6 | Issue 7 | e1000856



a limiting constraint the central nervous system must overcome

[16,26,29,32], the distributions of the variations around [TOpt,

LOpt] should, on average, approximate the shape of the contours

shown in Fig. 1 to minimize deviations from [TOpt, LOpt]. We did

not observe that here. Instead, all [Tn, Ln] data were strongly

oriented along the GEM (Fig. 3A,C). Indeed, the failure of the

surrogates (Fig. 6) to capture the experimentally observed gait

dynamics clearly refutes the idea that humans only try to minimize

variations in [Tn, Ln] about a single operating point. Instead, while

subjects rapidly corrected dP deviations, they allowed dT deviations

to persist (Fig. 5B,D), even though these deviations would increase

energy cost.

Our findings, however, remain compatible with the idea that

humans also try to minimize energy cost while walking. The failure

of the MIP model (Fig. 7) to capture the experimentally observed

gait dynamics demonstrates that humans do not only minimize

deviations away from the GEM. The POP model (Fig. 8), is

precisely compatible with adding the secondary goal of minimizing

energy cost. For the average walking speed modeled (v = 1.21.m/s),

we computed a POP of [T*, L*] = [1.105 s, 1.337 m]. Mechanical

walking models of Minetti [9] and Kuo [10] predict similar

energetically optimal POPs of [TOpt, lOpt] = [1.029 s, 1.247 m] and

[TOpt, LOpt] = [1.013 s, 1.228 m], respectively, for this speed.

Simplifications in both models account for their slightly under-

estimating the preferred [T*, L*] of actual humans [9].

Humans also consistently over-corrected dP deviations (Fig. 5D).

Our OVC model (Fig. 9) provides one possible explanation: that

humans use sub-optimal control to correct stride-to-stride

deviations. In the model, anti-persistence in dP implies sub-

optimal and vice-versa. More importantly, data analysis methods

currently used to substantiate UCM [39,40] and MIP

[18,27,28,42] predictions would not have captured this because

they only consider variability in the data. However, taken alone, our

variability results are entirely compatible with either the optimal

POP (Fig. 8F) or sub-optimal OVC (Fig. 9F) controllers. Only the

DFA analyses (Figs. 8G, 9G) allow us to distinguish these two

Figure 9. Sub-optimal MIP-based model with ‘‘over-correcting’’ (OVC) controller for step regulation. All error bars represent between-
subject 695% confidence intervals. In (A)–(C) and (F)–(G), HUM data are the experimental data from Fig. 5 for 100% PWS. (A) Mean stride lengths
(Ln), times (Tn) and speeds (Sn) for humans (HUM) and OVC model (OVC). (B) Within-subject standard deviations for Ln, Tn, and Sn. (C) DFA exponents
(a) for Ln, Tn, and Sn. (D) A typical OVC model trial. The diagonal line represents the GEM. The distribution of strides with respect to the GEM appears
similar to the POP model (Fig. 8D) and to humans (Fig. 5A). (E) Time series of dT and dP deviations for the trial shown in (D). The dP time series now
appears to exhibit slightly more rapid fluctuations than did the POP model (Fig. 8E). (F) Variability (s) for the OVC model was much greater for dT

deviations than for dP deviations (F(1,39) = 1,736.81; p = 2.49610233). The variance ratio, s(dT)/s(dP), was again very similar to humans. (G) DFA
exponents (a) for the OVC model were significantly larger for dT deviations than for dP deviations (F(1,39) = 713.02; p = 3.15610226). Deviations along
the GEM (dT) again exhibited statistical persistence. Conversely, the dP deviations consistently exhibited a,K. Thus, these dP deviations did exhibit
the anti-persistent behavior seen experimentally (Fig. 5D).
doi:10.1371/journal.pcbi.1000856.g009
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models, by offering an additional measure of stride-to-stride

dynamics [57,62] that is independent of variability [22,49,51].

Perhaps most explicitly, the paired surrogates (see Supplementary

Text S2) exhibited very strong alignment of variance along the

GEM, even though these surrogates, by definition, represented an

explicitly GEM-ignorant control strategy. Thus, quantifying vari-

ance ratios alone (as done in experimental applications of UCM

and MIP) can very easily lead to incorrect conclusions about

control (see also [42]). Our results demonstrate that it is critical to

quantify both variability and temporal dynamics [57,62] to fully

determine how repetitive movements are controlled.

The principal contribution of our work is thus to demonstrate

that considerations other than minimizing energy cost help

determine [Tn, Ln] at each stride. Subjects instead choose [Tn,

Ln] based on a hierarchy of defined goals [25], with at least one

short-term goal to maintain walking speed, and one long-term goal

to reduce energy cost. Humans adopt GEM-aware control over

short (stride-to-stride) time scales, while still minimizing energetic

cost over longer (on average) time scales. They readily exploit this

[Tn, Ln] redundancy during level treadmill walking, even though

they do not have to (Fig. 6 and Supplementary Text S2). This

ability to fully exploit the redundancy available could become

critical when tasks become more demanding. In walking for

example, rapidly and effectively adjusting successive steps could

become critical when negotiating uneven terrain [63]. However,

these adjustments need to be made at each step and not just on

average. Thus, GEM-aware control exploits inherent task

redundancy [25,27,28] to simultaneously achieve high task

performance (low error) while allowing possibly beneficial motor

variability.

The nervous system appears to estimate both motor errors and

the sources of those errors to guide continued adaptation

[30,31,33]. The neural structures involved in decision making

may even deliberately insert noise into the process to enhance

adaptation [64,65]. Exposing humans to tasks that share similar

structural characteristics but vary randomly may even help

facilitate the ability to generalize to novel tasks [33]. Similar

capacities were recently demonstrated even in highly-learned (i.e.,

‘‘crystallized’’) adult bird song [66], where residual variability in

this skill represented ‘‘meaningful motor exploration’’ to enhance

continued learning and performance optimization [31,66,67]. Our

findings suggest that similar purposeful motor exploration occurs

in the highly-learned task of human walking.

It has been widely argued that statistically persistent fluctuations

are a critical marker of ‘‘healthy’’ physiological function [51,52]

and that uncorrelated or anti-persistent fluctuations are a sign of

disease or pathology [51–53]. The present results strongly refute

this interpretation. The subjects tested here clearly cannot be

simultaneously both ‘‘healthy’’ (according to a(dT)) and ‘‘un-

healthy’’ (according to a(dP)) (Fig. 5D). Instead, our findings argue

for interpreting these DFA exponents specifically within the

context of the control processes involved (Figs. 7–9). This

interpretation is fully consistent with the fact that many random

processes can yield time series with a wide range of a values [68].

In previous work, this was directly supported by a simple

mechanical model of walking with minimal feedback control that

still exhibited a wide range of statistically persistent and anti-

persistent walking behaviors [62].

One question is whether the theoretical framework developed

here will generalize to other contexts. During unconstrained

overground walking [50], humans exhibited strong statistical

persistence for Tn and Ln similar to Fig. 5G–H. However, unlike

Fig. 5I, they also exhibited strong persistence for Sn [50]. When

those subjects walked in time with a metronome, Ln and Sn

remained strongly persistent [50], but Tn became anti-persistent

[50,69,70]. All three results (treadmill, overground, and metro-

nome) are precisely compatible with the idea that humans adopt

generalized ‘‘Minimum Intervention’’ [27] strategies to tightly

regulate only those variables that are directly relevant to achieving

some specified task goal [25]. On the treadmill, humans tightly

regulate walking speed (Fig. 5). Remove the treadmill, and subjects

no longer tightly regulate any one individual stride parameter [50].

Introduce a metronome, and subjects tightly regulate gait cycle

timing (Tn), but not Ln or Sn [50]. In all three contexts, factors beyond

minimizing energy cost help determine how stride-to-stride

movements are regulated. The critical first step is to identify the

appropriate goal function for each task [25].

Methods

Ethics Statement
All participants provided written informed consent, as approved

by the University of Texas Institutional Review Board.

Subjects and Protocol
Seventeen young healthy adults (12M/5F, age 18–28, height

1.7360.09 m, body mass 71.1169.86 kg), participated. Subjects

were screened to exclude anyone who reported any history of

orthopedic problems, recent lower extremity injuries, any visible

gait anomalies, or were taking medications that may have

influenced their gait.

Subjects walked on a level motor-driven treadmill (Desmo S

model, Woodway USA, Waukesha WI) while wearing comfortable

walking shoes and a safety harness (Protecta International,

Houston TX) that allowed natural arm swing [44]. First, preferred

self-selected walking speed (PWS) was determined [23]. Subjects

reported the limits of their PWS while the treadmill was slowly

accelerated and then decelerated three times. These upper and

lower limits were averaged to determine PWS [23]. Following a 2-

minute rest, subjects completed two 5-minute walking trials at

each of five speeds (80, 90, 100, 110 and 120% of PWS), presented

in pseudo-random order [44]. Subjects rested at least 2 minutes

between each trial to prevent fatigue. Subjects were instructed to

look ahead and avoid extraneous movements while walking. Data

from 1 trial from each of 4 subjects (i.e., 2.35% of all 170 trials

collected) were discarded due to poor data quality. For the

remaining 166 trials, an average of 272625 total strides (range:

213–334) were analyzed.

Data Collection and Processing
Five 14-mm retro-reflective markers were mounted to each shoe

(heads of the 2nd phalanx and 5th metatarsal, dorsum of the foot,

inferior to the fibula, and calcaneous). The movements of these

markers were recorded using an 8-camera Vicon 612 motion

capture system (Oxford Metrics, UK). All data were processed

using MATLAB 7.04 (Mathworks, Natick MA). Brief gaps in the

raw kinematic recordings were filled using rigid-body assumptions.

Marker trajectories were low-pass filtered with a zero-lag Butter-

worth filter at a cutoff frequency of 10 Hz. A heel strike was

defined as the point where the heel marker of the forward foot was

at its most forward point during each gait cycle.

For the present analyses, the relevant walking dynamics were

entirely captured by the impact Poincaré [58,59] section defined

by the [Tn, Ln] plane (Fig. 1). Thus, stride time (Tn) for each stride,

n, was calculated as the time from one heel contact to the next

ipsilateral heel contact. Step length was defined as the anterior-

posterior distance between the heel and the contralateral heel at

each heel contact, when both feet were in contact with the
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treadmill belt. Stride length (Ln) was calculated as the sum of the 2

consecutive step lengths composing each stride. Individual stride

speeds (Sn) were then calculated as Sn~Ln=Tn. Average walking

speed was computed as the average stride speed, v~SSnTn, where

S.Tn denotes the average over all n strides. Means, standard

deviations, and DFA scaling exponents (a, see below) were

computed across all strides for each Tn, Ln, and Sn time series

obtained from each walking trial (Fig. 3).

GEM Decomposition
Tn and Ln were first normalized to unit variance (Fig. 1B) by

dividing each time series by its own standard deviation (Fig. 3D–

E). This provided an intuitive reference (s= 1) for comparisons.

We explored the effects of performing several different normal-

izations, but these did not change our results. In fact, it can be

shown analytically that renormalizations of similar magnitude for

both variables (as done here) have no discernable effect on our

results. Using different normalizations of similar magnitudes for

both variables would change the values of the axis labels, but

would not change how the data were distributed in these plots. For

example, dividing all stride lengths and times in Fig. 1B by 10

would change the axis labels, but the graph itself would still look

identical. The GEM and êeP and êeT unit vectors also re-scale

accordingly. If we used different normalizations (with similar

magnitudes for both variables), the values of the standard deviations

would change, but the relative differences in variability (e.g., Fig. 5C,

etc.) would not. Since DFA a exponents are already unitless, these

measures (e.g., Fig. 5D, etc.) retain their same actual values as well.

We defined a specific operating point on each GEM as

T�~STnTn and L�~v T�, and defined new coordinates centered

at this operating point, T ’n~Tn{T� and L’n~Ln{L�. We then

performed a linear coordinate transformation to define the

deviations along the GEM, dT, and perpendicular to the GEM,

dP (Fig. 1):

dT

dP

� �
~

1ffiffiffiffiffiffiffiffiffiffiffiffi
1zv2
p

1 v

{v 1

� �
T ’n
L’n

� �
ð3Þ

Standard deviations and DFA scaling exponents (a, see Supple-

mentary Text S4) were computed across all strides for each dT and

dP time series obtained from each walking trial (Fig. 5).

Surrogate Time Series and Analyses
Three types of surrogate time series [60,61] were generated and

analyzed. First, randomly shuffled surrogates (Fig. 6) were generated

for each trial by independently shuffling each original Tn and Ln

time series in random order. These surrogates retained the exact

same mean, variance, and probability distribution of the original

time series, while eliminating all effects of temporal order and any

correlations between Tn and Ln. Randomly shuffled surrogates

tested an alternative control model where subjects choose stride

times and stride lengths that were independent of each other and

the GEM, and temporally independent from each stride to the

next.

Second, phase-randomized surrogates [43,60,61] were generated

separately for the original Tn and Ln time series for each trial (see

Supplementary Text S2). These surrogates tested an alternative

control model where subjects choose stride times and stride lengths

that were independent of each other and the GEM, but that

remained temporally correlated across consecutive strides.

Third, for each trial paired randomly shuffled surrogates were

generated simultaneously by randomly shuffling both Tn and Ln in

exactly the same way (see Supplementary Text S2). These

surrogates tested an alternative control model where stride times

and stride lengths may have been coupled mechanically, but were

still chosen independently of the GEM and independently from

each stride to the next.

All surrogates were constrained so they did not ‘‘walk off’’ the

treadmill (i.e., all surrogates satisfied Eq. 1). This was easily verified

by computing the net cumulative distance (dnet) each surrogate time

series would have walked relative to the treadmill at each stride, n:

dnet nð Þ~
Xn

i~1

di~
Xn

i~1

Li{v Tið Þ ð4Þ

where d = 0 represents the center of the treadmill belt. We then

extracted the maximum forward [max(dnet)], and backward

[min(dnet)] distances each surrogate walked during the entire trial

(e.g., Fig. 6C). In this way, we confirmed that none of the

surrogates walked off the treadmill (i.e., min(dnet)$20.864 m and

max(dnet)#+0.864 m in all cases). We generated 20 total such

surrogates for each original trial, or 3,320 of each type of

surrogate. Thus, all surrogates analyzed (9,660 in total) represent-

ed hypothetical walking trials that would have successfully

completed the entire trial without walking off of the treadmill.

For each surrogate, we then computed a new stride speed (Sn)

time series by dividing the surrogate Ln by the surrogate Tn time

series. These surrogates were then subjected to the same GEM

decomposition and analyses as the original time series. For each

trial, the average value of each dependent measure computed

across all 20 surrogates for that trial was computed and extracted

for statistical analyses.

Stochastic Control Models of Walking
The stride-to-stride dynamics on the treadmill were modeled as

a discrete map:

xnz1~xnzG IzNð Þ u xnð Þzg ð5Þ

where xn~ Tn, Ln½ �T was the state for the current stride n, xnz1

was the corresponding state for the next stride, and u xnð Þ was a

vector of control inputs. I was the 262 identity matrix. G was a

262 diagonal matrix with diagonal elements g1 and g2 denoting

additional gains, each set initially to 1 and used only as a

convenient means to tune the system away from optimality (see

Supplementary Text S3). N was a 262 diagonal multiplicative (i.e.,

motor output) noise matrix with nonzero diagonal elements. g was

a 261 vector of additive (i.e., sensory and/or perceptual) noise.

Non-zero elements of N and g were taken to be independent,

Gaussian random variables with mean zero and standard

deviation sk (see Supplementary Text S3).

The state update equation (Eq. 5) is intended to model only the

discrete-time inter-stride walking dynamics. That is, it represents a

simple model of the control processes that regulate noise-induced

fluctuations away from perfect performance by adjusting Tn and

Ln. The choice of states [Tn, Ln] was biologically motivated as these

variables are considered the fundamental variables of walking (e.g.,

see [7,10,12] and references therein). Together, they form the

most basic definition of ‘‘walking’’: i.e., at each stride, the walker

must move a finite distance (Ln) in a finite amount of time (Tn).

Overall, we assume walking dynamics are governed by central

pattern generator (CPG) processes [71–75] yielding repetitive limit

cycle behavior [11,59,72,75,76]. Thus, in the absence of control

input and noise, successive strides simply repeat (i.e., xn+1 = xn),

reflecting the fundamentally cyclical nature of walking. Many

suitable differential equation models of such continuous-time
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walking dynamics exist, ranging from relatively simpler mechan-

ical models [11,76–80] to highly complex neuro-musculo-skeletal

models [81–84]. A true strength of the approach taken here is that

any such reasonable model could be used to generate [Tn, Ln] time

series. Thus, our results have broad potential impact both for

experimental studies of human walking and also for anyone

developing computational simulations of walking or actual

(physical) walking robots, regardless of their complexity.

The controller was modeled as an unbiased stochastic optimal

single-step controller with direct error feedback. This controller

design was based on the Minimum Intervention Principle (MIP)

[27,28], but modified to incorporate a preferred operating point

(POP) for the controller along the GEM. Accordingly, the cost

function took the form:

C~ae2zbp2zcu2
1zdu2

2: ð6Þ

The first term, ae2, depended on the definition of the goal-level

error for the task [25]. For treadmill walking, we assumed the

controller’s strategy was to maintain constant speed at each stride,

Ln/Tn = v (i.e., Eq. 2). Thus, the error the controller sought to

minimize was enz1~Lnz1{vTnz1 at stride n+1. This cost

function directly reflects the strategy (Eq. 2) we hypothesize subjects

adopted to regulate stride variability while satisfying the

fundamental task requirement defined in Eq. 1. While the underlying

task requirement (Eq. 1) does not change, different hypothesized

control strategies could be obtained by defining different GEMs

(possibly including more and/or different state variables) and

would thus change the definition of the error term, e, used in the

above cost function. The second term in Eq. (6), bp2, penalized the

distance, pn+1, of the state at stride n+1 from the preferred

operating point, [T*, L*]. The last two terms in Eq. (6) were effort

penalty terms where u = [u1, u2]T was the control input used to

drive the state from stride n to stride n+1 (Eq. 5). Here, a, b, c, and

d were positive constants that weighted the different components

in C.

The objective of the controller was to minimize C in a

probabilistic sense across each trial. That is, we did not minimize

the cost itself function directly, but rather its expected value,

E C½ �~�CC. The optimal control inputs u1 and u2 were then

determined by solving a classic quadratic optimal control problem

with an equality constraint. This process yielded optimal control

inputs obtained analytically as a function of the current state, xn

(see Supplementary Text S3 for details).

The optimal, strictly MIP controller (Fig. 7) was implemented as

follows. First, we set b = 0 so the cost function, Eq. (6), depended

only on the goal-level error e. This strict MIP controller only

corrected dP deviations off of the GEM (Fig. 2). When the state,

xn,was on the GEM, the controller exerted no control effort, since

Eq. (6) was already minimized. Since this was true at all points

along the GEM, the strict MIP controller was neutrally stable

along the GEM. Because of the stochastic nature of the trial-to-

trial dynamics (Eq. 5), we expected consecutive strides to exhibit

random walk behavior (i.e., Brownian motion) along the GEM.

Indeed, this was what we obtained in our simulations (Figs. 7E,

7G). We defined a GEM corresponding to a walking speed of

v = 1.21 m/s, which corresponded to the mean speed of our

human subjects walking at 100% of their preferred walking speed

(Fig. 3C). To realize the inter-trial dynamics, we then chose the

remaining parameter values to approximate the stride speed

variability observed in our experimental data (Fig. 3F). For the

strict MIP controller, this yielded a stride map, Eq. (5), where G = I

and where the elements of N and g were defined using

s1 =s3 = 0.017 and s2 =s4 = 0.010 (see Supplementary Text

S3). For Eq. (6), we set b = 0 and a = c = d = 10. We note that this

strict MIP controller was not able to match the qualitative features

of the experimental data (Fig. 7) for any choice of parameter

values.

The optimal POP controller (Fig. 8) was implemented as

follows. To drive the states to a preferred operating point, [T*, L*],

along the GEM, we set b = 2.79 to yield time series that

approximated our experimental data. Our results, however, were

not sensitive to this value of b. This POP controller exerted effort

not only perpendicular to the GEM, but also along it. T* was taken

to be 1.105s, the mean stride time of our human subjects walking

at 100% PWS (Fig. 3B), and L* = vT*, where again v = 1.21 m/s.

All other parameter values for this optimal POP controller were

identical to those for the optimal MIP controller. It is important to

note that for this POP controller, the anti-persistence in the dP

time-series (Fig. 5D) could not be elicited for any combination of

values for the cost function multipliers (a, b, c, and d) or noise

amplitudes sk, k[ 1, 2, 3, 4f gð Þ.
To match our human data in terms of the anti-persistent DFA

exponents in the dP time-series (Fig. 5D), we implemented the sub-

optimal OVC controller (Fig. 9) as follows. This controller was

designed to slightly over-correct any dP deviations away from the

GEM. To do this we increased the additional controller gains in G

from unity to g1 = g2 = 1.24. We retained the same preferred

operating point, [T*, L*], from the POP controller above (i.e.,

b = 2.79, with v = 1.21 m/s, T* = 1.105s and L* = vT*), as well as

the same weightings for the remaining cost function terms (a, c,

and d), and the same noise amplitudes sk, k[ 1, 2, 3, 4f gð Þ. We

chose these values to provide a reasonable match to the variability

in the dT and dP directions for the OVC model to the average

variability observed in the human (HUM) data (Fig. 9F).

It is important to note that for each model, no explicit or

rigorous attempts were made to find ‘‘best fits’’ to our

experimental data. For example, we could adjust model

parameters to fit different values for the means and SD’s of

different stride variables to try to more closely replicate the data of

any of our individual subjects. However, our overall results were

insensitive to the precise parameter values: i.e., the contrasts in the

fundamental qualitative features of each of these models will

remain the same.

For all three model configurations, we generated 20 simulations

of 500 walking strides each to represent a single simulated

‘‘average’’ subject. Model outputs consisted of stride time (Tn) and

stride length (Ln) time series. Time series of stride speeds were then

calculated as Sn = Ln/Tn, as before. As with our surrogate analyses,

we computed the net cumulative distances walked (Eq. 4) by each

simulation to ensure no simulation ‘‘walked off’’ the treadmill.

Means, standard deviations, and DFA a exponents were computed

for all primary stride variables (Tn, Ln, and Sn), as we did for the

experimental trials. The same GEM decomposition (Eq. 3) was

applied to compute dT and dP deviations along and perpendicular

to the GEM. Standard deviations and DFA a exponents were then

computed for each dT and dP time series obtained from each

simulated walking trial (Figs. 7–9).

Statistical Analyses
All statistical tests were performed in Minitab 15 (Minitab, Inc.,

State College, PA). For all dependent measures, we computed

between-subject means and 695% confidence intervals at each

walking speed. Where appropriate (Figs. 3, 4C, 6A–B, and 7A–B),

linear or quadratic trends across speeds were computed using

standard least squares regression [23]. The standard deviations

and DFA a exponents computed from the experimental (Fig. 5C–

D) and surrogate (Figs. 6F–G and 7F–G) data sets were subjected
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to a 3-factor (Direction6Speed6Subject) mixed-effects, repeated

measures, general linear model analysis of variance (ANOVA).

Direction (dT vs. dP) and Speed (80%–120% of PWS) were taken

as fixed factors. Subjects (n = 17) was taken as a random factor.

There were 2 repeated trials obtained for nearly all subjects and

walking speeds (4 total trials were discarded for technical reasons,

as stated above). These models tested for main effects for each

factor and also for any interaction effects. For the three

computational models, the standard deviations and DFA a
exponents computed from each model (Figs. 7–9, F–G) were

subjected to a single-factor (Direction: dT vs. dP) repeated

measures, balanced ANOVA, with 20 repeated observations.

For all statistical tests, standard graphical analyses of the model

residuals were performed to ensure each test met the linearity and

normality assumptions of each ANOVA model.
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