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Abstract

Continuous attractor networks are used to model the storage and representation of analog quantities, such as position of a
visual stimulus. The storage of multiple continuous attractors in the same network has previously been studied in the
context of self-position coding. Several uncorrelated maps of environments are stored in the synaptic connections, and a
position in a given environment is represented by a localized pattern of neural activity in the corresponding map, driven by
a spatially tuned input. Here we analyze networks storing a pair of correlated maps, or a morph sequence between two
uncorrelated maps. We find a novel state in which the network activity is simultaneously localized in both maps. In this
state, a fixed cue presented to the network does not determine uniquely the location of the bump, i.e. the response is
unreliable, with neurons not always responding when their preferred input is present. When the tuned input varies
smoothly in time, the neuronal responses become reliable and selective for the environment: the subset of neurons
responsive to a moving input in one map changes almost completely in the other map. This form of remapping is a non-
trivial transformation between the tuned input to the network and the resulting tuning curves of the neurons. The new
state of the network could be related to the formation of direction selectivity in one-dimensional environments and
hippocampal remapping. The applicability of the model is not confined to self-position representations; we show an
instance of the network solving a simple delayed discrimination task.
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Introduction

The ability to keep an internal representation of a continuous

variable in the absence of sensory stimuli, is a crucial requirement

in order to succeed in what can be considered trivial day to day

actions or experimenter designed tasks. For instance one may

think about the eye position between successive saccades [1], the

angle of stimulus presentation in an oculomotor delayed protocol

[2], the spatial position or the head direction in a dark

environment [3–5], or the phase of the recently discovered grid

fields [6,7].

A widely used class of models for this kind of working memory is

constituted by attractor neural networks. The temporary mainte-

nance of an item in memory corresponds to a specific network

pattern of activity which is stabilized via strengthened recurrent

connections between the active neurons in the pattern [8–11].

These connections are usually imposed, or trained, as the outcome

of some form of Hebbian learning. The attractor is called

continuous when the stable states form a continuous manifold

which can be parametrized by the state variables. This outcome is

obtained under certain conditions on the synaptic connection, for

example when the connections between neurons are lateral-

inhibition like (e.g. Mexican hat) [12–14]. The underlying idea is

that each neuron is assigned a location on an abstract map. The

synaptic weights (encoding) depend on the location of the pre- and

post-synaptic neurons. By means of Turing instability, the network

dynamics creates a localized pattern of activity (or bump) on the

map [15]. The external input links the position on the map to the

state variable, forming a representation.

Continuous attractors have been used to explain the mainte-

nance of various analog quantities close or far from the primary

sensory and motor regions. For instance, the orientation tuning in

the visual cortex [16,17], hippocampal place fields in one [18,19]

and two dimensions [20,21], eye position [1,22], head direction

tuning in the postsubiculum [23,24] and entorhinal grid fields

[25,26].

The simple picture of a single continuous attractor can be

naturally extended to the case of multiple attractors. The encoded

maps can then be assumed to be either uncorrelated or correlated,

and in particular to exhibit some structure (e.g. deriving from a

morphing procedure). Assuming a complete lack of correlations

between maps is not realistic, though useful for obtaining analytic

results [27]. In this contribution, we analyze the network

representations arising from the storage of two maps, with a

varying degree of correlation between them, and from the storage

of a morph sequence between two uncorrelated maps. We are

interested in finding the conditions under which the network

representation can provide some information about the state

variables. Surprisingly, even when the correlation between two

maps is very high, under conditions which will be clarified later it

is possible for the network to maintain separate representations of

the state variables.

Multiple maps
Multiple state variables can be encoded in the same network.

An example is offered by the place representations of several

environments [20,21]. To each environment corresponds a neural

map which is encoded in the synaptic efficacies. Sensory inputs
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would then select the correct representation, i.e. both the

environment and the position in the environment. The selected

map wins the competition with the other maps stored in the

network, and a localized pattern appears. In this case the network

only maintains information about one of the several encoded state

variables.

A more peculiar property of multiple continuous attractors, is

their ability to represent simultaneously the values of several state

variables. This property was explored in [28], where two partially

overlapping neural populations (representing discrete features), are

assigned two uncorrelated maps. Another example is provided in

the study of [29], where a single network stores and represents

simultaneously a continuous and discrete attractors.

In principle, given the existence of multiple representations in

different brain regions (either one per region, or many in one

region), a brain area downstream would necessarily encode several

state variables. In light of a Hebbian interpretation on how this

encoding takes place, it seems natural to distinguish between two

cases. When multiple representations provide a simultaneous input

to a region, the result is probably encoded multiplicatively [29], or,

in general, non-linearly. For inputs happening non concurrently,

as for instance when walking through several rooms sequentially,

an additive encoding of each room is expected [21]. In the

following we will analyze additive encoding.

Correlations
The present contribution addresses the issue of encoding

correlated maps. The motivations come from recent experimental

results on place cells recording in morphed environments [30–

32], where place fields remapping along a sequence of morphed

arenas is experimentally tested, and from theoretical and

experimental studies concerning the morphing of discrete

attractors [33–35].

In general, we would consider the encoding of p manifolds Xf,

each of dimension df, where f~1 . . . p. We will refer to a single

manifold as a map, once a coordinate system xf is chosen. The use

of uppercase (e.g. X ) or lowercase (e.g. x) will distinguish between

the whole map and a single point on it respectively. Given a pre-

synaptic neuron indexed by xf, and a post-synaptic x’f, the

encoding of a single map is obtained using a synaptic matrix

Wf xf,x’fð Þ, and is such that a continuous attractor representation

would arise if it were the only map. We assume, as mentioned

above, that the complete encoding arises from a linear

superposition of the p matrices, W~
1

p

X
f

Wf. The statistical

properties of the maps, and in particular the correlation between

them, can be fully specified by providing the probability density

n xff gð Þ.
The general problem is too difficult to be studied analytically.

Some results can be obtained for the case of uncorrelated maps on

the same manifold [27], though the system can be explored by

simulating the full microscopic networks (see e.g. [21] for the

uncorrelated case and [36] for simulation results of the correlated

case).

In order to simplify the analysis, while retaining the basic

structure of the problem, we focus on the case of p~2
representations, on a 1-dimensional circular manifold (i.e. the ring

model [16,37]). The correlation between the maps is constructed by

limiting the distance between the single neuron locations on the two

maps. We devise a simple method to generate a morph sequence

between two uncorrelated maps, by linearly modifying the neurons

locations between the original maps. This method also suggests a

way to test the network response to the exposure of intermediate

maps between the two stored correlated maps.

For concreteness, one could think about maps of two similar

circular arenas, and reason in term of spatial coding. In this

context, we are interested in clarifying how the information about

the position in the current environment is represented by the

network, when varying the constitutive parameters of the model;

And how the representation changes when the network is exposed

to environments along a morph sequence.

In the following we will describe with mean-field (MF) theory

the attractor landscape of a network, i.e. the stable solutions in

absence of any place specific input. We then consider the behavior

of the solutions when a spatially tuned input is present. We will

establish the approximate relationship between two strongly

correlated maps and the encoding of a morph sequence between

two reference rings, and study the behavior of the solutions in

presence of a tuned input varying along the sequence. Finally we

will verify the results with microscopic simulations of finite

networks. The network properties can be tested experimentally

to confirm (or falsify) the attractor hypothesis.

Results

Let us consider two circular environments A and B, inducing

two different maps HA and HB in the network. In the MF limit,

we can imagine having a continuous manifold of neurons, where

each neuron is identified by the pair of labels hA,hBð Þ, with

hj [ 0,2p½ Þ,j~ A,Bð Þ. In addition, a probability density n hA,hBð Þ
tells us how likely is for a neuron to have the labels hA,hBð Þ. As

mentioned in Introduction, we assume the resulting synaptic

structure to be a linear superposition of ring models. Hence,

the connection strength between two neurons hA,hBð Þ and

h’A,h’Bð Þ is

W hA{h’A,hB{h’Bð Þ~ J1

2
cos hA{h’Að Þzcos hB{h’Bð Þ½ �zJ0:

The factor J1 is a measure of the amplitude of the map specific

interaction, while J0 v0ð Þ is a uniform inhibitory term. This form

of connectivity can be thought as arising from the first two terms

Author Summary

How is your position in an environment represented in the
brain, and how does the representation distinguish
between multiple environments? One of the proposed
answers relies on continuous attractor neural networks.
Consider the web page of your campus map as a network
of pixels. Every pixel is a neuron, and nearby pixels excite
each other, while distant pairs are inhibited. As a result of
their interactions, a bunch of close-by pixels will light up,
indicating your current position as suggested by your
web-cam (the sensory input). When you travel to another
campus, the common assumption holds that pixels are
completely scrambled and the excitatory/inhibitory pat-
tern of connections is summed to the existing one. Now
these connections and the sensory input will activate the
pixels corresponding to your location in the new campus.
The active pixels will look like noise in the old map. But
what if the campuses are similar, i.e. the pixels are not
completely scrambled? We show that the network has a
novel way of distinguishing between the environments, by
lighting up distinct subsets of pixels for each campus. This
emergent selectivity for the environment could be a
mechanism underlying hippocampal remapping and
directional selectivity of place cells in 1D environments.

Continuous Attractors with Morphed/Correlated Maps
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of Fourier series of a more general coupling. The rate dynamics

for the network activity ~mm hA,hBð Þ is [38]:

t _~mm~mm hA,hBð Þ~{~mm hA,hBð Þzðð
dh0Adh0Bn h0A,h0B

� �
W hA{h0A,hB{h0B
� �

~mm h0A,h0B
� �

zI

� �
z

,

where we assumed a threshold-linear transfer function for the

neurons, ½x�z~x when xw0 and 0 otherwise. The external

afferent current is denoted by I , and it is assumed uniform in the

current Section.

We build the maps with a simple procedure which induces a

correlation between them. First, we create a uniformly distributed

map H with coordinates h [ 0,2p½ Þ and a uniformly distributed

map R of distance values r [ {
p

2
,
p

2

h i
. Then we define the

coordinates of the desired maps as

hA~ h{mrð Þ mod 2p ð1Þ

hB~ hzmrð Þ mod 2p:

The parameter m [ 0,1½ � is a measure of the distance between the

two maps; the higher the distance between the maps, the lower the

correlation between them. The coordinate h defines a ‘‘middle’’

map from which the coordinates of the environments A and B are

constructed; each of them cannot be farther than
mp

2
from the

middle map, hence they cannot differ more than mp. When m~0
the two maps are identical, and for m~1 the two maps are

uncorrelated. As an example, let us fix the distance between the

maps at m~
1

2
and consider the case of a neuron with h~

p

2
; a

choice of r for this neuron will yield the coordinates in the maps

HA and HB. The range of possible values for r will generate hA

and hB in the interval
p

2
{

p

4
,
p

2
z

p

4

h i
, which shows how not all

the possible pairs hA,hBð Þ are obtainable. An instance of this

procedure is depicted in Fig. 1. A given angle in map HA or HB

(corresponding to a given color in Fig. 1B) is represented by a

straight line in the reference frame h,rð Þ. The effect of a decreasing

m is to tilt this straight line toward the vertical direction (only

identical angles in map HA and HB would be possible). Note that

it is possible to define the inverse transformation hA,hBð Þ? h,rð Þ
(Eq. 21).

The new coordinates h,rð Þ are uniformly distributed by

construction. We can then rewrite the dynamics of the network

activity m h,rð Þ~~mm hA h,rð Þ,hB h,rð Þð Þ, using Eq. 1, as

t _mm h,rð Þ~{m h,rð Þz

J1

2

ðð
Dh0Dr0 cos h{h0{m r{r0ð Þð Þ½

�

zcos h{h0zm r{r0ð Þð Þ�m h0,r0ð Þz

J0

ðð
Dh0Dr0m h0,r0ð ÞzI

�
z

:

ð2Þ

The notations
Ð
Dh and

Ð
Dr are a shorthand for

1

2p

ð2p

0

dh and

1

p

ðp
2

{p
2

dr respectively. The use of the ring connectivity structure

makes possible to reduce the dimensionality of the dynamical

system to few order parameters. Five order parameters are necessary

in order to describe the dynamics of the system: a,c,s,yz,y{

� �
(see Methods - Reduced Dynamics for the details of the derivation, and

the next Section for the equations describing their dynamics). Our

choice of the order parameters exclude the analysis of the uniform

solution of Eq. 2, i.e. a constant activity over the whole network.

We will return to this solution in Results - Phase diagram of the model.

After the reduction, the steady state activity profile in h,rð Þ space

assumes the form:

m h,rð Þ~aI cos h{yz

� �
cos mr{y{ð Þ

�
{c sin h{yz

� �
sin mr{y{ð Þzs

�
z
:

ð3Þ

Figure 1. Construction of correlated maps. A: Cartoon showing
how to generate two correlated maps A,B from neurons with randomly

assigned index h on a reference ring, and distance value r [ {
p

2
,
p

2

h �
.

Given the distance between maps m[½0,1� (0?identical, 1?uncorrelated),
the desired maps are created by adding and subtracting the value mr to
the reference location h. The reference acts as an intermediate map, and
the distance between maps limits the maximum distance between the
location of the neurons on the maps A,B. B: Color codes corresponds to
angles in map A (top panel) and B (bottom panel). The two plots show

how neurons indexed by hA, hB are represented in h, r coordinates, for

m~
1

2
. The particular neuron depicted in the cartoon is represented as a

dot.
doi:10.1371/journal.pcbi.1000869.g001

Continuous Attractors with Morphed/Correlated Maps
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Figure 2. Network activity examples. The top plots (numbered I ) in each panel show the MF network activity (Eq. 3) in the 2D map h, rð Þ,
corresponding to different choices of the order parameters c, s, yz, y{

� �
and the distance m. Each point in the plot corresponds to a neuron with

labels h, rð Þ, the color is proportional to the activity level; warmer color represent higher activity, blue represents no activity. The activity scale is
arbitrary, since it can be rescaled by a change in the external input I , without modifying the shape of the bump. Plots on the left of each panel (II )
show the corresponding activity for a network of 1000 randomly chosen neurons in the 2D map hA, hBð Þ, see Eq. 1. The white stripes in the plots are
due to the absence of neurons with labels in those regions, imposed by the correlation between the maps. The bottom-right pairs of plots (III ) are

projections of the activity on the individual maps. A: m~1, c~1, s~0:2, yz~
4p

3
, y{~p

	 

Activity localized in a single map, from a network

storing uncorrelated maps. The locations of the peak activity in map A and B are yA,B~yz+y{. B: m~0:8, c~0, s~:1, yz~
3p

2
, y{~0

	 

Correlated maps, activity not favoring either A or B; since y{~0, the bump is located at the same angle in both maps. C:

m~0:9, c~{0:7, s~0:3, yz~
p

2
, y{~0

� �
Correlated maps, activity prefers map A (cv0). D: m~:6, c~0, s~{0:8, yz~

2p

3
, y{~

p

8

	 

Correlated maps; for this smaller sized bump, the location of the activity maximum is such that yA=yB .
doi:10.1371/journal.pcbi.1000869.g002
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Note that a change in the strength of the applied uniform input I

produce no changes in the order parameters (see Methods - Reduced

dynamics and Eqs. 5).

Several examples of network activity (Eq. 3), corresponding to

different representative choices of the order parameters, are shown

in Fig. 2. The various panels show the network activity in the two

two-dimensional maps HA,HBð Þ and H,Rð Þ, and the one-

dimensional projections of the activity to HA and HB. Note that

not all the choices of order parameters corresponds to actual

solutions of the dynamics (which are determined by the

parameters J1,J0,mð Þ and the initial conditions), as will be shown

later.

The meaning of the order parameters can be read out from Eq. 3.

The variable a represents a scaling factor for the amplitude of the

network activity, which in turn is proportional to the uniform input I .

The variable s is a measure of the spatial size of the activity

profile, i.e. of the region in either HA,HBð Þ or H,Rð Þ in which the

network activity m is strictly positive (Eq. 3). The activity profile is

also referred to as a bump. For instance the case s~{1 would

correspond to absence of activity (the current in the threshold-

linear transfer function would always be negative), while s~1
would make all the neurons in the network active.

The order parameter c tells us how much the network

representation ‘‘favors’’ one of the two maps. By its definition

(Methods - Reduced dynamics, Eq. 24), the possible range for c is

½{1,1�. The two extreme cases c~+1 correspond to a network

activity localized in either map HB or HA. For instance, the

network activity Eq. 3 for c~{1 reads

m~aI cos h{yz

� �
cos mr{y{ð Þzsin h{yz

� �
sin mr{y{ð Þzs

� �
z

~aI cos h{mr{ yz{y{

� �� �
zs

� �
z

~aI cos hA{yAð Þzs½ �z,

where in the last equality we used Eq. (1). From here we see that

the position of the bump peak is located at yA:yz{y{; the

same derivation, with c~1, would give us yB:yzzy{. The

network representation is in this case a bump of activity localized

in one map, and does not have any spatial modulation in the other

map, as exemplified in Fig. 2A,III. In the case c~0, from the

explicit expression of the activity m we get

m~aI cos h{yz

� �
cos mr{y{ð Þzs

� �
z
: ð4Þ

This representation exhibits an equal amount of spatial modula-

tion in both maps HA and HB, i.e. the solution represents equally

the two stored maps, Fig. 2B,D. Depending on the value of y{

(see below), the location of the bumps in the maps HA and HB can

be either the same (y{~0, Fig. 2B,III), or different (y{=0,

Fig. 2D,III). Solutions with intermediate c values (0vDcDv1) have

a more localized projection in one of the two maps, depending on

the sign of c (see for instance Fig. 2C).

The quantities yz and
y{

m
identify respectively the location of

the maximum of the network activity in the h,rð Þ coordinates,

which is uniquely mapped to the maximum in hA,hBð Þ via Eqs. 1.

In the following, we will show that the network activity

examples depicted in Fig. 2 are possible solutions of the dynamics

described by Eq. 2. We refer to each of these classes as double ring

(Fig. 2A,C,) single ring (Fig. 2B) and cylinder (Fig. 2D), for reasons

that will be clarified in the next Section. The cylinder class

represents an interesting novel regime (simultaneous localized

projections in both environments), and we will devote most of the

paper to describe the properties of this particular solution.

Phase diagram of the model
In this Section we analyze the fixed point solutions of the

system, and heuristically describe the region of stability of these

solutions. A more rigorous description of the stability can be found

in Methods - Stability.

In Methods - Reduced dynamics we derive the dynamics of the order

parameters from Eqs. 2. We report here the result

t _cc~{J1

ðð
DhDrg h,rð Þ sin h{yz

� �
sin mr{y{ð Þ

�
zc cos h{yz

� �
cos mr{y{ð Þ

� ð5Þ

t _aa~a {1zJ1

ðð
DhDrg h,rð Þcos h{yz

� �
cos mr{y{ð Þ

	 


t _ss~
1

a
zJ0

ðð
DhDrg h,rð Þ{

J1s

ðð
DhDrg h,rð Þcos h{yz

� �
cos mr{y{ð Þ

t _yy{~
J1

1{c2

ðð
DhDrg h,rð Þ cos h{yz

� �
sin mr{y{ð Þ

�
{c sin h{yz

� �
cos mr{y{ð Þ

�

t _yyz~
J1

1{c2

ðð
DhDrg h,rð Þ sin h{yz

� �
cos mr{y{ð Þ

�
{c cos h{yz

� �
sin mr{y{ð Þ

�
,

where the function g h,rð Þ is defined as

g h,rð Þ: cos h{yz

� �
cos mr{y{ð Þ

�
{c sin h{yz

� �
sin mr{y{ð Þzs

�
z

,
ð6Þ

i.e. the rescaled steady state activity profile Eq. 3. Note that yz

can be eliminated from the right hand sides of the Eqs. 5, rotating

the integration variable h. This is possible because there is no

spatial dependence in the external input to the network. The first

four equations in Eqs. 5 can then be solved independently of the

fifth one, since the right hand sides do not depend on yz. We

show in Methods - Solutions properties that, once we have the solution

for the variables (c,a,s,y{), the last equation reduces to _yyz~0.

We can thus restrict the analysis to four out of five equations in

Eqs. 5. The elimination of one angular degree of freedom is a

consequence of the rotation invariant structure of the encoding,

and is the hallmark of continuous attractors arising from

spontaneous symmetry breaking. On the other hand, the integrals

over r in Eqs. 5 are not over the whole circle and we cannot rotate

y{ away.

Homogeneous solution
Before analyzing the fixed point solutions of the system

described by Eqs. 5, we briefly mention an uninteresting region

in the parameters space which can be found also in the classical

ring model. This region corresponds to the homogeneous solution,

i.e. all the neurons in the network are active at a constant level,

Continuous Attractors with Morphed/Correlated Maps
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and can be obtained from Eq. 2. The expression corresponding to

the line of separation in the plane J1,mð Þ between the

homogeneous solution and the spatially localized bump (see

Fig. 3A, curve surrounding the Homogeneous region), is

J1~
4

1zsinc mpð Þ , ð7Þ

where sinc xð Þ~ sin xð Þ
x

. This result is obtained in Methods -

Stability, see also below.

Fixed point equations for the localized activity state
Let us start by imposing y{~0, a restriction that will be

addressed later on. The first tree equations at steady state from

Eqs. 5 become then equations for the three order parameters

a,c,sð Þ:

ðð
DhDrg h,rð Þcos h cos mrð Þ~ 1

J1
ð8Þ

ðð
DhDrg h,rð Þ sin h sin mrð Þzc cos h cos mrð Þ½ �~0

1

a
~s{J0

ðð
DhDrg h,rð Þ:

The first two equations determine the shape of the bump c,sð Þ.
Given the map specific modulation in the coupling and the

distance between the maps J1,mð Þ, we can derive from the first two

equations the size of the bump s and the order parameter c,

representing how close the network representations are to the

stored environments A and B. The last equation gives us the

amplitude of the network activity a, which also depends on the

parameter J0.

As mentioned in Results - Phase diagram of the model, the order

parameter yz can be chosen arbitrarily, due to the rotation

invariance of the problem; for simplicity we choose yz~0.

Amplitude instability
We deal first with the equation concerning the amplitude of the

solution. Given that the activity can be rescaled by changing the

value of the applied external current I , we are not interested in

actually solving the equation. The only requirement is that a§0 in

order for the solution to be meaningful, i.e. no negative amplitudes

are allowed. This requirement translates to a constraint on the

inhibition J0:

J0ƒ
sÐÐ

DhDrg h,rð Þ : ð9Þ

We show with stability analysis (Methods - Stability) that the critical

value JC
0 , obtained by choosing the equality in the previous

expression, corresponds to the onset of amplitude instability; given

a choice for the parameters J1,mð Þ, which specifies the bump shape

c,sð Þ, for values of the inhibition weaker than JC
0 the solution

grows to infinity. This qualitative behavior was present also in the

classical ring model.

Fig. 3B shows the values of JC
0 as a function of J1 for various

choices of m. In order to stabilize the solutions, the inhibition must

grow with increasing J1 and decreasing m. Note that it is

Figure 3. Phase diagram. A: MF solutions in a network storing two
correlated maps. The black curves in the J1, m parameter space depict
the separation between the qualitatively different solutions of the
system. Homogeneous solution (denoted by H in the panel), all the
neurons are active at a constant level. Single Ring (S) solution, localized
activity in the middle map, the bump can be freely rotated in this map.
Double Ring (D) solution, pair of solutions localized either in map A or B.
Cylinder (C) solution, the network activity is localized in both maps;
compared to the single and double ring solutions, there is an additional
freedom in the choice of the location of the bump over r (y{). The term
cylinder is used because the continuous attractor lives in the space
defined by the angle h and a sub-segment of r (with the exception of
m~1, see main text for details). B: Amplitude instability. Critical
inhibition JC

0 corresponding to the onset of unstable solutions for
varying J1 . Each curve corresponds to different distances between the
maps m.
doi:10.1371/journal.pcbi.1000869.g003
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reasonable to consider the previously mentioned homogeneous

solution as a bump with maximal size s~1ð Þ. In this case the

critical J0 can be explicitly computed, and turns out to be JC
0 ~1.

Single ring solution
Now we focus on the possible solution c~0. It is easy to see that

when c~0, the second of Eqs. 8 is automatically satisfied due to

the symmetry of the integrand in h (and r); This means that the

solution c~0 exists everywhere in the parameter space.

The steady state activity Eq. 3 with c~0 (and y{~0, our initial

assumption) reads

m~aI cos h{yz

� �
cos mrð Þzs

� �
z

, ð10Þ

which corresponds to a packet of activity localized in the h
coordinate, and modulated in r, see Fig. 2B for a plot of the

activity profile. The remaining fixed point equation can be used to

obtain s~s J1,mð Þ. We refer to the case c~0,y{~0ð Þ as a single

ring solution; the ring is spanned by the freedom of choice in the

angle yz. In this regime of activity the network is not able to

represent separately the environments A and B, but only the

middle environment described by h. Even though the solution

exists everywhere, it is destabilized in some regions of the

parameter space, as shown in the phase diagram (Fig. 3A, Single

ring region).

By looking at the maximal bump size s~1, we can expect to

reproduce the curve separating the homogeneous solution from

the single ring. Inserting s~1 in the first of Eqs. 8, it is possible in

this case to compute explicitly the integral, which in fact yields

Eq. 7.

Double ring solution
In order to find the region of existence of the solutions with

c=0, we can solve numerically Eqs. 8 in the parameters plane

J1,mð Þ. The result is shown in Fig. 4, where the color code

represents c for a given choice of the parameters. It can be seen

that there is only a narrow region of high m (low correlation) and

low J1 where such a solution exists.

It is important to note that the equations used to find c are

invariant under the symmetry c?{c. This means that both

solutions (+c?) representing map HA or HB are possible. The

steady state activity profile in this case looks like:

m~aI cos h{yz

� �
cos mrð Þ+c? sin h{yz

� �
sin mrð Þzs

� �
z
: ð11Þ

Given the freedom of choice for the phase yz, each of this

solutions lives on a ring; we call the solution c=0,y{~0ð Þ,
double ring. An instance of the network activity in this regime is

shown in Fig. 2C.

The curve separating representations preferring one of the two

maps (c=0), and c~0, can be obtained by expanding the second

of Eqs. 8 to first order in c:

c

ðð
DhDrH cos h cos mrð Þzsð Þ sin2 mrð Þ

�
{ cos2 hð Þ{s cos hð Þcos mrð Þ

�
~0,

ð12Þ

where H xð Þ is the Heaviside step function, H xw0ð Þ~1 and

H xv0ð Þ~0. Dividing by c, we get rid of the c~0 solution. By

finding the zeros of the integral, we select the curve in the

parameter space corresponding to the onset of existence of the

double ring solution. This curve is shown in Fig. 4. We have found

that the stability of the double ring solution coincides, empirically,

with the region of existence of such solution (compare the phase

diagram in Fig. 3A, Double ring region with Fig. 4).

Cylinder solution
Finally, we examine the meaning of the equation for y{, the

order parameter linked to the location of the maximum of the

bump in r. We have assumed y{~0 for simplicity, given that a

rotation in the integrands in Eqs. 5 is in general not viable due to

the restricted range of integration in r. Note though, that when the

size of the bump s is small enough, it is possible to perform the

rotation without affecting the value of the integrals; the only

requirement is that the rotation keeps the bump from touching the

boundaries r~+
p

2
.

In Methods - Solutions properties we verify that there are no

solutions with both c and y{ different from 0. We can therefore

set c~0 in the steady state activity Eq. 3, and impose the activity

itself to be zero on the boundary r~+
p

2
to find

cos m
p

2

� �
~{s:

This equation corresponds to the curve of separation in the plane

m,J1ð Þ (using the relationship J1~J1 m,sð Þ, Eq. 8) between the

single ring solution and a cylinder solution (Fig. 3A, curve

surrounding the C region). In this regime, in addition to the

freedom of choice for the location of the bump in H, the solution is

also partially marginal in y{. The bump can be freely moved on a

segment and a circle, defining a cylinder; the activity profile in this

case is described by Eq. 4, see an instance in Fig. 2D. This region

extends in the high J1 limit and covers the whole range of

correlations.

Despite the fact that each of the maps HA and HB defines a

ring, it shouldn’t come as a surprise that the topology of the

attractor is a cylinder instead of a torus. The correlation between

maps gives rise by definition to a cylinder structure, as can be seen

for instance by inspecting Fig. 2B,II. It can be shown that when

Figure 4. Double ring solutions. Region in the parameter space
J1, mð Þ, where the double ring solution c=0 exists. The color

correspond to the value of c which solve Eqs. 8. Due to the symmetry
of equations, both positive and negative c values are allowed. Here only
the positive solution is shown, corresponding to a localized solution in
map B. Black curve: curve of separation between the null and positive
c solutions, obtained by finding the zeros of Eq. 12. Note that the
method used to obtain the curve is more precise than the one used to
estimate c. Dashed curve: curve corresponding to a network activity
size s~0. Regions on the left of this curve have sw0, which is a limit
size of the double ring solutions (reached at m~1).
doi:10.1371/journal.pcbi.1000869.g004
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m~1 the cylinder solution degenerates in a torus; the bump of

activity can be in any location of the h,rð Þ coordinates (hence, also

in (hA,hB)). This regime is linked to the observation of an activity

bump simultaneously localized in two environments in network

simulations [39], and the study in [28].

Phase diagram
Fig. 3 summarizes the results obtained so far. When J1 is low,

the only solutions is a constant level of activity which spreads over

the whole network (Homogeneous region). As J1 is increased, the

interplay between the short range excitation and long range

inhibition creates a pattern of localized activity in the middle map

H (Single ring, see also Fig. 2B) or, if the correlation between maps

is small enough, a localized pattern in either HA or HB (Double

ring, Fig. 2C). Intuitively, the network ‘‘remembers’’ the two maps

separately (y{~0,c=0, two solutions) if they are weakly

correlated (mw*0:9). When the maps are more similar, the

network represents just an average between them (y{~0,c~0).

The bump size decreases with increasing J1. When J1 is further

increased, instead of having a reduced size of the localized activity in

just one of the maps, the presence of two stored maps in the synaptic

structure and the inhibition J0 produce a packet of activity which

looks localized in both maps (Cylinder solution, Fig. 2D).

Three particular values of the distance m deserve a special

mention. The case m~0, corresponding to the encoding of two

identical maps, can be shown to be identical to the ring model

[37], as expected. In particular, besides the homogeneous solution

and the amplitude instability region, the system can only exhibit

the single ring solution.

The case m~1, corresponding to the encoding of two uncorrelated

maps, does not have the single ring regime as a possible solution. The

double ring solution in this case is depicted in Fig. 2A, where it can be

seen that the bump is perfectly localized in either maps HA or HB,

lacking any spatial tuning in the other map. This is the desired

outcome in the ‘‘multi-chart’’ approach of [21].

The third case is m~
1

2
. We will see in Results - Morphing maps

that this case is closely related to the behavior of a network storing

a morph sequence between two uncorrelated maps. As can be seen

in the phase diagram, the double ring solution is not possible in

this regime.

How the environment, and the position in the environment, are

represented by the network activity? For the single ring (Eq. 10)

and the double ring (Eq. 11) solutions, both characterized by

y{~0, it is evident that the position is coded by the order

parameter yz. The identity of the environment can only be

represented with the ambiguity in the choice of the sign of c when

the network operates in the double ring regime.

In the cylinder regime, it is not clear how the information about

the environment is represented in the network, since now the

solution is described by yz and y{. The following Section is

mainly devoted to explore the link between the state variable

(eventually time-dependent) Y tð Þ in the active environment, and

the behavior of the solution in this novel regime, by introducing a

spatially tuned external input.

Tuned external input
Until now we considered the condition in which the only

external input to the network, I , was steady and uniform. Let us

introduce a tuned input, for instance in map HA at position

Y tð Þ:

I?I : 1z IE hA{Y tð Þð Þð Þ~I : 1z IE h{mr{Y tð Þð Þð Þ:

For simplicity we assume the shape of the external input to be

IE xð Þ~cos xð Þ. The parameter measures the strength of the

tuned component of the external input as a fraction of the

constant baseline I we adopted so far. In general what we are

interested in, and what is experimentally observable, are the

tuning curves of the neurons i.e. their profile of activity as a

function of the input angle in the active environment. It is easy

to see the effect on the dynamics of the order parameters (Eqs.

5) when the location specific external current is inserted in the

original dynamics for the network activity, Eq. 2. The dynamics

keeps the same form as in Eq. 5, with the exception of the

threshold-linear term in g h,rð Þ, which now reads

g h,rð Þ? cos h{yz

� �
cos mr{y{ð Þ

�
{c sin h{yz

� �
sin mr{y{ð Þzsz

a
cos h{m � r{Y tð Þð Þ

i
z
:
ð13Þ

where m�~zm correspond to the choice of map HA in the

input, and m�~{m for map HB.

Tuning curves
With the input at a constant location Y tð Þ~Y, one can see that

a solution of Eqs. 5 for the single and double ring regime (y{~0),

is yz~Y, i.e. the input pinpoints the location of the bump. This

implies that, assuming a weak tuned input
a
vv1, the tuning

curve of a neuron h,rð Þ can be written in the single and double

ring regime (from Eqs. 10,11) as

m h,rDYð Þ&aI cos h{Yð Þcos mrð Þzs½ �z: ð14Þ

and

m h,rDYð Þ&aI cos h{Yð Þcos mrð Þ+c sin h{Yð Þsin mrð Þzs½ �z:ð15Þ

respectively. The tuning curve in the single ring regime has a

maximum for Y~h (hence h is the preferred angle for a neuron

h,rð Þ), independently of which map m?~+m is being used in the

external input, as can be seen from Eq. 14. This implies that each

neuron has identical tuning curves in both environments, and that

the preferred angle of a neuron does not coincide with either the

assigned hA or hB but with their average.

For the double ring regime, the preferred angle assumes the

form (maximizing Eq. 15 in Y)

h{arctan +c tan mrð Þð Þ:

In this case each neuron has two different tuning curves according

to the map used in the external input. The preferred angles

coincide with the assigned ones (hA,hB) only when the stored maps

are uncorrelated (m~1, hence c~+1).

In the cylinder regime (c~0, y{ not necessarily 0), a solution

for Eqs. 5 in presence of a tuned input is yzzy{

m?

m
~Y. For an

input in map HA, m?~m, the tuning curve would then be

proportional to (from Eq. 4)

cos h{Y{y{ð Þcos mr{y{ð Þzs½ �z:

Note that the dependence on y{ means that the external stimulus

does not determine completely the network activity, in contrast to

what happens in the previously examined regimes. Neurons that

Continuous Attractors with Morphed/Correlated Maps
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respond maximally to the tuned input are then h~Yzy{, and

mr~y{, hence h{mr~hA~Y. This means that the tuned

external input pinpoints the location of the bump maximum in

map HA but the bump is free to stabilize anywhere along the other

map given the freedom of choice in y{ (see activity example in

Fig. 2D). If several randomly selected external locations Y in one

of the maps are presented to the network, once at time and starting

from random initial conditions, the tuning curves would be an

average over y{:

m h,rDYð Þ&aI

ð
dy{ cos h{Y+y{ð Þcos mr{y{ð Þzs½ �z,

where the allowed range for y{ is {
p

2
{arccos {sð Þ

� �h
,

p

2
{arccos {sð Þ

� �i
, see Methods - Solutions properties. The cylinder

regime extends the region of existence of two tuning curves per

neurons to an higher correlation between the stored maps; the

difference is that the coding becomes unreliable: during a single

exposure to a given value of the input angle Y, a neuron could

remain silent even if its average tuning curve would predict a

response.

When the representation refers to the location in an

environment, it is natural to think about a smoothly varying

location Y. With a moving input like Y tð Þ~v:t,vw0, the tuning

curve depends as before on which map is stimulated, but in a novel

way. Assume for simplicity to start from a y{~0 initial condition,

corresponding to (yA~yB). A moving input in the map HA would

tend to move the bump along that map (i.e. increase the yA of the

solution), while keeping yB constant (hence the bump will move to

rv0). This movement is possible only until the bump reaches the

part of configuration space not occupied by neurons due to the

distance between maps m, see Fig. 2D. At that point, the bump will

start to move equally along hA and hB, maintaining y{v0, which

is proportional to yB{yA, and increasing yz (proportional to

yBzyA). A similar scenario, but with y{w0, is obtained when

stimulating the map HB.

If the size of the bump is sufficiently small, this effect has

dramatic consequences. The small bump will move along neurons

with rv0 when a moving stimulus is presented in environment A,

and viceversa neurons with rw0 will be active only when the

moving stimulus is presented in environment B. As a consequence,

neurons will essentially just have a tuning curve (or field), only in

one map, and will be silent in the other one. We refer to this

phenomenon as dynamical pattern separation (see Fig. 5 for an

example). The separation of the activity patterns is essentially a

dynamical phenomenon, dependent on the history of the inputs.

The figure shows also the robustness of the dynamical pattern

separation behavior to the addition of Gaussian d-correlated noise

in the external current (see Methods - Numerical Methods). Note that

neurons characterized by r*0 (i.e. hA~hB), will have tuning

curves in the same location. The number of neurons with tuning

curves in both environments grows with the size of the bump.

Figure 5. Network representations in the cylinder regime. A: MF time-course of yA,B , when a moving input localized around Y tð Þ~ 2pt

5
in

either map A or B, is fed to the network. The location of the maximum of the external input in the stimulated map is shown with a dashed blue line.
The order parameter yA,B tracks the external input with a delay. B: The order parameter y{, giving the position of the bump in r, with the same
moving inputs. Depending on the stimulated map, the bump ends up in different positions, orthogonalizing the representations. Noisy curves from a
simulation including a zero average white noise term in the external input, with s:d:~ N I . C: A snapshot of the network activity at a given time t and
corresponding angle Y tð Þ, when the stimulated map is A, left or B, right. Neurons with r values differing enough from 0 (depending on the size of
the bump) will exhibit tuning curves only when stimulated in one of the two environments (above/below red dashed lines). The parameters for all the
panels are J1~35, J0~{30, m~0:8, ~0:05ð Þ.
doi:10.1371/journal.pcbi.1000869.g005

Continuous Attractors with Morphed/Correlated Maps

PLoS Computational Biology | www.ploscompbiol.org 9 August 2010 | Volume 6 | Issue 8 | e1000869



Note though that by changing the sign of the velocity in the

moving input, the behavior would reverse; neurons with positive

(negative) r would be active during a stimulation in map HA (HB).

In order to maintain the dynamical pattern separation and the

analogy with place coding, one could think about two circular

environments, as we did so far, with the additional constraint that

the environments can only be traveled, for instance, in the

counter-clockwise direction (CCW). As an alternative, the two

environments may be thought as the same circular arena, but

traveled clockwise (CW, environment A) and CCW (B); this

interpretation would give rise to place fields with directional

selectivity (see Discussion).

The dynamical pattern separation is basically dependent on the

history of the input (positive or negative velocity), in addition to the

identity of the map used in the stimulation. This history

dependence is present also for non smooth time-dependent

stimuli, as for instance the sequential presentation of stimuli with

an intervening delay period. In this case the history dependence

gives rise to a memory effect: the current location of the bump

following a stimulation depends on the location attained after the

previous stimulus presentation. Let us consider a basic example of

this phenomenon, where the tuned external input is always

presented in map HA. Consider for simplicity the state of the

network being characterized by yA~yB~y0, as a result of the

presentation of stimulus y0 sometime in the past. If we now

present a stimulus y1, the bump will move, through the shortest

arc on the map, to the new location yA~y1. Depending on the

stimuli, this movement can happen in two ways. If the shortest arc

from y0 to y1 is directed CCW, the bump will move with a

positive velocity vw0 and will end up being located in the rv0
region (as we previously saw in the case of moving tuned input). If

the shortest arc is directed CW, then the movement will happen

with a negative velocity, and the final location of the bump will be

in the rw0 region. Hence, by looking at the activity resulting from

the presentation of y1, we know whether the shortest way on the

ring to it from y0 is CW or CCW. A similar result can be obtained

if the stimulus presentation alternates between map HA and HB.

If we vary the manifolds on which the maps live, for example to

segments instead of circles, the history dependence changes

accordingly. For instance, on segments the activity would give us

information about the second stimulus being greater/smaller than

the first one (see Discussion). In the next section we present a

simple (albeit artificial) delayed discrimination task which the

network can perform by exploiting the memory effect.

An application of the memory effect
Let us suppose to have a screen with a circle on it. A first

stimulus (a dot) appears on the circle at some random location

(described by an angle, y0), for the duration of 1s. This first

stimulus is then removed for a delay period of 2s. Then a second

stimulus appears at another random angle y1; the subject’s task is

to determine whether the shortest path on the circle from angle y0

to y1 is CW or CCW. The basic idea is that it is enough to look at

the network activity (location of the bump in the r axis), to

determine the relationship between the first and the second

stimulus (see Results - Tuned external input for a description of the

idea).

To test the ability of the network to solve this task, we

numerically solve the dynamics for the order parameter (Results -

Phase diagram of the model) with an external input (Results - Tuned

external input) mimicking the presentation of the stimuli, for a

sequence of 50 trials. We used no inter-trial interval, i.e. the

presentation of the second stimulus in the k-th trial is immediately

followed by the presentation of the first stimulus in trial kz1. The

time courses of the bump location on the r axis (y{) in two

example trials for which y0~0, are shown in Fig. 6A. When

looking at the location of the bump in the r axis at the end of a

trial, there is a clear difference between the two cases of shortest

CW, corresponding to positive y{ (in the specific example

y1~
3p

2
), or CCW arcs (y{v0, where y1~

p

2
). Fig. 6B shows

that the bump location at the end of trial, can be used to easily

discriminate between the two possible answers (except for the cases

in which the first and second stimuli are relatively close to each

other). Note that this result has been obtained without any activity

reset to new initial conditions during the inter-trial intervals.

Morphing maps
How do the results described so far change when, instead of

storing just two correlated maps, the network encodes a sequence

of maps gradually morphed between two uncorrelated ones? Let

us start by constructing two random uncorrelated maps, H{1 and

H1. We would like to define the intermediate maps as gradual

rotations between the two extreme ones; since we are dealing with

circles, the rotation should be performed along the shortest arc

Figure 6. Solving the shortest path task. A: Two instances of MF
dynamics from a network storing two correlated maps, during the
presentation of two angles (y0, y1) with an intervening delay. The
network operates in the cylinder regime. The plot shows the time course of
the order parameter y{; 0{1s: pre-stimulus period, random starting
yz, y{, no tuned input. 1{2s: first stimulus (presented in map HA, at
y0~0 (solid and dashed). 2{4s: delay period, no tuned input. 4{5s:

second stimulus y1~
3p

2
(solid) and y1~

p

2
(dashed). By looking at the

position of the bump in r (y{) during the second stimulus presentation, it
is possible to decide whether the shortest path between the first and
second stimulus is CW (y{w0) or CCW (y{v0). B: Sequential repetition
of the task, 50 trials. The location of the bump maximum along r is plotted
vs the oriented distance on the circle between the second and the first
stimulus. Parameters m~0:7, J1~30, J0~30, ~0:1ð Þ.
doi:10.1371/journal.pcbi.1000869.g006
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between h{1 and h1 (see Eq. 21, Methods - Inverse transformation). We

assume here to have already transformed the variables in such a

way that we can write directly

hf~
1{f

2
h{1z

1zf

2
h1 ð16Þ

where f [ ½{1,1� indexes the maps along the morph sequence.

Hence a neuron with label h{1 in the first map, will rotate along

the sequence to its location h1 on the last map, following the

shortest path on the circle. With this choice of the morphing

procedure, each neuron is still characterized by just two quantities,

its labels in the extreme maps.

We store the whole morph sequence by a superposition of the

synaptic structures generated in each map separately, as for the

case of two correlated maps previously described. For the sake of

analytical tractability, we study the resulting coupling in the limit

p??

1

p

X
f

W hf{h’fð Þ?J1

ð1

{1

dfcos hf{h’fð ÞzJ0: ð17Þ

Introducing the definition of two uncorrelated maps (Eq. (1)

with m~1) into Eq. (16), we can rewrite the angles in the

intermediate maps as hf~h{fr, We can now integrate Eq. (17)

W h{h’,r{r’ð Þ~J1 cos h{h’ð Þsinc r{r’ð ÞzJ0: ð18Þ

Making use of the Euler formula for the sinc() function

sinc xð Þ~ P
?

k~1
cos

x

2k

� �
it is possible to derive

sinc xð Þ~ lim
n??

1

2n{1

X2n{1

k~1

cos
x

2n{kz1

� �
:

The first term of the infinite product in the Euler formula, or the

first term in the limit sum, gives us cos
r{r’

2

	 

. Comparing the

coupling in Eq. (18), and the one derived for two maps, Eq. (2), we

see that to first order, the synaptic coupling induced by the storage

of the whole morph sequence, is equivalent to the storage of two

correlated maps with m~
1

2
.

In Fig. 7, we compare the network activity generated by the

approximated coupling and the full result of Eq. 18, when the

external input is constant. The results are qualitatively similar but

the full morph case reaches the cylinder regime for lower J1

compared to the m~
1

2
case. Note that the network storing the

morph sequence shows the same dynamical pattern separation

observed in the two maps case (Fig. 8), see next Section for a

simulation example in a finite network with a finite number of

encoded maps. The important difference, is that while the very

correlations between maps forced the absence of neurons with

certain labels, hence constraining the permissible region for a

marginal solution in y{, here the neurons cover the entire (hA,hB)

space. The result is purely due to the process of storing multiple

maps along the morph sequence.

This morphing algorithm also yields a way of stimulating the

network with positions in environments intermediate between A
and B (with or without the intermediate maps encoded in the

network). It is sufficient to use as a place specific input what we

had in Eq. 13

a
cos hzm?r{Y tð Þð Þ

This time, the suitable range for the variable indexing the morph

sequence m?ð Þ is the whole range ½{1,1�, if using m~
1

2
as an

approximation for the morphed case, or the restricted m? [ ½{m,m�
if the network is storing just two correlated maps. In the reference

frame defined by the original coordinates (hA,hB), a change in the

stimulated environment m? corresponds to a rotation of the axis

representing the maximal external input; between a vertical axis

(stimulus localized in environment A, to an horizontal axis,

stimulus localized in environment B.)

In the experiment of [32], the rat is trained until it develops two

separate place coding for a single arena with different light

configurations (representing two distinct environments). The

advantage of this setup is that it allows, for instance, to slowly

morph the light configuration between the two environments

familiar to the rat. The experimental results shows a sharp

transition around the middle of the light morphing (lasting

Figure 7. Comparison between whole morph sequence storage

and two correlated maps with m~
1

2
. A: Phase diagram of the

model storing two correlated maps with m~ 1
2
, in the plane J1, J0ð Þ.

Note that with this value of the distance, the double ring regime is not
achievable. (A) region correspond to amplitude instability. B: Slice of the
steady activity along r, in correspondence of the maximum in h. Left:
parameters J1~15,J0~{20ð Þ (dot in the S region). Right:
J1~48,J0~{35ð Þ (C region); black curve, two stored maps; red curve,

whole morph sequence stored. The bumps do not cover the whole range
in both cases. External current I~1.
doi:10.1371/journal.pcbi.1000869.g007
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T*120s) between the place representation in light configuration

A and B. A link to these experimental results is provided by the

use of time-varying external environment m?~m? tð Þ~m?Az
t

T
: m?B{m?A
� �

, where T represents the duration of the morphing

and m?A,B denote the upper and lower bounds of the range. An

example usage of this protocol is shown in Fig. 8 for the

approximated whole morph sequence storage, for two slightly

correlated maps in the cylinder region of the parameter range and

for the double ring regime. For each run we show the dynamics of

the relevant order parameter for the regime under consideration, c
for the double ring case and y{ for the cylinder solution. In

addition, we numerically solve the dynamics for a moving stimulus

in either environment A or B. We use this as a reference for

computing, at each time step, the correlation coefficient between

the network activity during the morphing protocol and the activity

in the fixed environment. The transition is sharpest for the storage

of two slightly correlated maps. Note that similar results would be

obtained by testing the network separately in each environment of

the sequence (see e.g. [31]). The sharp transition is maintained

when increasing the amplitude of the external tuned input,

because a small tilt in the tuned input towards either map A or B is

sufficient to generate the dynamical pattern separation described

in the previous Section. The transition in the cylinder regime

occurs few seconds later than the one occurring in the double ring

regime, which in turn happens in the middle of the morphing (
T

2
).

This delay is due to the time required for the bump to move from

the region of rv0 to rw0, or viceversa (see also Fig. 5B). This

result could be compared with the experimental results of [32].

The delay does not occur when testing the network in separate

environments along the morph sequence.

There are two additional observations to be made (data not

shown). The first one is related to the sharpness of the transition in

the double ring regime; by further reducing the amplitude of the

external input, the mean-field dynamics can produce a sharp

transition between the environments representations, which is also

delayed compared to the middle of the morphing period. The

delay gets longer as the external input gets weaker, in extreme

cases it happens just before the end of the morphing procedure.

This sharp and delayed transition is not observed in microscopic

simulations with up to 2000 neurons, since the weak input is not

able to overcome the local inhomogeneities in which the bump is

trapped (see e.g. [18]). It is possible that in larger networks the

transition can be observed. The fine-tuning of the external input

strength required to have the transition around the middle of the

sequence, makes the double ring regime a weaker candidate

explanation for the experimental results of [32] compared to the

cylinder regime.

The second observation concerns the dependency of the

transition parameters on the velocity of the moving external

input. We have noticed that the transition becomes smoother and

closer to the middle as the velocity of the simulated animal is

reduced. The details of the transition in a realistic setting would

depend on the velocity history of the animal.

Figure 8. Representation switch along the morph sequence. Slow morph experiment between two reference environments, over T~120s of

simulation. The identity of the environment varies as m? tð Þ~m?Az
t

T
: m?B{m?A
� �

(linear change from environment A to B), where m?A,B is either +1 for

the morph sequence, or +m for two correlated environments. The input location is also time-varying, Y tð Þ~ 2pt

5
(a full circle in 5s). A: Double ring

solution. Order parameter c with time, both for weak *0:1a (solid curve) and strong external input *a (dashed curve). The result does not depend

strongly on the amplitude of the external input. Parameters m~0:95, J1~6, J0~{5, ~0:05,0:5ð Þ. B: Cylinder regime. Order parameter
y{

m
(location of the bump maximum in r) for the approximated storage of the morph sequence m~

1

2
and for two correlated maps with m~:9, both for

weak and strong input. Note how the sharpest transition, is exhibited by the weakly correlated maps. For the cylinder regime, the result is only mildly

dependent on the strength of the external modulation. Parameters m~
1

2
, J1~50, J0~{50, ~0:3,3

	 

and m~0:9, J1~18, J0~{15, ~0:15,1ð Þ.

C: Instantaneous correlation coefficients between the double ring regime network activity during the morphing procedure, and network activity in
environment A (dashed curve) or B (black curve). Simulations with weak external input. D: As in C, for the cylinder solution. Note how the sharp

transition is delayed compared to
T

2
.

doi:10.1371/journal.pcbi.1000869.g008
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Comparison with simulations
In order to verify that the results obtained in the previous

Sections are not artifacts coming from our assumptions of having

an infinite number of neurons (and maps, referred to the morphing

procedure) we compare some of the MF predictions to simulations

of networks with a finite number N of neurons. Each neuron is

assigned a random pair of labels (h(i),r(i), for the i-th neuron), from

which we create either two maps with distance m, or a finite

number p of maps (h(i)
fk

, for the k-th map) along the morph

sequence between two uncorrelated references (see Methods -

Numerical Methods).

In Fig. 9 we compare the order parameters from MF and

estimated from simulations, at a fixed value of the distance

between the maps and inhibition. Varying J1, the solution goes

through the double ring, single ring and cylinder regime. The

order parameter c is particularly sensitive to the finite size of the

network (and the randomized maps, see [18]).

Fig. 10 shows the time evolution of a network storing few maps

from a morph sequence. This is the best example to show

dynamical pattern separation at finite size, since it is less intuitive

than the case of two correlated maps. From an arbitrary initial

position, the bump of activity starts moving first towards negative r
(increasing angles in map A), then along increasing h without

changing its location in r. Note that, despite the presence of

neurons everywhere in the (hA, hB) plane, the bump moves along

an invisible barrier resulting from the storage of the morph

sequence.

We have also verified that all the qualitative behaviors, number

and type of solutions, unreliable coding, dynamical pattern

separation and memory effect, are maintained when moving from

maps on rings, to segments (either two correlated maps or

morphed), as studied e.g. in [18,37] for the single map (data not

Figure 10. Dynamical pattern separation for a network storing a finite number of maps along the morph sequence. Sequence of
snapshots of the network activity, in hA, hBð Þ and h, rð Þ coordinates. The network with N~2000 neurons is storing p~11 maps, equally spaced along

the morph sequence. The external input is localized in map A and evolves as Y tð Þ~ 2pt

5
. Each dot represent a neuron, with color coded activity. The

dashed red line represents the maximum of the external tuned input. As the activity evolves in time from a random configuration, the subset of active
neurons moves towards the negative r region and stays there moving only along h. The parameters are J1~30, J0~{30, ~0:1ð Þ.
doi:10.1371/journal.pcbi.1000869.g010

Figure 9. Comparison between MF solutions and microscopic
network dynamics. A: Phase diagram from MF analysis for m~0:95.
B: Order parameters from the numerical solution of MF equations (solid
curves) with varying J1 ; estimated order parameters from simulation
results; dots with error bars, average and s.d. over 6 simulations with
different realizations of the neural maps. N~5000 neurons. J0~{5.
doi:10.1371/journal.pcbi.1000869.g009
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shown). Instead of having neurons arranged on a cylinder in the

hA, hBð Þ coordinates, as for the ring case (see e.g. Fig. 2B,II), the

geometry resulting from two correlated linear maps would be an

infinite strip. A strong enough map-specific interaction would

produce a bump localized in both maps. An external moving input

in one of the maps would move the bump on the strip up to the

boundary, and then the bump would crawl along such boundary.

Depending on the direction of the moving input or the identity of

the stimulated environment, the bump can settle either in ‘‘upper’’

of ‘‘lower’’ part of the strip as in the cylinder regime.

Discussion

We have studied a continuous attractor network model storing a

pair of correlated maps. The storage of a morph sequence between

two uncorrelated maps falls in this class of model, since it is

approximately equivalent to the storage of two strongly correlated

maps. The other relevant parameter for describing the possible

network behaviors, beside the correlation between the maps, is the

strength of map-specific interaction between neurons.

The analysis of the solutions of the system with a weak tuned

external input, reveals several interesting behaviors. When the

correlation between the maps is weak, neurons have two different

tuning curves corresponding to the stimulus presentation in

different maps. The representation is reliable, in that the single

neuron response is consistent between presentations. This is the

operating regime which is usually considered useful in place

coding applications.

For higher correlations between the maps and weak map-

specific interactions, each neuron possesses only one tuning curve,

irrespectively of the stimulated map. In contrast to the previous

regime, this one is rendered useless by the inability to represent

fully the state of the external world, i.e. the identity of the

environment in the context of place coding analogy.

We find another, novel regime for strong interactions and for

any amount of correlation between maps. The surprising aspect of

this regime is that the state of the world does not uniquely

determine the state of the network; there is an additional degree of

freedom in the network representation.

To a closer look, this additional freedom found in the novel

regime is rich of consequences. When the external input location is

randomly varied between presentations in one map, we can define

the response of a neuron to a particular location as an average of

the neuron activity over external input presentations in that

location. In this context each neuron has different tuning curves

relative to the different maps used in the stimulation, but the price

to pay is unreliable coding; a neuron which should be active

during a particular state of the world, could remain silent.

When the location of the external input changes smoothly in

time on one map, some neurons develop a selectivity to the

direction of change. When the increase happens on the other map,

another subset of neurons fires. The overlap between the two

subsets may be arbitrarily small, depending on the parameters

choice. Neurons active in both maps would have tuning curves

around similar values of the external input location. We refer to

this phenomenon as dynamical pattern separation. There is an

ambiguity in the network representation, due to the fact that the

subset of neurons activating with the increase of the external

location in map A, will also activate with a decrease of the location

in map B. There are three possible experimental contexts in which

this ambiguity does not arise.

A simple experimental context would arise if the input is tuned

in only one of the two maps and the only parameter changing is

the location of the external input. Given some state variable, like

size and orientation of objects, or frequency of sound waves for

instance, our model would produce respectively tuning for

expansion/contraction, CW/CCW rotation and upward/down-

ward frequency sweeps (all experimentally observed, see e.g.

[40,41]).

Our model provides a unique way for producing selectivity for

the direction of change of a state variable, given a selectivity for the

variable itself. Both kind of responses give rise to another

interesting phenomenon: The current representation of the state

of the world is influenced by the preceding one, even with an

intervening delay. It is possible to read out from the network the

direction of change of the state variable. This property may be

exploited when solving delayed discrimination tasks (see [42] for

data analysis and modeling in terms of remapping for a

somatosensory discrimination task).

A second experimental context is related to place coding; the

two environments should be considered as two distinct circular

arenas which can be traveled only in one direction. Experimental

observations show that when an animal is exposed to two

environments, the majority of place cells have a place field in

only one of the two environments (see e.g. [43,44]). A possible

experiment to test the model would consist in training the animals

in two well differentiated environments. After measuring the

distance between preferred locations for neurons having tuning

curves (place fields) in both environments, one could train the

animals in intermediate environments, which would correspond to

the storage of the morph sequence in the model. For the novel

regime of the model, the disappearance of the place fields in one of

the environment would be predicted for neurons with very

different preferred locations, and the remaining fields will

converge to a common representation. Alternatively the training

could be performed by using the initial two environments, and

then slowly changing them across several training days to increase

their similarity. This would correspond to the storage of two

correlated environments.

A third experimental context is related to direction selectivity in

place cells. Animals trained to shuttle back and forth in a one-

dimensional track (a segment or a circle), have place cells showing

selectivity to the direction of motion. For instance a cell could be

active in a certain region of the circular environment when the

animal is moving clockwise, while being completely silent when

the animal moves counterclockwise. The link with our model is

provided by the simple observation that the same 1D track, but

walked in opposite directions, correspond to two different

environments. Dynamical pattern separation would produce

directional selective neurons, while a neuron having place fields

in both environments would have similar preferred locations. In

[45], place cells recorded from rats trained in a circular

environment indeed showed bi-directional place fields in similar

locations. There was however a systematic bias in the difference

between the preferred locations in the CW and CCW directions of

the majority of the bi-directional cells: place fields were displaced

backward with respect to the direction of motion of the animal.

We believe that this result, termed by the authors ‘‘prospective

misalignment’’, could be obtained in the context of our model in

more than one way. One possibility is the introduction of an

asymmetry in the synaptic connections (following [46]), with the

asymmetry determined by the emerging direction selectivity of the

neurons. The spread of activity due to the asymmetry would

activate neurons earlier compared to the symmetric case,

reproducing the prospective misalignment. A similar result could

be obtained with short-term synaptic plasticity, which is known to

produce a moving bump of activity ([47]). A third option could be

the introduction of a systematic shift between the maps, possibly

Continuous Attractors with Morphed/Correlated Maps
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resulting from Hebbian learning of the configurations generated

by the suggested asymmetry mechanisms.

In the experiments of [32], two environments correspond to two

different light configurations in the same arena. A slow linear

morph between light configurations results in a sharp transition

from the population representation for one environment to the

other. This is a promising experimental technique which is able to

probe with unprecedented flexibility the dynamics of remapping

between two environments or along a morph sequence [32], and

could serve as a fertile ground for our model’s predictions, hence

for testing the attractor hypothesis. We show that, in agreement

with the experiment, the slow morph protocol produces sharp

transitions due to dynamical pattern separation. This result is even

more significant considering the acknowledged difficulties in

reproducing sharp transitions between correlated maps in a

‘‘traditional’’ setting [36]. The model predicts a transition between

representations slightly delayed compared to half of the morphing

period; it remains to be seen whether this occurs also in the

experiment.

Our results can be related to experimental observations about

changes in place representation between distinct environments.

Two major classes of remapping have been observed when an

animal is tested in two distinct environments: rate remapping, in

which cells maintain the positions of their firing fields while

differentially changing their amplitudes, and global remapping,

where changes in firing location are observed in addition to firing

rate modifications (see e.g. [43]). Based on these properties, we

could associate the double ring regime to the global remapping

and the cylinder regime to the rate remapping.

The model results can also be compared to experiments with

sequences of continuously morphed environments. When animals

explored intermediate environments, both sharp and smooth

transitions in representations were observed in different experi-

ments (see [31] and [30] correspondingly). Our model exhibits

both sharp transitions between the place representations corre-

sponding to intermediate environments (cylinder regime) and

smooth transitions (double ring regime).

The linkage of cylinder and double ring regimes to sharp and

smooth transitions respectively, taken together with the above

mentioned association between these two model regimes with

global and rate remapping, would be against the hypothesis made

in [30] that related global remapping and sharp transitions on one

hand, and rate remapping with smooth transitions on the other. In

the present form, our model cannot be made compatible with this

hypothesis. Since both the recordings of [31] and [30] contained

populations of neurons exhibiting different transition behaviors,

we speculate that the introduction of an additional selectivity for

the environments (see below) could help in resolving the

contradiction. Rate remapping would then correspond to a mixed

single ring-cylinder regime (different subsets of the network would

exhibit the different regimes), while global remapping would

resemble a mix of the double ring and cylinder regimes.

A future extension of the model would include neurons with

some form of selectivity for the context; each neuron would then

be characterized not only by its location on the two maps, but also

by selectivity indexes measuring its ‘‘preference’’ for the maps (e.g.

[17]). This more realistic setting including selectivity would

produce silent neurons and place fields with variable peak rates/

widths even when storing a single map.

A second issue to be addressed is how the network can learn the

synaptic structure from its inputs. The long-term plasticity (e.g.

[33,34]), could bring the network through various operating

regimes depending on the training protocol. This could impose

additional constraints on the model and provide additional

predictions.

Finally, with the introduction of short-term plasticity [48–53],

the network could exhibit an even richer repertoire of dynamics.

This extension of the model would be an important step towards

the experimental results of [32]. In this study, it was observed that

when there is a fast switch between the two light configurations,

the population vector sometime oscillates between the place

representation of the environments, before settling on the current

one. Preliminary results coming from the introduction of short

term facilitation and depression in a network exhibiting a double

ring solution, show that is indeed possible to observe oscillations

between place representations. A detailed analysis of this behavior

will be matter for a future report.

Methods

Numerical methods
To solve numerically the MF dynamics described by Eq. 5, we

discretized h,rð Þ on 100|100 regular grid in 0,2p½ �| {
p

2
,
p

2

h i
:

The integrals in the rhs of the equations were estimated using a

trapezoidal method. The system of ODEs were integrated with an

adaptive 4-th order Runge Kutta scheme.

The simulation of the microscopic networks, whose results are

reported in Figs. (9,10), were performed by solving numerically the

system of ODEs

t _mmj~{mjz
1

N

X
j

WijmjzI

" #
z

, ð19Þ

where j~1 � � �N indexes the neurons. The matrix Wij is built by

summing the single map encoding Wij~
1

p

X
f

W f
ij , where

W f
ij~J1cos hf

i {hf
j

� �
zJ0:

To obtain the p labels hf
i characterizing each neuron, we first

randomly generated a hi,ri and used Eq. 1 for p~2 or Eq. 16 for

pw2. For the comparison of the simulation with the MF results in

Fig. 9, we estimated from the steady state activity (compare with

Eq. 22)

ZE
A~

1

N

X
j

e
ihA

j mj:rE
Ae

iyE
A ð20Þ

ZE
B~

1

N

X
j

e
ihB

j mj:rE
Be

iyE
B

gE~
1

N

X
j

mj:rE
Ae

iyE
A ,

from which we constructed the estimates for the order parameters,

using Eq. 24.

For the noisy simulations shown in Fig. 5B, we used a current-

based version of the dynamics described by Eqs. 19:
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t _hhj~{hjz
1

N

X
j

Wij hj

� �
z

zI :

We then estimated the order parameters via Eqs. 20, using the

firing rates mj~ hj

� �
z

. The noise was introduced as an additional

term in the current

I?I : 1z NB tð Þð Þ

where B tð Þ is a zero average, unit variance Gaussian d-correlated

noise. We used N~0:05 for the results in Fig. 5. The numerical

solution was obtained using the Euler-Maruyama integration

scheme.

The simulations performed in Fig. 7, for a network storing the

whole morph sequence, were carried out as follows. Substituting

the synaptic coupling obtained in Eq. 18 with the one in Eq. 2, it is

possible to derive a dynamics for the ‘‘order function’’

Z r’ð Þ~
ðð
DhDreihsinc r’{rð Þm h,rð Þ:r r’ð Þeiy(r’),

following the same procedure of Methods - Reduced dynamics. An

order parameter g is defined exactly as in Eq. 22. The steady state

activity of such dynamics

m~ J1r rð Þcos h{y rð Þð ÞzJ0gzI½ �z,

was compared with Eq. 4, for h~y{ and h~y rð Þ (in absence of a

spatially tuned input y rð Þ is constant).

The time constant t was set to 10ms everywhere.

Inverse transformation
The inverse transformation hA,hBð Þ? h,rð Þ can be obtained

from Eq. 1, defining

h’B~hB{2psign hB{hAð ÞH DhB{hAD{pð Þ ð21Þ

h~
h’BzhA

2
mod 2p

	 


r~
h’B{hA

2m
:

The 2p rotation in the first equation is just needed to select the

shortest distance between two maps on a ring, and it is transparent

for the connectivity given its periodicity. This rotation was

implicitly assumed when defining the neurons locations along

the morph sequence, Eq. 16.

Reduced dynamics
A first reduction of the dynamics described by Eq. 2 is done

using the first two Fourier components of the activity m with

respect to the two correlated maps hA and hB, rewritten in terms of

center map h and the distance r using Eq. 1. In line with [37] we

define the following variables

ZA:
ðð
DhDrei(h{mr)m h,rð Þ:rAeiyA ð22Þ

ZB:
ðð
DhDrei(hzmr)m h,rð Þ:rBeiyB

g:
ðð
DhDrm h,rð Þ:

The variable g is just the average activity, while ZA and ZB

measure the spatial modulation of the network activity, in the map

A and B respectively. Intuitively their values tell us which angle of

which map is instantaneously represented by the network.

The dynamics of the network activity m, and of the order

parameters g, ZA, ZB, becomes

t _mm~{mz~gg h,rð Þ ð23Þ

t _ZZB,A~{ZB,Az

ðð
DhDrei(h+mr)~gg h,rð Þ

t _gg~{gz

ðð
DhDr~gg h,rð Þ,

with

~gg h,rð Þ~ J1

2
rA cos h{mr{yAð ÞzrB cos hzmr{yBð Þð ÞzJ0gzI

� �
z

It is convenient to introduce dimensionless combinations of the

order parameters to better expose the structure of the solutions,

and then derive the dynamics of these new order parameters.

From the two complex variables and the real one, we construct

five new variables

c~
rB{rA

rBzrA

ð24Þ

a~
J1

I

rBzrA

2

s~
IzJ0g

aI

yz~
yBzyA

2

y{~
yB{yA

2
:

From Eqs. 23, after some algebra, it is finally possible to obtain the

dynamics of the new order parameters, Eq. 5.

Solutions properties
In Methods - Phase diagram of the model, we mentioned that the

equation _yyz~0 from Eqs. 5, i.e.
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ðð
DhDrg h,rð Þ sin h{yz

� �
cos mr{y{ð Þ

�
{c cos h{yz

� �
sin mr{y{ð Þ

�
~0

is automatically satisfied once the solution for the other four order

parameters has been found. This can be seen using the fact that,

by definition, the imaginary part of the real numbers rA and rB is

0. Since at steady state m h,rð Þ~g h,rð Þ, and rA,B:ZA,Be{iyA,B

(Eqs. 22), by computing Im rAð Þ+Im rBð Þ~0 we can prove the

property.

Another statement mentioned in Methods - Phase diagram of the

model, is that fixed points solutions of Eqs. 5 with c=0,y{=0ð Þ do

not exist. Observing the shape of the network activity at steady

state (Eq. 3) (setting the phase yz~0 for convenience) which we

rewrite here

m~aI cos h cos mr{y{ð Þ{c sin h sin mr{y{ð Þzs½ �z:

we would like to know, given the correlation between the stored

maps m and the bump size s, how much we can move the bump

along r by increasing Dy{D without having active neurons at

r~+
p

2
. We first analyze the onset of the freedom of choice of y{,

by requiring the bump to ‘‘fit’’ exactly the r range; with a bigger

bump, the only possible choice for y{ would be y{~0, with a

smaller bump it would be possible to move it along r. Hence,

posing y{~0, the activity at r~
p

2
would be

m~aI cos h cos m
p

2

� �
{c sin h sin m

p

2

� �
zs

h i
z
:

The angle h� at which this activity is maximal is

h�~arctan {c tan m
p

2

� �� �
,

so the maximal activity at the r boundaries is

m~aI
cos m

p

2

� �
zc2 sin m

p

2

� �
tan m

p

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zc2 tan2 m

p

2

� �r zs

2
664

3
775

z

:

We recognize the first term inside the transfer function to be

positive, so the only way to obtain a vanishing activity is to have

sv0. From Fig. 4 it is possible to see that the double ring solutions

c=0 have always size sw0.

In order to obtain the range of integration for y{ used to

compute the average tuning curve in the cylinder regime (Results -

Tuned external input), it is enough to consider the activity m at its

maximum in h

m* cos mr{y{ð Þzs½ �z:

We want this bump in r to at most touch the endpoints r~+
p

2
.

Given that the half-width of the bump is arccos {sð Þ, the allowed

range for y{ is {
p

2
{arccos {sð Þ

� �
,

p

2
{arccos {sð Þ

� �h i
.

Stability
In order to study the stability of the homogeneous solution,

corresponding to rA~rB~0 in Eq. 23 (i.e. a~0 from 24), we can

either linearize Eq. 23, or take a step back from the MF reduction

which lead to Eq. 5, so to avoid division by a. We take the second

approach and redefine one of the order parameter, b~as. To study

the stability of the solution, it is sufficient to look at the dynamics of a
and b. Posing c~yz~y{~0, it is easy to verify that

t _bb~{bz1zJ0

ðð
DhDrf h,rð Þ

t _aa~{azJ1

ðð
DhDrf h,rð Þcos h cos mrð Þ,

where the function f is defined as

f h,rð Þ~ a cos h cos mrð Þzb½ �z:

The matrix describing the linear dynamics for the vector of small

perturbations db,dað Þ around the solution a~0,b~b? reads

J1C{1 0

0 J0{1

	 

,

where

C~

ðð
DhDr cos2 h cos2 mrð Þ:

Therefore, two conditions must be satisfied for the solution to be

stable: J0v1 (amplitude instability) and J1v
1

C
. Evaluating the

integral in C explicitly, we get the line of separation between the

homogeneous solution and the localized bump (Turing instability),

expressed in Eq. 7.

For the single, double ring and cylinder solution we can

linearize directly Eq. 5, posing yz~y{~0. The matrix

associated with the dynamics of the vector dc,da,dsð Þ, after using

the fixed points equations (Eq. 8), is

{1zJ1 A
S2zc?ASC

� �� �
0 {J1 ASzc?ACð Þ

{a?J1ASC 0 a?J1AC

{J0ASzJ1s?ASC½ � { 1

a?ð Þ2
{1zJ0A{J1s?AC½ �

0
BBB@

1
CCCA: ð25Þ

We define

A~

ðð
DhDrh h,rð Þ ð26Þ

AS~

ðð
DhDrh h,rð Þsin h sin mrð Þ

AC~

ðð
DhDrh h,rð Þcos h cos mrð Þ
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A
S2~

ðð
DhDrh h,rð Þ sin2 h sin2 mrð Þ

A
C2~

ðð
DhDrh h,rð Þ cos2 h cos2 mrð Þ

ASC~

ðð
DhDrh h,rð Þsin h sin mrð Þcos h cos mrð Þ

where

h h,rð Þ~H cos h cos mrð Þ{c? sin h sin mrð Þzs?½ �:

Using the identity x½ �z~xH xð Þ, to write the function g (Eq. 6),

we see that

ðð
DhDrg h,rð Þ~ACzs?A:

The fixed points equations can thus be rewritten in term of the

quantities in Eq. 26

1

J1

~A
C2{c?ASCzs?AC ð27Þ

c?~
ASCzs?AS

A
S2{

1

J1

1

a?
~s?{J0 Aczs?Að Þ:

Let us examine the single ring and cylinder solution, c?~0.

Given the symmetry in the integrand, AC~ASC~0 in this case.

The stability matrix from Eq. 25 becomes then

{1zJ1A
S2

� �
0 0

0 0 a?J1AC

0 {
1

a?ð Þ2
{1zJ0A{J1s?AC½ �

0
BBB@

1
CCCA: ð28Þ

It is immediately seen that the eigenvalue corresponding to a

destabilization of c?~0 changes sign when J1AS2~1. Substituting

for J1 the expression in Eq. 27, it is easy to verify that this

reproduces the curve of separation between the single and double

ring regime described by Eq. 12. We analyze the remaining two

eigenvalues by looking at the trace T and the determinant D of the

2|2 sub-matrix in the a,s subspace (from 28):

T~{1zJ0A{J1s?AC

D~
J1AC

a?
:

Given that AC§0, we see immediately that the eigenvalues have

the same sign for a?w0, and one of them changes sign when

a?v0. Recall that a?~0 is the onset of amplitude instability we

introduced without proof in Eq. 9. If we find that when Dw0 the

trace is negative, then we know that a?~0 correspond to a

destabilization of the solution.

Using Eq. 27, we see that imposing Dw0 is equivalent to

J0v
s?

ACzs?A
, and that the trace T satisfies

Tv{
AC

ACzs?A

A
C2z2s?ACz s?ð Þ2A

A
C2zs?AC

:

The numerator in the first term is non-negative (AC§0). The

denominator is simply
ÐÐ
DhDrg, non-negative by definition. The

denominator in the second term is J{1
1 w0, and we can write the

numerator as

ðð
DhDrh h,rð Þ cos h cos mrð Þzs?ð Þ2w0:

Finally, we numerically verified that the region of existence of the

double ring solution coincides with its stability region.
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