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Abstract

Usually, the occurrence of random cell behavior is appointed to small copy numbers of molecules involved in the stochastic
process. Recently, we demonstrated for a variety of cell types that intracellular Ca2+ oscillations are sequences of random
spikes despite the involvement of many molecules in spike generation. This randomness arises from the stochastic state
transitions of individual Ca2+ release channels and does not average out due to the existence of steep concentration
gradients. The system is hierarchical due to the structural levels channel - channel cluster - cell and a corresponding strength
of coupling. Concentration gradients introduce microdomains which couple channels of a cluster strongly. But they couple
clusters only weakly; too weak to establish deterministic behavior on cell level. Here, we present a multi-scale modelling
concept for stochastic hierarchical systems. It simulates active molecules individually as Markov chains and their coupling by
deterministic diffusion. Thus, we are able to follow the consequences of random single molecule state changes up to the
signal on cell level. To demonstrate the potential of the method, we simulate a variety of experiments. Comparisons of
simulated and experimental data of spontaneous oscillations in astrocytes emphasize the role of spatial concentration
gradients in Ca2+ signalling. Analysis of extensive simulations indicates that frequency encoding described by the relation
between average and standard deviation of interspike intervals is surprisingly robust. This robustness is a property of the
random spiking mechanism and not a result of control.
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Introduction

Cellular behavior is the dynamics emerging out of molecular

properties and molecular interactions. Hence, cells are indispens-

ably subject to intrinsic noise due to the randomness of diffusion

and molecule state transitions in gene expression [1,2], signaling

pathways and control mechanisms. It drives noise induced cell

differentiation [3], cell-to-cell variability of cloned cells [4] or

second messenger dynamics [5]. While noise in gene expression

can be attributed to small molecule numbers, we consider here

noise in signalling pathways which occurs even in systems with

large molecule numbers.

Molecular interactions create nonlinear feedback like substrate

depletion and allosteric regulation in enzyme kinetics or mutual

activation of ion channels in membrane potential dynamics. They

also couple active molecules inside cells spatially by diffusion of

product and substrate or electric currents. If this coupling is strong

enough, cells respond spatially homogeneous. Otherwise, we

observe dynamic spatial structures formed by concentrations of

molecules in specific states. These structures are often called

microdomains [6–9].

The existence of these dynamic structures determines in some

systems whether the cell obeys deterministic or stochastic

mechanisms. The dynamic compartmentalization of the cell by

concentration gradients may prevent the establishment of

deterministic dynamics by the law of large numbers even if the

total number of molecules in the cell would suggest it otherwise.

Microdomains are too small to behave deterministically. Not even

the whole ensemble of microdomains will behave deterministically,

if they are only weakly coupled or if there are only a few of them.

Consequently, noise is not averaged out on cell level.

To determine whether we deal with a deterministic or stochastic

system is important since these regimes may exhibit very different

dependencies of behavior on system parameters [10]. For instance,

repetitive spiking in intracellular Ca2z signalling would be

restricted to parameter values providing oscillatory dynamics with

a deterministic mechanism [11,12]. It may occur with a stochastic

system also for parameters which would lead to bistable or

excitable dynamics in the deterministic limit, i.e. for larger or

different parameter ranges [13]. In the non-oscillatory parameter

ranges, the mechanism creating almost regular spike sequences

can be coherence resonance [14–16] rather than the existence of a

limit cycle in phase space of the local dynamics. Noisy systems with

gradients usually show also a dependency of system characteristics

on parameters of spatial coupling which spatially homogeneous

systems do not exhibit. An example is the dependency of the

spiking frequency on diffusion properties (see below and [5]).

In summary, the interaction between noise and gradients

determines parameter dependencies and mechanisms. Recent

experimental and theoretical studies on intracellular Ca2z

dynamics taught us that cells may indeed work in this regime

and may exhibit repetitive spiking with non-oscillatory local

dynamics. Functionally relevant gradients are also observed with

intracellular cAMP [8,17–19], pH [20] and in phosphorylation/
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dephosphorylation dynamics [21,22] suggesting that the lessons

learned from Ca2z dynamics may also apply to other systems.

One of these lessons is that the randomness of single molecule

state changes is carried up from the molecular level to cell level

[23,24]. Cellular Ca2z concentration spikes form random

sequences of interspike intervals (ISIs) and that randomness arises

from the randomness of single molecule state transitions [5,25].

Consequently, the fluctuations of cellular signals contain informa-

tion on single molecule behavior. It is a task for modelling now to

establish the relation between these fluctuations and single

molecule properties to decode this information.

Systems exhibiting the interaction between noise and gradients

require modelling tools which can deal efficiently with the large

concentration gradients and with the time scale range from

molecular transitions to cell behavior. Here, we present such a

modelling concept with the example of intracellular Ca2z

dynamics. It simulates all active molecules as stochastic Markov

chains with all the individual state transitions and describes

diffusion and some bulk reactions deterministically. Active

molecules are those carrying the crucial feedbacks and nonlinea-

rities. That allows for linearization of passive bulk reactions and

the application of a multi-component Green’s function to solve the

partial differential equations in the cell analytically. We combine

Green’s functions with a local quasi-static approximation for the

fast concentration changes and diffusion processes at the location

of active molecules. That is possible due to the short diffusion time

on the molecular length scale of a few nanometers. Since we use

Green’s functions for the long range concentration profiles we can

restrict the calculation of concentration values to the location of

active molecules. That renders this method extremely efficient

even in 3 spatial dimensions.

We will apply this concept to intracellular Ca2z dynamics and

compare simulated time dependent concentrations with single cell

time series obtained from cultured astrocytes all measured under

the same condition without any stimulation. Ca2z is a ubiquitous

second messenger in eukaryotic cells that transmits a variety of

extracellular signals to intracellular targets. Ca2z controls

fertilization, cell differentiation, gene expression, learning and

memory [26]. It triggers secretion in glands, muscle contractions in

the heart and transmits apoptosis signals [27,28].

A main mechanism to increase the cytosolic Ca2z concentra-

tion is release from intracellular stores, especially from the

sarcoplasmic reticulum by ryanodine receptor channels (RyRs)

or the endoplasmic reticulum (ER) by inositol 1,4,5-trisphosphate

receptor channels (IP3Rs). These channels open in a Ca2z

dependent fashion - a self amplifying effect known as Ca2z

induced Ca2z release (CICR) [27,29]. If a single channel opens,

Ca2z is released into the cytosol, diffuses to adjacent channels and

increases their open probability. Thus release may spread into the

entire cell leading to a global cytosolic Ca2z concentration spike.

The inositol 1,4,5-trisphosphate (IP3) pathway initiates Ca2z

release from the ER in many cell types (including astrocytes [30]),

since binding of IP3 to the IP3Rs primes them for activation by

Ca2z (Figure 1 in Text S1). The spatial arrangement of IP3Rs in

channel clusters leads to a hierarchical system with the structural

levels channel, channel cluster and cluster array, which is the cell

level. Ca2z pumps and buffers generate large gradients close to

open channel clusters. Thus, channels within a cluster are strongly

coupled and the coupling between clusters is only weak - the

geometrical hierarchy entails a hierarchy of coupling strengths.

Stochastic binding of IP3 and Ca2z to the binding sites of

IP3Rs leads to random opening of a single channel in a cluster

[31,32]. This causes other channels of the same cluster to open

also leading to a puff. An individual cluster is stochastic due to the

small number of IP3Rs per cluster [33–35]. The opening of a

single cluster can only be detected by adjacent clusters due to the

strong Ca2z gradients [23,24,27,36,37]. Since they are again only

a few, it remains random whether they are opened by the initial

puff. If a supercritical number of puffs arises, release spreads into

the whole cell causing a global spike. Thus, due to the hierarchy of

coupling strength, randomness is carried up from the channel level

to the cell level.

In order to model the hierarchical system, we have to consider

the stochastic behavior of individual IP3Rs and the spatial

heterogeneity of cells induced by IP3R clustering. That leads to

a reaction diffusion system (RDS) with local stochastic source

terms. For sufficient fast simulations, we decompose the system

into local stochastic dynamics comprising channel state transitions

and fast local concentration changes and a deterministic global

dynamics for which we derive an analytical solution in form of a

three component Green’s function (Text S1). The solution is

driven by stochastic channel behavior described by a hybrid

deterministic-stochastic algorithm. We apply the model to a

variety of experiments to demonstrate its potential.

Results

Multi-scale modelling exploiting the hierarchical
organization of Ca2+ signals

Our modelling concept simulates active molecules individually

by Markov chains, the concentration dynamics in the range of the

molecule locally quasi-statically and the diffusional long range

coupling by Green’s functions. Simulations are orders of

magnitude faster than numerical schemes based on spatial grids.

Their efficiency derives from the methods which we apply. The

use of hybrid deterministic-stochastic algorithms for the Markov

chains allows for time steps much larger than traditional Gillespie

algorithms. In between stochastic molecule state transitions, we

integrate the concentration dynamics. The local quasi-static

approximation reduces clusters to spatial d-function sources which

turns integrals into sums. It also substantially reduces the number

of modes to be used in the Green’s function. And finally Green’s

function enables us to restrict the calculation of concentration

values to the locations of active molecules.

Author Summary

The number of proteins organizing cellular processes is
huge. The challenge for systems biology is to connect the
properties of all these proteins to cellular behavior. Do
individual state changes of molecules matter for cell
behavior despite these large numbers? Recently, we have
experimentally shown for four cell types that intracellular
Ca2+ signalling is driven by single channel dynamics.
Molecular fluctuations are used constructively for a
stochastic spike generation mechanism. The hierarchical
structure of Ca2+ signalling prevents averaging of fluctu-
ations and, consequently, the sequence of global spikes
still reflects this molecular noise. Here we present a
stochastic 3-D multiscale modelling tool living up to these
findings by following the consequences of individual
channel state changes up to cell level. We simulate the
variety of cell responses in different experiments. The
stochastic spike generation mechanism is surprisingly
robust, providing new insights into the relation of function
and robustness. The modelling concept can be applied to
a large class of reaction-diffusion processes including other
pathways like cAMP.

Ca2+ Signals Driven by Noise

PLoS Computational Biology | www.ploscompbiol.org 2 August 2010 | Volume 6 | Issue 8 | e1000870



Channel and cluster level
IP3R dynamics and spatial channel clustering lead to the

hierarchical system depicted in Figure 1. IP3R channels are

tetrameres [38]. A single channel opens and closes in dependence

on binding and dissociation of IP3 and Ca2z to the binding sites of

its subunits (see below). An open channel conducts a Ca2z current

from the ER into the cytosol which is due to the huge

concentration difference of up to 4 orders of magnitude across

the ER membrane.

IP3Rs form clusters on the membrane of the ER consisting of 1

to 10 channels [33,35]. They physically interact within a cluster

and are consequently separated by a few nanometers only [35].

The IP3Rs in a cluster are strongly coupled by the large local

Ca2z concentration close to open channels.

Typical inter-cluster distances found experimentally are in the

range of 1–7 mms{1 [39]. Figure 1A shows a representative

example of cluster arrangement used in simulations. Due to

cytosolic buffers and SERCAs, the local Ca2z concentrations

close to an open channel cluster exhibit large gradients such that

coupling between clusters is weak compared to intra-cluster

coupling. This leads to the hierarchical organization of Ca2z

signals. Stochastic opening of a single channel (blip) is locally

amplified by CICR leading to a puff (Figure 1B and D). The

concentration gradients keep the probability for activation of

adjacent clusters small and only a fraction of puffs activates several

neighboring clusters. Once a supercritical number of open clusters

is reached, more of them open forming a global signal. In that

way, the triggering random opening of a single IP3R is carried up

to the macroscopic scale. The mechanism transforms the fast noise

of channel state changes on a millisecond time scale into

fluctuations of interspike intervals of tens of seconds as shown in

Figure 1D.

An early and widely used channel state model is the DeYoung-

Keizer model [40,41]. It assumes independent subunit dynamics

and allocates three binding sites to each subunit as shown in

Figure 1C. One site for IP3 and one for Ca2z that cooperatively

activate the subunit. Another binding site with lower affinity for

Ca2z inhibits the subunit dominantly. These two different

Figure 1. IP3R properties and clustering generate a hierarchical system. A: IP3R form channel clusters (green dots) that are randomly
scattered across the membrane of the ER and separated by 1 to 7 mm in the cell. B: Compared with inter-cluster distances, channels (orange) within a
cluster are tightly packed in the ER membrane and are strongly coupled by Ca2z (red). Channels within a cluster are lumped into one source term
(green sphere) with radius Rcl, which depends on the number of open channels (see text). C: Single IP3R consist of four subunits the dynamics of
which is described by the DeYoung-Keizer model. The 8 subunit states form a cube and subunit state transitions correspond to the edges. D: The
Ca2z dependent activation and inhibition of IP3R are key elements of Ca2z induced Ca2z release. Combined with the spatial clustering, the
resulting hierarchical structure transforms fast fluctuating single channel dynamics (blips) first into locally amplified cluster signals (puffs) and then
into cellular release spikes. (Local concentrations are determined 10 nm apart from the release site.)
doi:10.1371/journal.pcbi.1000870.g001

Ca2+ Signals Driven by Noise
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affinities lead to a biphasic dependence of the stationary open

probability on the Ca2z concentration (see Figure 1 in Text S1).

Only the state X110 out of the 8 possible subunit states Xijk

corresponds to an active subunit (Figure 1C), where the first index

refers to the IP3 binding and is 1, if IP3 is bound and 0 otherwise.

Analogously, the second and third index describe Ca2z binding to

the activating and inhibiting site, respectively. A channel opens, if

at least 3 subunits are in the active state.

The 12 possible transitions between the 8 subunit states

correspond to transitions in a state scheme forming a cube

(Figure 1C). Some of the transition probabilities depend on the

local Ca2z and IP3 concentrations (Figure 1 in Text S1). In

simulations, the transitions are realized by a hybrid deterministic-

stochastic algorithm [42], which uses the local Ca2z concentra-

tions and the dissociation rates and binding rate constants given in

Table 1 in Text S1.

Since IP3Rs within one cluster are close to each other, a cluster

can be approximated by one spatial d-source for the purpose of

simulating the cluster current in the long range cellular dynamics.

The current depends on the number of open channels No, the

time course of which comes out of the stochastic simulation of

channel states. It is proportional to the concentration difference

½E�{½Ca2z� across the ER membrane at the location of the

channel molecule. Hence, we actually need to solve the complete

reaction-diffusion problem to determine it. But the concentration

difference at the cluster is not well defined with a d-source term.

Therefore, we calculate the cluster current using a spatially

extended cluster with radius Rcl as described in detail in Ref. [43].

The solution of that problem converges within fractions of a

millisecond to its stationary state in the range of the channel

molecule [43]. That part of the solution is all we need to calculate

the current of the jth cluster. Using the stationary concentration

profiles we obtain:

Jj(t)~8psch
fRcl{tanh fRclð Þ

f3
½E�{½Ca2z�
� �

ð1Þ

with f~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEzDCa

DCaDE

sch

r
where sch denotes the channel flux

constant. DE and DCa are the diffusion coefficients of Ca2z in the

ER and the cytosol. The cluster radius Rcl~Rs

ffiffiffiffiffiffi
No

3
p

depends on

the number of open channels No and the single channel radius Rs.

The advantage of the approximation is that it takes local ER

depletion into account but only depends on the the spatially

averaged concentrations ½E� and ½Ca2z�, which form the

boundary conditions for the local quasi-static approximation (see

[43] for details). If channel distances within a cluster are of the

order of magnitude of the diffusion length of free Ca2z, the

internal cluster geometry becomes relevant. In that case, several d-

functions can be used for one cluster.

The approximation allows as well for determination of the local

Ca2z concentration at an open channel cluster resulting from its

own current (1) as

Ca2z
� �(loc)

cluster
(rj ,t)~

1

8pDCaRcl
Jj(t) ð2Þ

the validity of which had been shown for the buffer concentrations

used here [43]. Note that the total concentration at a cluster is the

sum of the concentration (2) and the concentrations induced by

currents of other open channel clusters. After closing, the Ca2z

concentration is determined by the cellular concentration

dynamics (see below) 10 nm apart from the release site.

Cellular concentration dynamics
The modelling strategy for the cellular Ca2z dynamics is based

on the separation of two length scales. On the microscopic scale of

channel clusters, we use a detailed and stochastic channel model to

determine local Ca2z currents. On the macroscopic scale of the

cell, we use a linearized spatial bi-domain model, and Green’s

function to integrate it. The microscopic scale determines the

currents representing the Ca2z sources of the macroscopic scale.

We implement ideas proposed in [43] and use the currents Jj of

Eq. (1) as the amplitudes of the spatial d-functions representing the

cluster source terms in Eqs. (3). A similar approach was taken by

Solovey et al. [44]. We circumvent the concentration divergence at

d-function sources by using Eq. (2) for the value of the local

concentration at open clusters. Vice versa, the macroscopic scale

affects the concentration values entering the transition rates of the

microscopic state schemes.

The ER is a tubular network spreading throughout the cell [45].

Diffusion in such a geometry can be described by diffusion in

unrestricted space with a decreased diffusion coefficient [46].

Subsequently, we can superimpose the ER and the cytosol leading

to a bi-domain model. Due to the quasi-static approximation (Eq.

1), we do not need to determine the spatially resolved

concentration in the ER. Lumenal and cytosolic domains are

coupled by a homogeneous Ca2z leak flux Jl through the ER

membrane, Ca2z re-uptake Jpump of the ER by SERCA pumps

and by the stochastic channel currents Jj . Within the cytosol we

take free Ca2z, one mobile buffer B and one immobile buffer Bi

with the total concentrations ½B�T and ½Bi�T into account leading

to the reaction diffusion equations

L½Ca2z�
Lt

~DCa+2½Ca2z�{Pp½Ca2z�zPl(½E�{½Ca2z�)z

XNcl

j~1

Jj(t)d r{rj

� �
{kz½B�½Ca2z�zk{(½B�T{

½B�){kz
j ½Bi�½Ca2z�zk{

i (½Bi�T{½Bi�)

ð3aÞ

L½B�
Lt

~DB+2½B�{kz½B�½Ca2z�zk{(½B�T{½B�) ð3bÞ

L½Bi�
Lt

~{kz
i ½Bi�½Ca2z�zk{

i (½Bi�T{½Bi�), ð3cÞ

where we used buffer conservation and linear pump and leak

fluxes with the flux constants Pp and Pl . Jj(t) is the stochastic

channel cluster current of the jth cluster with strength defined by

Equation (1).

Scaling concentrations, space and time with typical values

reveals the number of independent parameters. It entails the

definitions of Table 2. We linearize Eqs. (3), since we would like to

use Green’s function to solve them. Our parameter values are in

the range of the applicability of the linearization to the buffer

dynamics as described by Smith et al. [47] for the stationary

profiles. We additionally have linearized the pump dynamics. The

linearization does not exhibit saturation, which is relevant for

calcium concentrations above 2KD, with KD being the dissociation

constant of the pump (Figure 2 in Text S1). These concentrations

occur close to open clusters. In that area, the dynamics are

dominated by the diffusion term and the channel term, which

reduces the relative error due to the linearization of pump and

Ca2+ Signals Driven by Noise
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buffer rates substantially. However, if precise knowledge of

concentration values close to open channels or clusters is required,

the complete non-linear reaction diffusion equations must be

solved like e.g. in [42]. The scaled linear reaction diffusion system

(Text S1) describes the spatially resolved concentration dynamics

by:

Lc

Lt
~+2c{ sm bzsim bizsc c½ �zsl�eez

XNcl

j~1

sj(t)d(r{rj) ð4aÞ

Lb

Lt
~d+2b{ sm bzb0c½ �

	
Et ð4bÞ

Lbi

Lt
~{ sim bizkER bi,0c½ �

	
Ei

t , ð4cÞ

where the leak flux depends on the average lumenal concentration,

only. All the reaction rate constants depend on the resting state

concentration c0, b0 and bi,0 due to the linearization:

sm~(1zc0), sim~ER(1zkc0) and sc~(b0zbi,0ERkzsp{sl).

For simplicity we subsumed also sp and sl under sc.

The cytosolic concentrations C(r,t) are determined by the 3-

component Green’s function with IP3R clusters localized at

(rj ,hj ,wj) (see also Figure 3 in Text S1)

C(r,t)~
XNcl

j~1

X?
l~0,p~1

Jlz1=2(llpr)

r1=2
Pl(cosHj) x(lp)

j (t,rj)zx(00)
j (t) ð5Þ

with the Bessel function of the first kind Jlz1=2(x) and the

Legendre polynomial Pl(cosH), where H is the angle between the

source location rj and the point r given by

cos(Hj)~ cos (h)cos(hj)zsin(h)sin(hj)cos(w{wj): ð6Þ

The llp are determined by the boundary conditions at the

plasma membrane (see Text S1).

The three-component response functions x(lp)
j and x(00)

j include

the time integration over the source history, i.e. the time

dependent channel flux strength sj(t), and take the buffer

reactions as well as the coupling with the ER into account:

x
(lp)
j (t,rj)~

X3

i~1

1

N (l)N (llp)

Jlz1=2(llprj)

r
1=2
jðt

0

dtsj(t)esi (t{t) adj(Mlp)

LjMlpj=Lsjs~si

(100)T

ð7aÞ

x(00)
j (t)~

X3

i~1

3

4pb3
c

ðt

0

dtsj(t)esi (t{t) adj(M00)

LDM00D=LsDs~si

(100)T ð7bÞ

with the dimensionless cell radius bc and the normalization factors

N (l) and N (llp) given in the Text S1. The coupling between the

cytosol and the ER by sp and sl as well as the reaction rates of

Ca2z with the two buffers determine the time constants si of the

response functions (0), which are implicitly given by the roots of

the determinant of the coupling matrix

Mlp~

l2
lpzssc sm sim

b0 detl2
lpzsEtzsm 0

bi,0Erk 0 sEi
tzsim

0
BB@

1
CCA: ð8Þ

The method allows for spatially resolved concentration

dynamics as shown in Figure 2 and in the Video S1 by an iso-

concentration surface of 2 mM. An initially opening cluster

increases the open probability of adjacent IP3R clusters and

release is spreading through the cell until inhibition stops release.

For the global Ca2z dynamics, the average concentrations are

obtained by spatial integration of the analytical solution (9) as

Cav~
XNcl

j~1

X?
p~1

ffiffiffi
2

p

r
sin l0pR
� �

{Rl0pcos l0pR
� �

l
5=2
0p R3

x(0p)
j zx(00)

j ð9Þ

where R denotes the cell radius. The first component of Cav

describes the cytosolic average concentration �cc. With this, the

lumenal average Ca2z concentration e(t) in dimensionless units is

determined by

�ee(t)~�ee0{c

ðt

0

s’(t’){�cc(t’)spzsl �ee(t’){�cc(t’)ð Þ
� �

dt’, ð10Þ

which takes into account the leak, pump and channel fluxes, and

c~10 is the volume ratio Vcyt=VER of the cytosol and the ER. �ee0

denotes the equilibrium average lumenal concentration at t~0.

The difference between the average cytosolic and lumenal

concentration �ee2�cc determines the cluster current according to

Eq. (1) (see Text S1).

The two main approximations of our method are the local

quasi-static approximation and the linearization of the passive bulk

processes. These assumptions do not allow for a precise study of

the intra-cluster concentration dynamics. That can be done with

finite element methods like in ref. [42]. The structure of the

Green’s function solution enables an elegant parallel algorithm

that we call the Green’s cell. It is orders of magnitude faster than

finite element methods and able to simulate long lasting whole cell

dynamics in feasible computing time. In the Green’s cell algorithm

the actual concentration of each cluster is calculated with the

Green’s function and local quasi-static approximation in depen-

dence on the source history of all clusters by a single process. The

concentrations are sent to the master process which determines the

corresponding state transition and reaction time by the hybrid

algorithm and also calculates the average concentrations. The

transition times are re-distributed to the cluster processes where

they are used to update the concentrations. For further details see

Figure 4 in Text S1.

Stochasticity in measured and simulated Ca2+ signals
Our recent experimental investigation started from the

assumption of a random spike generation by wave nucleation

followed by a deterministic refractory time. This prediction

yields in a linear dependence of the standard deviation on the

average period which was also experimentally confirmed [5].

Previous studies report a possible feedback of Ca2z on PKC

activity in glutamate stimulated rat astrocytes [48–50]. This

may lead to a positive feedback on the IP3 level by activation of

PLCd. The measured relation between standard deviation and

Ca2+ Signals Driven by Noise
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average of interspike intervals for spontaneous spiking has a

slope equal to 1 [5], demonstrating that spike generation is

poissonian and the spike generation probability is constant on

the time scale of ISI. Clearly, there is no feedback on that time

scale.

To show that the experimental findings are indeed consistent

with our ideas of spike generation, we use our modelling tool to

study how molecular noise of single channels can be translated into

global signals and whether it is sufficient to cause the observed

randomness of spike sequences. Figure 3A shows an example of

Figure 2. Spatially resolved Ca2+ dynamics. An initial puff induces Ca2z release of adjacent clusters by diffusion and Ca2z induced Ca2z

release leading to a global Ca2z spike. The puff to spike transition is visualized by the iso-concentration surface of 2 mM during a spike. Time is
indicated on the panels (see Video S1).
doi:10.1371/journal.pcbi.1000870.g002

Figure 3. Stochasticity of Ca2+ oscillations. A: An experimental example of Ca2z oscillations in an astrocyte. The varying ISIs demonstrate the
stochasticity of spiking. B,C: Simulations of the cellular Ca2z dynamics of a cell with 47 clusters each having a random number of channels between 4
and 16 for different Ca2z base level ½Ca2z�0 concentrations and the standard parameters given in Table 1. For a low Ca2z base level of 30 nM spiking
is rather slow and irregular (B). For an increased Ca2z base level of 50 nM spiking becomes faster and more regular (C). D: The simulated s2Tav

relation, where dots correspond to spike trains of single cells having different ½Ca2z�0 and IP3 concentration (see Figure 5 in Text S1), is in accordance
with the experimentally observed one [5] supporting the wave nucleation mechanism. E,F: The dependence of the average period Tav on the IP3

concentration and the Ca2z resting concentration obtained in simulations show that regular spiking is more likely if one concentration is high.
doi:10.1371/journal.pcbi.1000870.g003
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single cell measurements, where the upper panel exhibits the

fluorescent signal DF related to the cytosolic Ca2z concentration

and the lower panel the individual ISIs. It demonstrates the

stochasticity of spiking, since variations in ISIs are in the range of

their average. Simulations of a cell with 47 clusters each

containing a random number of IP3R between 4 and 16 exhibit

a behavior very similar to experiments showing that single channel

noise can lead to time varying ISIs, since there are not any other

sources of noise in the simulations (Figure 3B and C). The

simulated Ca2z oscillations exhibit in accordance with experi-

mental observations different flavors ranging from rare and

irregular spiking to fast and more periodic spiking. The standard

deviation s depends linearly on the average period Tav [5].

Recently we have shown that this linear dependence is not a self-

evident relation [51]. In particular, it was found that self-sustained

oscillatory systems exhibit a different relation than the one

observed in Ca2z spiking experiments. The dependence of s on

Tav obtained here in simulations is shown in Figure 3D and

exhibits a linear dependence with a slope of 1 which was found in

experiments for spontaneous oscillations [5,52]. The offset of the

regression line on the Tav -axis of about 20 s is the deterministic

recovery time.

Dependence on IP3 and Ca2+ concentrations
The different s2Tav data points in Figure 3D result from

different combinations of the IP3 and Ca2z base level concen-

trations, which are both parameters in the model. In vivo the IP3

concentration is related to the stimulation level by activation of

Phospholipase C and IP3 production. The Ca2z base level is

determined by the leak and the pump flux through the ER

membrane. In simulations, we adjust the leak flux according to

½Ca2z�0 and the pump strength. If both concentrations are rather

high in the range of mM no spiking occurs since channels are

activated as soon as they are in the excitable state (Figure 5 in Text

S1). We observe fast and regular spiking (Figure 3C,E and F and

Figure 5 in Text S1) for intermediate concentrations. The ISIs

have a Tav close to the deterministic refractory time, since a new

spike is initiated as soon as the recovery time has elapsed. Regular

spiking corresponds to cells with small s in Figure 3D. A further

decrease in one of the concentrations increases Tav and s, in a way

depending on the other concentration (Figure 3B,E and F). If both

concentrations are small, global spiking vanishes and the signal

consists of uncorrelated blips.

Different Ca2+ signals in dependence on physiologic
parameters

In the previous analysis of the dependence of oscillations on the

concentrations, we have already seen that the modelling tool can

generate a large spectrum of Ca2z signals ranging from stochastic

spiking to almost periodic oscillations. Here, we show that the

model can produce all known IP3 -induced forms of Ca2z signals

in dependence on physiologic parameters. Figure 4 exhibits

different experimental signal forms and the corresponding

simulation results for a cell with 32 clusters. The variety of signals

is achieved by varying cell parameters leading to distinct cell

responses as shown by the behavior of open channels (black) and

number of inhibited subunits (magenta) as well as by the resulting

average Ca2z concentration in the cytosol (red) and in the ER

(blue). Fast and rather regular oscillations occur by the interplay of

activation and inhibition leading to array enhanced coherence

resonance as was hypothesized before [5]. This can be seen in the

behavior of the channel state dynamics. The number of inhibited

Figure 4. Spontaneous Ca2+ signals in individual astrocytes measured under identical conditions (upper row) and simulations of a
cell with 32 clusters with different parameters (red line, middle row) exhibit good agreement in the cytosolic Ca2+ concentration.
The parameter changes between the simulations account for the variability of the cells in the experiment. The lumenal concentration is shown in blue
(middle row). The channel dynamics (lower row) is shown as the number of open channels (black) and inhibited subunits (magenta). A: Fast and
regular spiking occurs by array enhanced coherence resonance where the simulated cell spikes as soon as enough channels are in the excitable state
again. Spikes occur before the cell reaches its resting state as can be seen from the time course of the fraction of inhibited subunits. This is caused in
simulations by a high Ca2z base level concentration ½Ca2z�0~80 nM and a IP3 concentration of 0.12 mM. B: Spontaneous oscillations exhibit often a
more irregular spiking. This is achieved in simulation for the same cellular setup as in A by a Ca2z base level concentration of ½Ca2z�0~0:35 nM,
which is lower than the standard value of 50 nM (Table 1). That decreases the probabilities for an initial event and spikes compared to panel A. The
cell reaches the resting state before some of the spikes. C: A bursting like behavior is observed for decreased SERCA activity (Pp~40s{1) in
simulations, since Ca2z remains longer in the cytosol. D: For a even smaller SERCA activity of Pp~22s{1 , Ca2z signals obtained in simulations
exhibit plateau responses with superimposed oscillations which are also found in experiments. Simulation parameters are given in Table 1 if not
stated here.
doi:10.1371/journal.pcbi.1000870.g004
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subunits (magenta) increases dramatically during a spike and

finally inhibition terminates it (Figure 4A). In the following the

number of inhibited subunits relaxes slowly towards its resting

level. Only very few channels open directly after a spike and these

openings do not initiate a new spike, since the number of inhibited

subunits is still to high (higher than approximately 220). That

causes the deterministic time Tcell also observed experimentally

[5,52]. But a spike occurs very soon after the number of inhibited

subunits has fallen below a critical range since the open probability

is rather high with these parameter values. That keeps the

stochastic part of the ISI small and spike sequences regular.

Moreover, the amplitude of the spike of open channels seems to be

smaller, if the spike is initiated at times where the number of

inhibited subunits is still high.

We find longer and more irregular ISIs for decreased IP3 and

Ca2z base level concentrations, since the probability of a channel

opening is decreased. As a consequence, the cell relaxes to a

resting state between spikes with only a few inhibited subunits

(Figure 4B). The spike amplitudes of both the number of open

channels and of the average Ca2z concentration are slightly

increased compared to the regular spiking.

SERCA pumps also shape Ca2z signals. Recent studies have

shown that different phenotypes of cloned cells with regard to

Ca2z signalling occur due to small variations in SERCA

expression levels and activity of RyR [4]. Here, we find that a

decreased SERCA activity leads to a burst like behavior

(Figure 4C), since Ca2z is removed slower from the cytosol and

thus can activate channels which have recovered early from

inhibition or channels which have not been activated before.

For even smaller SERCA activity, cells exhibit long lasting

plateau Ca2z signals often with superimposed oscillations

(Figure 4D). In these cases, released Ca2z stays within the cytosol

and reactivates IP3Rs again and again. Cooperativeness induced

by inhibition leads to superimposed oscillations on the high Ca2z

level. The panels of Fig. 4 provide also an idea of cell variability

within one cell type and even within one experiment.

Increased randomness by Ca2+ buffers
A direct consequence of the diffusion mediated signal

mechanism is the dependence on the strength of spatial coupling

by Ca2z diffusion. That coupling strength can be modulated by

exogenous Ca2z buffers, since they reduce the diffusion length of

free Ca2z. We took advantage of this property of buffers to

demonstrate the spatial character of Ca2z oscillations [5]. Note

that we used concentrations of Ca2z buffers much smaller than

usually applied in order to suppress any kind of Ca2z signal. We

measured spiking for several minutes to obtain reference values for

ISIs, loaded additional buffer and continued measuring (see

Figure 5A). The individual ISIs (blue crosses) are increased and

exhibit a larger variability after buffer loading.

To understand the experimental observation in more detail, we

use simulations to analyze the response to additional buffer.

Analogously to the experiment, we simulate a fixed cellular

arrangement with different mobile buffer concentrations. Figure 5B

Figure 5. Buffers render spiking more irregular by decreasing spatial coupling. A: Astrocytes were measured several minutes for reference
values (red) before loading with 20 nM BAPTA-AM during the break and restarting the measurement (blue). Fast and regular spiking is shifted to a
slower and more irregular one. B: Simulation of a cell containing 32 clusters with two different EGTA concentrations shown in red and blue
respectively exhibit an analogous behavior. C: An increase of 10 mM EGTA increases Tav and s for a population of simulated cells with different cell
properties, very similar to experimental observations. D: Tav increases with increasing EGTA (magenta) and BAPTA (black) concentration for a given
cell. The value of the increase depends on the single channel current. Squares correspond to 0.12 pA and dots to 1.2 pA. E: Corresponding s2Tav

dependence of simulations in panel D. BAPTA and EGTA lead to a similar s2Tav dependence for the smaller current (squares), whereas the increased
current decreases the slope to 0.6. F: A single channel current of 0.12 pA leads to a population slope mbuffer of 1 rather independent of spatial
arrangement of clusters (gray), stimulation strength (light red) and pump strength (light blue) where the population slopes arise due to 10 different
buffer concentrations (n~4 simulations for each condition). For the larger current of 1.2 pA the slope decreases to 0.6 and is again relatively
independent of other physiologic parameters. This may explain the experimentally observed cell specific slopes [5]. Parameters used in simulations
are given in Table 1 if not explicitly stated here.
doi:10.1371/journal.pcbi.1000870.g005
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shows a representative example, where the red and the blue parts

correspond to 25 mM and 250 mM EGTA, respectively. Like in

the experiment, larger buffer concentration leads to less and more

irregular spiking. In the part with the higher buffer concentration,

we observe isolated events which do not lead to global waves since

coupling of clusters is too weak. These local events are rare in the

reference measurements, since a triggering event initiates a global

wave very likely.

From population simulations, where individual cells differ in

their spatial arrangement of clusters, initial buffer and Ca2z base

level concentrations, we obtain the s2Tav relation shown in

Figure 5C, where cells are shifted by an increase of 10 mM in the

EGTA concentration. Similar to experiment [52], cells exhibit

individual increases of s and Tav with a slope of the shift close to 1

comparable with the population slopes for the two measuring

periods.

Influence of buffer kinetics
BAPTA and EGTA are common Ca2z buffers to suppress

Ca2z signals and we have used both in experiments [5]. Cells

responded much more sensitive to BAPTA than to EGTA.

BAPTA has much larger binding and dissociation rate constants

than EGTA (Table 1). A disadvantage of the experiment is that the

buffer is loaded into a cell by its esterificated form and the total

amount that has entered is unknown and difficult to control. Here,

we use modelling to illuminate the influence of the different buffer

kinetics and concentrations of EGTA and BAPTA.

Figure 5D shows the dependence of Tav for fixed cell

parameters on the buffer concentration in magenta for EGTA

and in black for BAPTA, where squares denote simulations with a

single channel current of 0.12 pA and the dots correspond to

1.2 pA. The larger current was achieved by an increased lumenal

Ca2z concentration. Cells only differ in the buffer type. We see

that increasing BAPTA has a stronger effect than EGTA, which is

mainly caused by the larger capture rate. Moreover, we observe a

nonlinear dependence of Tav on the buffer concentration. The

nonlinearity explains the individual shifts of cells in the s2Tav

plane shown Figure 5D. The comparison of the two different

current strengths for BAPTA (black) indicates the role of spatial

coupling. Higher currents lead to stronger coupling, and

subsequently increasing buffer concentrations have a smaller effect

on Tav.

Cell characteristics in dependence on single channel
currents

From the buffer simulations, we can determine the s2Tav

relation shown in Figure 5E. For the smaller currents, there is no

qualitative difference between EGTA and BAPTA. Both exhibit a

slope close to 1 as shown by the regression lines and an estimated

deterministic time of 20 s. The simulations with higher cluster

currents indicate a similar deterministic refractory period but the

slope of the s2Tav relation decreases to approximately 0.6. This

might explain the experimentally found differences between cell

types. Larger currents lead to stronger coupling on the

macroscopic length scale and hence to smaller variations.

To confirm these findings and to test the dependency of the

slope on other parameters, we analyze spiking of cells for the two

different single channel currents. In each simulation set the cells

have identical properties and differ only with respect to the buffer

content leading to the distinct s and Tav values in Figure 5E (see

also Section 6 in Text S1). From these values we determine the

population slopes mbuffer. Figure 5F shows mbuffer averaged over

different spatial arrangements, IP3 concentrations (stimulation

levels) and pump strengths (see Figure 6 in Text S1). Analogously,

we investigated mIP3
, mspatial and mpump (data not shown). The

results are very similar to those with mbuffer. For smaller single

channel current we obtain always a slope close to 1 when varying

all 4 cell properties and for the larger current a slope to 0.6.

Varying the buffer concentration, spatial arrangement of clusters,

IP3 concentration or pump strength (within certain limits) does

not change the s2Tav relation but only the position of the system

on it.

Discussion

We have presented here an efficient modelling concept for

Ca2z dynamics in 3 spatial dimensions. It simulates cell behavior

starting from individual channels in full detail. Using Green’s

function and multiscale techniques allow for taking concentration

gradients into account and thus for capturing the hierarchy of

coupling strengths. The method can simulate up to 4000 seconds

real time within 24 h on 8 CPUs for a cell with 32 clusters and 10

channels per cluster. In comparison to grid-based numerical

methods, its main advantage is a gain of computational speed of

several orders of magnitude, which enables us to simulate whole

spike sequences. We demonstrate the potential of this modelling

Table 1. Physiologic standard parameters used in simulation
if not stated otherwise.

R 10 mm cell radius [62]

Rs 8 nm channel radius [63]

DCa 220 mm2=s diffusion coefficient of

cytosolic Ca2z [64]

DE 70 mm2=s estimated diffusion
coefficient of lumenal

Ca2z [65]

DB 95 mm2=s diffusion coefficient of
mobile buffer [66]

½Ca2z�0 50 nM standard Ca2z base
level concentration [67]

[IP3] 0.1 mM standard IP3

concentration [67]

Pp 86 s{1 estimated pump rate
constant [43]

Pl &0:01 s{1 leak flux constant [68]

sch 4:3:106 s{1 channel flux constant
[43]

½B�T 50 mM total mobile buffer
concentration

kz
B 1:5 (mMs){1 capture rate of EGTA

[69]

k{
B 0:3 s{1 dissociation rate of

EGTA [69]

kz
B 600 (mMs){1 capture rate of BAPTA

[70]

k{
B 100 s{1 dissociation rate of

BAPTA [70]

½Bi �T 30 mM total immobile buffer
concentration

kz
Bi

1 (mMs){1 capture rate of the
immobile buffer [70]

k{
Bi

2 s{1 dissociation rate of the
immobile buffer [70]

The definitions for the dissociation constants read KB~k{
B =kz

B and KBi
~k{

Bi
=kz

Bi
.

doi:10.1371/journal.pcbi.1000870.t001
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concept by simulating a variety of experiments. We compare the in

silico data with time series obtained from spontaneous oscillations

in cultured astrocytes, but several of the results will also apply to

other cell types like those analyzed in [5].

These recent experiments showed for 4 different cell types that

the sequences of interspike intervals in Ca2z signalling are

random [5]. In line with the ideas on the Ca2z signalling

mechanisms, we assumed single molecule state transitions to be a

sufficient source of noise. We confirm this assumptions with our

simulations here in which these state transitions are the only source

of randomness. The fluctuations are carried up through the

structural levels due to the existence of concentration gradients

and hierarchies of coupling strength.

With our bottom-up modelling approach, we were able to

generate all experimentally known Ca2z signal types in depen-

dence on physiologic parameters. Spiking exhibits the random ISI

sequences observed experimentally with fast regular sequences and

slow irregular ones. In particular, the dependency on parameters

of spatial coupling observed in experiments is reproduced. We find

a sigmoidal response of the Ca2z concentration upon very strong

stimulation or strong spatial coupling, which is well known as over

stimulation. We observe also bursting. We do not compare our

bursting simulations with specific experiments here, but we would

like to mention a general aspect. This signal type is usually

ascribed to the existence of a dynamic feedback like store depletion

or inhibition of IP3 production which terminates bursts. Such a

feedback is not required with a stochastic model. The random

length of bursts in our stochastic model offers also a simple

explanation for the irregular burst length observed in experiments.

With our method we are able to follow the Ca2z dynamics from

the molecular to the cellular level. The single molecule fluctuations

determine the global behavior, since they initiate cellular signals.

Simultaneously, the local rough channel signal is smoothed on the

cell level by the hierarchical system due to diffusion. The

universality and variety of signalling cross talks between Ca2z

signalling and other pathways render Ca2z a potential source of

noise in cellular systems. The fluctuations can be used for cell

variability [4] with regards to gene regulation [53,54] and cell

differentiation [3] and provides a flexibility to changing external

conditions which is needed during evolution [55].

The s2Tav relation and functional robustness
Both the experiments and simulations show a simple linear

relation between the standard deviation of ISI s and the average

ISI Tav. The existence of this linear relation turned out to be

surprisingly robust. It survives even an increase of the single

channel current by an order of magnitude. This relation describes

for each individual cell the response to stimulation changes. Cells

shift the spike pattern from slow and irregular to fast and regular

along the s2Tav relation when we increase stimulation. That

supplements the current ideas on frequency encoding [54,56].

At the same time, the s2Tav relation describes the outcome of

spiking experiments with a group of cells. In the experiments, we

subjected a sample of cells to the same protocol, and we obtained

as many different responses as there are cells in the sample [5].

That set of responses is not arbitrarily scattered across the s2Tav

-plane but aligns along the s2Tav relation. All the variability

among individual cells with respect to expression levels of pathway

components, cell volume, ER volume, shape, ion concentration,

etc. does not lead to severe deviations from this s2Tav relation.

Ca2z spiking is robust against variability of many pathway

components in the sense that the s2Tav relation is robust. We

learn from the simulations here, that it is rather the stochastic spike

generation mechanism than control and regulation which provides

for this robustness.

If we call the s2Tav relation from a single cell obtained by

parameter changes individual relation and that obtained from a

sample of cells population relation, we can describe our findings as

identity of individual and population relation.

We could reproduce the variability within a population of cells

in simulations by varying cluster array geometry, pump strength,

stimulation or buffering conditions. Changing these parameter

values simply shifted the system on the s2Tav relation and did not

modify the relation. But changing the single channel current by

one order of magnitude did change the slope of the s2Tav

relation.

That suggests a mathematical definition of robustness which

accounts for the fact that cells should be able to execute certain

functions (e.g. to spike with a range of ISI), but not necessarily at

the same strength of stimulation or normalized values of other

parameters. We denote with x and y two variables describing the

function (e.g. Tav and s), and with r1,…,rn and p1,…,pm two sets

of parameters (e.g. stimulation strength, temperature, cell volume).

The relation between y and x is robust with respect to value

changes of parameters ri, if it has the structure

y(x(r1,:::,rn,p1,:::,pm),p1,:::,pm). The parameters ri change only

the value of x while the pj control also the properties of y(x), i.e.

the properties of the pathway. We call this robustness of the

Table 2. Definition of scaling factors and non-dimensional
parameters.

Rescaling of time and space

t?t=T scaling time t with
reaction time
T~1=(kz½B�T )

r?r=L scaling space r with
diffusion length

L2~DCa=(kz½B�T )

Dimensionless parameter definition

c ½Ca2z�
KB

dimensionless free Ca2z

concentration

b ½B�
½B�T

dimensionless free mobile
buffer concentration

bi ½Bi �
½Bi �T

dimensionless free
immobile buffer
concentration

e ½E�
KB

dimensionless free Ca2z

concentration within the
ER

d DB

DCa

ratio of the diffusion
coefficients

et ½B�T
KB

time separation of the
mobile buffer

ei
t

½Bi �T
KB

time separation of the
immobile buffer

eR ½Bi �T k{
i

½B�T k{

ratio of buffer influence

sl,p Pi

kz½B�T
scaled fluxes of Pl and Pp

s(t)
J

k{½B�T
kz½B�T

DCa


 �3

2

scaled channel cluster
current J(t)

k KB

KBi

dissociation constants
ratio of the mobile and
immobile buffer

doi:10.1371/journal.pcbi.1000870.t002
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function y(x) functional robustness (in difference to the robustness

of the value of y). If we identify the stimulation strength with r1, all

cells distinguished by the values of r2,:::,rn only can realize

frequency encoding with the same s2Tav relation by varying r1.

They can realize this function also by varying another r-parameter

or several of them: function and functional robustness are closely

related.

The statement on robustness can also be interpreted with

respect to identity of pathways converging onto Ca2z spiking.

Ca2z signals can be caused by many different stimuli. The

pathways upstream from Ca2z responding to the stimuli must

differ with respect to their value of the pi, in order to be

distinguishable by pathways downstream from Ca2z.

In summary, cells realize frequency encoding - the function of

Ca2z spiking - by mainly moving up and down the relation

between standard deviation and average of ISI and to some degree

by modulating the deterministic part of the ISI [52]. The s2Tav

relation exists for a stochastic process only, since s~0 holds for

deterministic systems. The s2Tav relation turned out to be

functionally robust with respect to changes of values of one set of

parameters. That set may describe cell variability within one cell

type or pathway. Changing substantially another set of parameters

modified the s2Tav relation. That set appears rather to specify the

identity of pathways converging on Ca2z spiking.

The role of IP3R clusters for astrocyte Ca2+ signalling
Our model predicts that close proximity of IP3R clusters is a

prerequisite for a spontaneous Ca2z response to spread

throughout a cell. Indeed, there are types of astrocytes in which

Ca2z responses spread within the cell and those, such as

Bergmann glia where this is not observed. Interestingly local,

subcellular spontaneous Ca2z responses have been recorded

which represent functional microdomains [57]. Complementary to

the functional units, morphological units are described which are

separated from each other by fine processes [58]. It is well

conceivable that these thin processes separate endoplasmic

reticulum between microdomains by more than 2 mm and

according to our model this separation would prevent the spread

of a local Ca2z signal to other parts of the cell. In contrast, in

cultured astrocytes, the endoplasmic reticulum is preferentially

arranged around the cell center without apparent discontinuity

[59] and these cells frequently exhibit spontaneous Ca2z

responses. In situ, spontaneous Ca2z responses are reported for

hippocampal astrocytes and these astrocytes are less polarized as

compared to Bergmann glial cells and we would predict that they

are less compartimentalized. Indeed, morphological studies

indicate that hippocampal astrocytes have five to ten main

processes from which smaller extensions branch off [60]. The

synchronized activity obviously can spread within the volume of

the main processes and soma of hippocampal astrocytes.

Moreover, in contrast to culture, the endoplasmic reticulum in

astrocytes in hippocampus tissue is preferentially located close to

the plasma membrane [59]. These different morphological

arrangements result in distinct patterns of Ca2z responses and

as a consequence in different gene expression patterns [53].

Do we need such a modelling tool beyond intracellular
Ca2+ dynamics

The rise of cell imaging during the last decades illustrated the

spatial structure of cells and protein localization. Obviously, cells

are not homogeneous and active molecules coupled by diffusional

transport are very common. Concentration gradients are func-

tionally relevant, if they create microdomains inside which a

pathway is in a state different from its state at other locations in the

cell. They have been shown to exist for ‘the other’ fast diffusing

intracellular messenger cAMP and in phosphorylation/dephos-

phorylation dynamics.

Hence, the need for spatially resolved cell models exists and we

can apply the modelling concept, if all essential non-linearities are

in the discrete active molecules or the boundary conditions and we

can linearize remaining bulk reactions. The excellent validity of

the linearization for the buffer reactions of Ca2z dynamics has

been shown by Smith et al. [47]. We expect a degradation reaction

like the cAMP degradation by PDEs also to be linearizable in good

approximation. If local concentrations at active molecules should

be outside the range of validity of the linearization, that can be

fixed by the choice of the local quasi-static approximation of the

diffusion process there in many cases. The non-linearities of cAMP

production by membrane-bound adenylyl cyclase can be formu-

lated as boundary condition and Green’s function must then be

used iteratively with an update of the boundary condition in each

time step. These remarks illustrate that there is flexibility in the

choice of reactions to be linearized which crucially expands the

applicability of the concept.

Methods

Cell preparation
Astrocyte cell cultures were prepared from cortex of newborn

NMRI mice [61]. Briefly, brain tissue was freed from blood vessels

and meninges, trypsinised and gently triturated with a fire-polished

pipette in the presence of 0.05% DNAase (Worthington Biochem.

Corp., Freehold, NY, USA). Cells were washed twice and plated

directly on poly-L-lysine (PLL; 100 mg=ml ; Sigma, Deisenhofen,

Germany) coated glass coverslips (115mm) at densities of 3 to

5|104 cells/coverslip, kept in 1-10-cm-dishes using Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

calf serum (FCS), 2 mM L-glutamine, 100 units/ml penicillin, and

100 mg=ml streptomycin. One day later, cultures were washed

twice with Hank’s balanced salt solution (HBSS).

Cells were maintained for at least 4 days and after reaching a

subconfluent state, microglial cells and oligodendrocytes as well as

their early precursors were dislodged by manual shaking and

removed by washing with HBSS. The purity of the astrocytes was

routinely determined by immunofluorescence using an antibody

against glial fibrillary acidic protein (GFAP, Sigma), a specific

astrocytic marker. The cultures typically exhibited more than 90%

cells positive for GFAP.

Cell imaging
Cultured cells plated on glass coverslips were measured between

p4 and p6. Cells were incubated with the Ca2z indicator dye

Fluo-4-acetoxymethyl-ester (Fluo-4 AM, 5 mM, Molecular Probes,

Eugene, USA) for 30 min at room temperature in HEPES buffer

(148.9 mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 10 mM CaCl2,

10 mM HEPES, 5 mM D-glucose, pH 7.4) containing 0.01%

Pluronic-127 (Molecular Probes). Subsequently cells were washed

and kept in HEPES buffer for 15–20 min prior to the

measurements with the conventional imaging system at a

frequency of 0.33 Hz. Cultures were fixed within the microscope

chamber of an upright microscope (Axioskop FS, Zeiss, Oberko-

chen, Germany) equipped with a 206water immersion objective

(UMPlanFl, numeric aperture: 0.5, Olympus, Hamburg, Ger-

many) by a U-shaped platinum wire and superfused with HEPES

buffer at 200C. Substances were applied by changing the perfusate.

Cells were illuminated (495 nm) from a monochromator (T.I.L.L.

Photonics) and fluorescent images (515–545 nm) collected every

3 s with a 12 bit camera (SensiCam) on an upright microscope. At
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this state, no intercellular waves were observed. Single cell time

series were extracted from these images with ImagingCellsEasily

software.

Supporting Information

Text S1 Detailed mathematical model and supporting results.

Found at: doi:10.1371/journal.pcbi.1000870.s001 (0.75 MB PDF)

Video S1 The movie shows the free cytosolic calcium concen-

tration during a spike lasting 15 s by an iso-concentration surface

of 2 mM. The initial puff activates adjacent channel clusters by

increasing their open probability. The clusters open and close

randomly until inhibition terminates the release. Parameter values

are in Table 1, the spatial arrangement of clusters is shown in

Figure 1.

Found at: doi:10.1371/journal.pcbi.1000870.s002 (9.94 MB AVI)
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