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Abstract

The variants of human influenza virus have caused, and continue to cause, substantial morbidity and mortality. Timely and
accurate assessment of their impact on human death is invaluable for influenza planning but presents a substantial
challenge, as current approaches rely mostly on intensive and unbiased influenza surveillance. In this study, by proposing a
novel host-virus interaction model, we have established a positive correlation between the excess mortalities caused by viral
strains of distinct antigenicity and their antigenic distances to their previous strains for each (sub)type of seasonal influenza
viruses. Based on this relationship, we further develop a method to rapidly assess the mortality burden of influenza A(H1N1)
virus by accurately predicting the antigenic distance between A(H1N1) strains. Rapid estimation of influenza mortality
burden for new seasonal strains should help formulate a cost-effective response for influenza control and prevention.
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Introduction

Seasonal influenza viruses have been and will continue to be a

significant threat to public health [1]. There are three types of

seasonal influenza – A, B and C. Among them, influenza H1N1

and H3N2 of type A and type B are currently circulating

frequently in the human population. During evolution, many

variants of influenza virus with distinct antigenic properties have

emerged either by mutation or reassortment of the gene encoding

the viral coat protein hemagglutinin (HA) [2]. These antigenic

variants have caused morbidity and mortality with varying

magnitude [3,4]. If the mortality burden of a newly emerged

virus can be estimated accurately and in time, this knowledge will

be extremely valuable not only for public preparedness for an

impending epidemic/pandemic but also for the health authorities

to develop cost-effective control and intervention strategies.

In epidemiology, investigators usually rely on the surveillance

data to assess the impact of an influenza virus on human death by

estimating its case fatality ratio (CFR), the ratio of the number of

deaths caused by the virus to the number of the diagnosed cases of

the virus infection [5], and the excess mortality it causes [6,7].

However, accurate prediction of the influenza mortality burden at

the early stage of influenza infection is rather challenging, because

the morbidity and mortality data for early influenza surveillance are

very limited and prone to bias as well [5]. This speaks to an urgent

need for the development of a more effective method for rapid and

accurate estimation of the mortality burden of influenza virus.

It is generally assumed that the extent of an influenza virus to

alter its antigenicity and to escape the pre-existing immunity in the

human population determines its intensity of infection at the

population level [8,9] and thus the mortality burden. Despite the

obvious causal relationship between the antigenic variations of

influenza viruses and their mortality burdens, to our knowledge,

no report has ever established a direct and positive correlation

between them. In this study, based on the viral and mortality data

of influenza in the USA and by using the excess all-cause mortality

to represent the impact of influenza epidemics on human death

[6], we describe our work on how to establish a positive correlation

between the antigenic variation of human influenza virus and the

total excess mortality it causes during all periods of its circulation.

The established relationship has further enabled us to develop a

method to rapidly estimate the mortality burden of influenza

A(H1N1) virus by accurately predicting the antigenic distance

between A(H1N1) strains based on their HA sequences.

Results

A simplified host-virus interaction model
To explore the relationship between antigenic variations of

influenza viruses and the excess mortalities they cause, we

proposed a simplified host-virus interaction model (Figure 1) by

only considering the strains of distinct antigenicity that cause

significant extent of infection in the human population. For
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convenience, these strains are denoted as ‘‘antigenic strains’’ (see

Text S1 and Table S1 for details). In this model, only the strains of

same influenza (sub)type are considered because there is little cross

immunity between strains from different (sub)types [8]. Therefore,

the evolution of a human influenza virus, such as A(H1N1), is

considered as serial replacements of the antigenic strains driven by

the cross immunity induced by the previous prevalent antigenic

strains of same (sub)type in the human population (Figure 1).

Given that the extent of cross protection between two viruses

depends largely on the antigenic distance between them [8], it is

likely that the antigenic distances between a new antigenic strain

and the previous antigenic strains largely determine the mortality

burden of the new strain on the human population.

Correlation analysis of influenza virus excess mortality
and antigenic variation

On the basis of the simplified host-virus interaction model, to

establish correlation between the antigenic variations of an

antigenic strain and the total excess mortality it may cause, we

first looked into the contribution of a previous antigenic strain to

induce pre-existing immunity and cross protect infection by a

challenging strain. Table 1 shows the results of correlation analyses

of influenza excess mortality and antigenic distance using

Spearman and Pearson correlation methods [10] (see Materials

and Methods for details). For A(H1N1) and A(H3N2) viruses, use

of both methods shows there is a strong positive correlation (as

reflected in Pearson’s Correlation Coefficient (PCC) and Spear-

man’s Correlation Coefficient (SCC)) between the total excess

mortality caused by the challenging strain and its antigenic

distance to the first antigenic strain (PCC = 0.79 (P-value = 0.03),

SCC = 0.64 (P-value = 0.14) for A(H1N1); PCC = 0.58 (P-val-

ue = 0.03), SCC = 0.71 (P-value = 0.004) for A(H3N2)) and the

second antigenic strain (PCC = 0.65 (P-value = 0.12), SCC = 0.64

(P-value = 0.14) for A(H1N1); PCC = 0.31 (P-value = 0.29), SCC =

0.21 (P-value = 0.46) for A(H3N2)). This indicates that the previous

two antigenic strains, particularly the first one, produce the most

protective immunity in the human population against the A(H1N1)

and A(H3N2) epidemics.

Interestingly, for type B virus, although there is a positive

correlation between the total excess mortality caused by the

challenging strain and its antigenic distances to the previous

three antigenic strains, the best correlation is with the third

antigenic strain (PCC = 0.84 (P-value = 0.009); SCC = 0.74 (P-

value = 0.045)).

Author Summary

In epidemiology, investigators usually rely on surveillance
data to assess the impact of an influenza virus on human
health. However, accurate assessment of the influenza
mortality burden at the early stage of influenza infection is
rather challenging because the early influenza surveillance
data are very limited and prone to bias as well. This speaks
to an urgent need for the development of a more effective
method for rapid and accurate estimation of influenza
mortality burden. By proposing a novel host-virus interac-
tion model, we have established a quantitative relation-
ship between the antigenic variation of human influenza
virus and its mortality burden. Based on this relationship,
we further develop a method to rapidly assess the
mortality burden of influenza A(H1N1) virus by accurately
predicting the antigenic distance between A(H1N1) strains.
We believe that our work will help develop a timely and
sensible influenza preparedness programme that balances
the gains of public health with the social and economic
costs.

Figure 1. A simplified host-virus interaction model. The V1. V2, V3, … represent the first, second, third, … antigenic strain that circulated prior
to a novel antigenic strain. To represent the ability of a novel strain to escape the pre-existing human immunity, we introduce a metric, integrated
antigenic distance (D), as a linear combination of the antigenic distances between the novel virus and its previous antigenic strains (d).
doi:10.1371/journal.pcbi.1000882.g001

Rapid Estimation of Influenza Mortality Burden
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To further investigate the effect of previous antigenic strains

combined on the excess mortality of a challenging strain, we first

integrated the antigenic distances between the challenging strain

and the previous antigenic strains of different numbers (see Text

S1), then analyzed the correlations between the integrated

antigenic distances and excess mortality using both Pearson and

Spearman correlation methods. As shown in Table 2, for A(H3N2)

and B viruses, there is no significant improvement on the

correlations with the combined antigenic strains (compare

Table 1 with Table 2, the best correlations in both tables and

tests are highlighted in bold). While for A(H1N1) virus, the

correlations with the combined antigenic strains are significantly

improved in both Pearson and Spearman correlation tests. In

Spearman test, the correlation coefficients increase from 0.64 (P-

value = 0.14) to 0.75 (P-value = 0.066) when the two previous

antigenic strains combined, and even to 0.94 (P-value = 0.017)

when the previous three antigenic strains combined. Similarly, in

Pearson test, the correlation coefficient increases from 0.79 (P-

value = 0.03) to 0.91 (P-value = 0.005) when two previous

antigenic strains combined. Taken together, we have not only

discovered a significant correlation between the influenza virus

excess mortality and its antigenic variation, but also established

their best correlation for the three (sub)types of human viruses.

The genetic distance is another metric widely used to quantify

the genetic variation between viruses. We further analyzed the

correlation of influenza virus excess mortality and genetic distance

for A(H1N1), A(H3N2) and B viruses (Table S2 and Table S3).

Both Pearson and Spearman tests show that the correlation of

excess mortality with genetic distance is not as significant as with

antigenic distance (compare Table S2 to Table 1, and compare

Table S3 to Table 2). These analyses demonstrate that antigenic

variation rather than genetic variation is a good predictor for

estimation of the excess mortality.

Establishment of a quantitative relationship between
excess mortality of A(H1N1) virus and its antigenic
variation

The remarkable correlation between antigenic distance and

excess mortality opens a new avenue to estimate the mortality

burden of a novel antigenic variant that could potentially cause an

influenza epidemic or pandemic. Here we sought to develop an

approach to rapidly estimate the mortality burden of influenza

A(H1N1) viruses, which is the most common cause of influenza

(flu) in humans. To develop the approach, we first need to establish

a quantitative relationship between the mortality burden of an

A(H1N1) antigenic variant and its antigenic distances to previous

antigenic strains, and then develop a computational model to

predict antigenic distances between A(H1N1) viral strain based on

their HA sequences.

To establish a quantitative relationship between the mortality

burden and antigenic variation for A(H1N1) virus, we considered

the integrated antigenic distance between a challenging strain and

Table 1. The Spearman and Pearson Correlation Coefficients between the excess all-cause mortalities and antigenic distances to
previous individual antigenic strains.

Virus (sub)type Correlation method Previous antigenic straina

1st 2nd 3rd 4th 5th

A(H1N1) Spearman 0.64(0.14) 0.64(0.14) 20.12(0.83) -b -

Pearson 0.79(0.03) 0.65(0.12) 20.25(0.63) - -

A(H3N2) Spearman 0.71(0.004) 0.21(0.46) 20.12(0.69) 0.13(0.65) 0.02(0.95)

Pearson 0.58(0.03) 0.31(0.29) 20.08(0.77) 0.19(0.53) 0.17(0.56)

B Spearman 0.26(0.46) 0.57(0.11) 0.74(0.045) 0.07(0.88) 20.58(0.23)

Pearson 0.36(0.31) 0.53(0.14) 0.84(0.009) 0.14(0.77) 20.5(0.31)

The numbers in parenthesis indicate the P-values of corresponding coefficients. The largest coefficient for each (sub)type is highlighted in bold.
aThe previous ith antigenic strain is the i-th antigenic strain prior to an antigenic strain that is considered as a challenging strain.
bNot applicable due to the limited number of antigenic strains.
doi:10.1371/journal.pcbi.1000882.t001

Table 2. The Spearman and Pearson Correlation Coefficients between the excess all-cause mortalities and the integrated antigenic
distances relative to the previous 1–5 antigenic strains as background strains.

Virus (sub)type Correlation method No. of background strains

1 2 3 4 5

A(H1N1) Spearman 0.64(0.14) 0.75(0.066) 0.94(0.017) -a -a

Pearson 0.79(0.03) 0.91(0.005) 0.85(0.03) -a -a

A(H3N2) Spearman 0.71(0.004) 0.53(0.05) 0.57(0.03) 0.28(0.33) 0.27(0.35)

Pearson 0.58(0.03) 0.57(0.03) 0.51(0.06) 0.39(0.17) 0.34(0.24)

B Spearman 0.26(0.46) 0.55(0.13) 0.74(0.045) 0.79(0.048) 0.71(0.14)

Pearson 0.36(0.31) 0.48(0.19) 0.73(0.04) 0.78(0.04) 0.67(0.14)

The numbers in parenthesis indicate the P-values of corresponding coefficients. The largest coefficient for each (sub)type is highlighted in bold.
aNot applicable due to limited number of antigenic strains.
doi:10.1371/journal.pcbi.1000882.t002

Rapid Estimation of Influenza Mortality Burden
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the previous two antigenic strains because the Pearson test gave

the best correlation with statistical significance for the previous two

antigenic strains. Figure 2A show the fittings of a non-parametric

local polynomials model and a parametric linear regression model

to the integrated antigenic distance (D) and the excess mortality

(M). Both models demonstrated a monotonic increase of the excess

mortality with the increase of the integrated antigenic distance,

reinforcing a positive correlation between them. For simplicity, we

used a traditional least squares linear regression model to describe

their quantitative relationship (Figure 2A), which is described by

the following equation:

M~31:31D{8:85 ð1Þ

The standard deviations of D and constant terms are 6.42 and

13.11, respectively. The linear fit yields a PCC of 0.91 (P-

value = 0.005), indicating a high accuracy of using the equation to

predict the excess mortality from the integrated antigenic distance.

To assess whether the above linear relationship is robust to

outliers, we carried out robust regression that limits the influence

of outliers (Table S4). The robust regression shows a very stable

linear relationship between excess mortality and integrated

antigenic distance (P-value = 2.51e-05), which is very similar to

that given by the traditional least squares linear model. To further

assess the quality of the Equation 1 in prediction, we carried out

leave-one-out cross validation (Figure S1). The leave-one-out test

shows that the predicted excess mortalities highly correlate with

the observed excess mortalities (PCC = 0.80), indicating the

reliability of using the linear model to quantify the relationships

for the data points we have.

The recent seasonal A(H1N1) virus A/Brisbane/59/2007,

which started to circulate in humans since the 2007–2008 season,

has caused excess mortality of 50 per million as of the 2008–2009

season (Figure 2B), and is unlikely to cause significant deaths due

to its very low infections since May 17, 2009 [12]. Since A/

Brisbane/59/2007 is not included in the construction of our

model, the application of the Equation 1 to estimate its excess

mortality would provide a blind test for our model. To estimate its

total excess mortality, we computed the integrated antigenic

distance between the A/Brisbane/59/2007 virus and its previous

two antigenic strains, A/New Caledonia/20/1999 and A/

Solomon Islands/3/2006 (Table S1), and then used Equation 1

to estimate the total excess mortality caused by A/Brisbane/59/

2007. The estimated total excess mortality is 54 per million, close

to the actual number of deaths it caused (Figure 2B), indicating the

validity of our method in predicting excess mortality of seasonal

A(H1N1) virus.

Development of a computational approach to rapidly
quantify the antigenic distances among different strains
of human influenza A(H1N1) virus

To develop a rapid tool to predict the excess mortality to be

caused by a novel A(H1N1) antigenic variant, we need to

determine its antigenic distances to its previous two antigenic

strains. However, determining the antigenic distance between

viruses using experiments such as hemagglutination inhibition (HI)

assay is time-consuming and labor-intensive [13]. The problem is

more severe when determining the antigenic distances for a novel

strain, because it may take up to month to obtain the antisera

against the novel strain. Therefore, we are interested in developing

a computational model to predict the antigenic distances between

viral strains based on their HA sequences. Although many studies

have attempted to identify the antigenic variants of human

influenza viruses based on the amino acid changes on HA [14,15],

the computational method to quantify the antigenic changes

of influenza A(H1N1) virus is not available. To this end, we

developed a novel computational approach, Epitope-based Anti-

genic Distance Prediction (EADpred), to estimate the antigenic

distance between A(H1N1) strains with high speed and accuracy

(Figure 3A, B). Details of the development of the method were

described in the Materials and Methods. Figure 3C shows the

correlation between the predicted antigenic distances and the

observed antigenic distances over the training data: the overall

PCC is 0.79 (Table S5). Figure 3D shows that the EADpred also

Figure 2. The quantitative relationship between the excess all-cause mortality and antigenic distance for A(H1N1). (A) The
nonparametric (the dashed line) and ordinary linear (the black line) regression between the excess all-cause mortalities caused by A(H1N1) antigenic
strains and their integrated antigenic distances to the previous first and second antigenic strains. The nonparametric regression is done using the
local polynomials method (called loess method [11]). (B) The observed and estimated excess all-cause mortality for recent seasonal A(H1N1) virus A/
Brisbane/59/2007. The error bar shows the standard deviation of the prediction.
doi:10.1371/journal.pcbi.1000882.g002

Rapid Estimation of Influenza Mortality Burden
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does well on a testing data set consisting of 172 experimentally

determined antigenic distances between A(H1N1) strains of known

HA sequences (PCC = 0.80) (Table S5). The ability of EADpred to

predict antigenic distance with a relatively high accuracy suggests

its potential utility in the rapid estimation of influenza mortality

burden.

Predicted antigenic variation of A(H1N1) virus correlates
with its total excess mortality

We further evaluated how well the predicted antigenic distance,

also called EADpred distance, of A(H1N1) virus correlates with

the observed excess mortality. We carried out the same correlation

analyses as we did for the observed antigenic distance described

above by substituting the observed antigenic distances with the

EADpred distances (Figure 4A). Indeed, the EADpred distance

correlates strongly with the excess mortality (PCC = 0.86, P-

value = 0.01). Although the correlation is slightly weaker as com-

pared to that of the observed antigenic variation (PCC = 0.91, P-

value = 0.005), it is much stronger than that of the genetic

variation (PCC = 0.61, P-value = 0.15), which is not significant

(Figure 4B). Nowadays the determination of HA sequence of

influenza virus has been become a routine work in influenza

surveillance due to the availability of rapid, inexpensive and high-

throughput sequencing technology, the development of sequence-

based computational method for reliably predicting antigenic

distance will enable an estimation as early as possible of excess

mortalities for emerging antigenic strains.

Discussion

In this study, by proposing a simplified virus-host interaction

model, we have discovered a direct and positive correlation

between the extent of antigenic variation of an influenza virus and

the total excess mortality it may cause. The impact of influenza on

human death has been a long-standing focus of influenza studies.

Many factors have been thought to contribute to influenza

mortality burden including viral factors such as the pathogenicity-

related molecular markers [16], receptor binding [17] and

antigenic variation of the influenza virus [8], as well as many

external factors such as age structure of the human population,

effectiveness of influenza vaccine, temperature and humidity

[18–20]. Despite these many potential contributing factors, we found

a significant correlation between the extent of antigenic variation of

an influenza virus and its impact on total excess mortality. This

relationship is valid for all three human influenza viruses analyzed:

A(H1N1), A(H3N2) and B. Recently, Park et al [21] also found a

positive correlation between the probability of being infectious

and the number of amino acid differences in antigenic sites of HA

Figure 3. The epitope-based antigenic distance prediction (EADpred) model and its performance. (A) Six derived antigenic epitopes (Sa,
Sb, Ca, Cb, Pa and Pb) on human influenza A(H1N1) HA protein were considered as the structural basis underlying the interactions between HA and
neutralizing antibodies. They were marked on the surface of the structure model of HA of A/putertorico/8/34 (H1N1) virus (PDB ID: 1RVZ) using
different colors. (B) A cartoon illustrating the physicochemical mechanisms underlying an epitope-mediated interaction between HA and antibody.
Salt-bridge interaction was shown by a link between two charged atoms. Hydrogen bonding was represented as a link of ‘‘-OH—N-’’. Hydrophobic
microenvironment was described as a cluster of hydrophobic groups highlighted in orange. (C–D) The prediction performances on the training data
(C) and testing data (D). Black lines reflect linear fit with a zero intercept. The linear fits to the training data and testing data yield correlation
coefficients of 0.79 and 0.80 respectively. The details for the model description see the Materials and Methods.
doi:10.1371/journal.pcbi.1000882.g003

Rapid Estimation of Influenza Mortality Burden
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based on their experiments on equine influenza virus. Therefore we

argue that for an influenza virus that has been adapted in its host, the

antigenic variation is the most important factor that determines its

mortality burden. Although somewhat surprising, this is reasonable

because the human-adapted influenza viruses like seasonal viruses

generally have considerable changes only in antigenicity but not in

the pathogenicity and receptor specificity.

A major challenge in correlation analysis of the antigenic

variation of influenza virus and its mortality burden is to attribute

the excess mortality to a specific influenza strain. Although the

excess mortality attributed to all influenza viruses in a given period

of time can be inferred with high confidence from the mortality

data reported [6,7], further attribution of the excess mortality to a

specific strain based on current limited surveillance data is very

difficult. In this study, we estimated the excess mortality caused by

a virus based on its virus isolation rate, the proportion of clinical

samples positive that was reported for the virus in the given period

of time (see Materials and Methods in detail). The virus isolation

rate from clinics reflects the virus’s ability to infect and its ability to

cause disease as well because people with disease are more likely to

go to clinic for viral testing than those without. For the same

(sub)type of virus, the ability to cause disease may reflect the ability

to cause death. Figure S2 shows that the combined three (sub)type-

associated excess mortality inferred based on virus isolation rate

correlates significantly with the influenza-associated excess mor-

tality calculated from reported mortality data. This suggests that

the viral isolation rate could largely reflect the virus’s ability to

cause death. But we also observed several large deviations between

the predicted total excess mortality and reported total excess

mortality (see the boxed dots in Figure S2). These deviations could

be not only due to data noise and but also due to different ability of

different viruses to cause death. It is worthy of being noted that, in

case of the emergence of a particularly severe strain, our

calculation could lead to a significant underestimation of the

excess mortality caused by the virus. Therefore, our calculated

excess mortality based on the virus isolation rate may underesti-

mate the magnitude of differences in excess mortality between

viruses.

Although the correlation between the antigenic variation of

influenza virus and its mortality burden is impressive, a major

limitation of our work is that most of the correlation coefficients

have large confidence intervals (see Table S6 and Table S7),

leading to the relatively high standard deviation of the coefficient

in the regression model (see Equation 1) and the large confidence

Figure 4. Correlation of predicted antigenic distance (EADpred distance) with excess mortality caused by A(H1N1). (A–B) The
correlation between excess all-cause mortality (black) and EADpred (A) /genetic (B) distance to previous single antigenic strains. The symbols O, %, D
and 6 indicate the excess all-cause mortality and the antigenic/genetic distances between antigenic strains as challenging strains and the previous
first, second, and third antigenic strains, respectively. Information about the antigenic strains sees Table S1.
doi:10.1371/journal.pcbi.1000882.g004

Rapid Estimation of Influenza Mortality Burden
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interval of the prediction for A/Brisbane/59/2007 ([3, 104] on

95% confidence level). This may be due to the data noise and the

limited data available. Therefore, we think that our results need to

be further validated once data from additional seasons available.

Human influenza A viruses will continue to have significantly

negative impact on public health and cause substantial morbidity

and mortality. Timely and accurate estimation of their impact on

human death will help formulate more sensible and cost-effective

influenza prevention and control policies. The discovery of a

significantly positive correlation between antigenic variation of an

influenza virus and its excess mortality has allowed us to further

establish a quantitative relationship between them. In addition to

A(H1N1), we also quantified the relationship between antigenic

variation and excess mortality for influenza A(H3N2) and B virus

(see Figure S3 and Table S8 for A(H3N2), and Figure S4 and Table

S9 for B). The established quantitative relationship for a (sub)type

could be applicable to any challenging antigenic strain of same

(sub)type, if its predecessors could be known that provided cross-

protection for it and caused a wide infection in the current

population. In the case of 2009 Swine-origin Influenza A(H1N1)

Virus (S-OIV), the direct application of the established relationship

is not appropriate as its predecessors provided little cross-protection

except for a marginal cross-protection observed in some people aged

over 65 [22]. Given its antigenic variation much larger than seasonal

A(H1N1) antigenic strains, we speculate that the 2009 S-OIV would

cause a larger mortality than past seasonal A(H1N1) viruses.

Since the current experimental methods in determining

antigenic distances between viral isolates are time-consuming, we

further proposed a sequence-based approach, EADpred, to predict

antigenic distance between A(H1N1) viral strains, which enables us

to rapidly assess the mortality burden of an A(H1N1) antigenic

variant. Our method only relies on the HA sequence data of the

influenza viruses rather than the surveillance data, which offers a

rapid and reliable tool to assess the potential impact of an

influenza virus on human death even before infection occurs in

humans. Since a rapid and accurate prediction of influenza

mortality burden should greatly help develop a timely and sensible

preparedness programme that balances the gains of public health

and the social and economic costs, we believe that our method will

be very useful for rapid assessment of the influenza mortality

burden of other future A(H1N1) variants, and is also applicable to

the antigenic variants of human A (H3N2) and B viruses with

proper modification.

Materials and Methods

Data sources
HI data, HA sequences, the US mortality data, the US

population data and other surveillance data regarding influenza in

the US including number of total respiratory specimens tested for

influenza and positive isolates of three human influenza viruses,

A(H1N1), A(H3N2) and B from season 1977–1978 through 2008–

2009 were collected from published records, documents or

databases (see Text S1). The antigenic strains for each (sub)type

of human influenza virus were defined based on the vaccine strains

recommended by World Health Organization (WHO) or the

reference strains used by US Centers for Disease Control and

Prevention (CDC) in influenza surveillance. These strains were

selected from the US CDC reports or related documents, which

were required to be dominant (comprising .50% of the total

isolates of the same (sub)type) in at least one flu season based on

the influenza surveillance by the US CDC. Their actual

circulation time was based on the influenza surveillance carried

out by the US CDC. See Table S1 for the detailed information

regarding the antigenic strains. See Text S1 for detailed

information about these data sources and data processing.

Antigenic distance
Antigenic distance between two strains i and j, dij, was calculated

based on HI data by following the Archetti-Horsfall method with

adaption [23,24]:

dij~ ln (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HiiHjj=(HijHji)

p
) ð2Þ

where Hij refers to the HI titer of i relative to antisera raised

against j. In developing the EADpred model, only the antigenic

distances between strains of human A(H1N1) virus with HA1

peptide sequences (1–331 resides) available were considered. The

training dataset consists of 143 antigenic distances between

A(H1N1) strains, in which at least one strain in each pair was

isolated between 1977 and 1999. The testing dataset consists of

172 antigenic distances between A(H1N1) strains that were both

isolated between 2000 and 2008 (Table S10).

Estimation of total excess all-cause mortalities attributed
to antigenic strains

The excess all-cause mortalities for seasons 1977–1978 through

2008–2009 were calculated by following Simonsen’s method [6].

In our study, the estimation of excess mortality attributed to an

antigenic strain in a given period of time is based on the virus

isolation rate, the proportion of clinical samples that was tested

positive for the antigenic strain in the given period of time. The

virus isolation rate for a (sub)type in a given season is calculated as

the number of virus tested positive for the (sub)type divided by the

total number of clinical samples tested in the season. To link excess

mortality to virus isolation rate for a (sub)type, we introduce a

metric Y, which is defined as the excess mortality per UNIT of

virus isolation rate. Therefore, the estimation of the total excess

all-cause mortality attributed to an antigenic strain consists of the

following three steps:

Step 1: Determination of Y for each (sub)type. To determine the

Y for a (sub)type, we first identified the seasons in which the

(sub)type dominates almost completely (the ratio of virus isolates of

the (sub)type exceeding 90 percent of the total isolates in the

season). Then the Y for the subtype is calculated over the

identified dominant seasons using the following formula:

Y~(
Xn

i

Xi=Ri)=n i~1, 2, :::, n ð3Þ

where Xi is the excess all-cause mortality in the dominant seasons,

Ri is the proportions of samples positive for the (sub)type, and n is

the number dominant seasons.

Step 2: Calculation of the excess all-cause deaths associated with

a (sub)type for each season from 1977–1978 through 2008–2009.

The excess mortality in a season was obtained by multiplying by Y

the proportions of samples positive for the (sub)type in the season.

Step 3: Calculation of the total excess all-cause mortality for an

antigenic strain. For each antigenic strain in a given (sub)type, its

total excess all-cause mortality is calculated as the sum of the

excess (sub)type-attributed all-cause mortalities in the flu seasons

when it was in circulation. For a season with over one antigenic

strains of the same (sub)type in circulation, the excess all-cause

mortality caused by an antigenic strain is estimated based on the

percentage of its antigenically similar isolates in the same (sub)type

characterized by the US CDC in the given season (Table S1).
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Correlation analysis of antigenic distance and excess all-
cause mortality

For the correlation analysis, we only considered the antigenic

strains that have completed the whole circulation (from the

beginning of circulation to the end of circulation) from 1977

through 2009 (Table S1). The correlation analysis was carried out,

respectively, for all three (sub)types of human influenza viruses,

A(H1N1), A(H3N2) and B, in the flu seasons from 1977–1978

through 2008–2009. For each (sub)type, the correlation analysis

was performed as follows. First, the antigenic distances between an

antigenic strain and its previous antigenic strains were obtained

from Table S10. Then, the correlations between the total excess

all-cause mortalities caused by antigenic strains and their antigenic

distances to the previous i-th antigenic strain were analyzed using

the PCC and SCC in the R package [10]. Finally, the antigenic

distances to the previous two antigenic strains were combined to

obtain a better correlation between the antigenic variation of an

antigenic strain and the total excess mortality it causes (The

calculation of integrated antigenic distance sees Text S1). For

comparison, the correlation between genetic distance (number of

amino acid differences on HA1 peptide) and excess all-cause

mortality was also computed following the same procedure

described above.

Epitope-based Antigenic Distance Prediction (EADpred)
The development of the EADpred consists of four steps

described in brief as follows (details see Text S1):

Step 1. Identification of the antigenic epitopes as structural base

underlying the HA-antibody interaction.

We have derived six antigenic epitopes in the HA of A(H1N1)

virus, including four expanded known antigenic epitopes (Sa, Sb,

Ca and Cb) and two novel antigenic epitopes (Pa and Pb)

(Figure 3A). The composition of the six antigenic epitopes and the

supporting sources are summarized in Table S11.

Step 2. Transformation of amino acid changes in an antigenic

epitope into the changes in physicochemical properties that

underlie HA-antibody interaction.

The amino acid changes in an antigenic epitope were

transformed into a linear combination of physiochemical proterties

as follows:

f (E)~Ndonorza1 �Nacceptorza2 �Npcza3 �Nncza4 � fhydro ð4Þ

where f(E) quantifies the changes in the physiochemical properties

in the antigenic epitope. Ndonor and Nacceptor represent the number

of the changed hydrogen-bond donors and acceptors. Npc and Nnc

represent the number of the positive changes and negative

charges. fhydro~
P

i

Ni,hydro represents the changed hydrophobicity

of the epitope that consists of several cavities with at least two

amino acids, which is a sum of hydrophobicities of these cavities.

All these physiochemical properties of the 20 amino acids were

assigned to a vector of values as listed in Table S12.

Step 3. Integration of the contributions of the six derived

antigenic epitopes to predict the antigenic distance.

To predict the antigenic distances between two viral strains (d),

we considered a linear combination of the changes in physico-

chemical properties in all the six derived antigenic epitopes:

f (E1)zb1 � f (E2)zb2 � f (E3)z

b3 � f (E4)zb4 � f (E5)zb5 � f (E6)zb6~d
ð5Þ

where f(Ei) denotes the function of the i-th epitope.

Then the Equation 4 and 5 were combined into one equation,

which is re-represented as follows:

N1
donorzv1 �N1

acceptorzv2 �N1
pczv3 �N1

nczv4 �N1
1,hydroz

v5 �N1
2,hydroz:::zvn �Ni

donorzvnz1 �Ni
acceptorzvnz2 �Ni

pcz

vnz3 �Ni
nczvnz4 �Ni

1,hydrozvnz5 �Ni
2,hydroz:::zv42 �N6

donorz

v43 �N6
acceptorzv44 �N6

pczv45 �N6
nczv46 �N6

1,hydroz

v47 �N6
2,hydrozv48~d

ð6Þ

where vn are relative weights of the different terms. Ni
donor,

Ni
acceptor, Ni

pc and Ni
nc are the four variables describing the effects

of the hydrogen bonding and salt bridge of the i-th epitope that was

described in Equation 5. Ni
j,hydro is the j-th cavity of the i-th epitope.

Step 4. Model parameterization and assessment.

The relative weights of the Equation 6 were parameterized on

the training dataset using a stepwise multiple regression. After

regression, we found a certain linear correlation between antigenic

distance and the number of terms with non-zero weight.

Therefore, to achieve a better prediction performance, we added

in our previous model another term, fmodify~v � (Nf {Nave)
where Nf is the number of terms with non-zero weight left after

linear regression of Equation 6, Nave is the averaged Nf over all

strain pairs in the training dataset, v is the weight of the term. The

prediction performance of the model parameterized on the

training was further assessed by a blind test in the testing set.

The testing results were shown in Figure 3D and Table S5. The

performance of our method in predicting antigenic variants is also

compared to one of the best previous site-based methods (see Text

S1 and Table S5).

Statistical analysis in this study
In this study, all statistical analyses including the use of

Spearman and Pearson correlation methods were carried out

using the statistical package R [10]. The correlation analysis was

done with the cor.test function. The classical, robust and

nonparametric regression is done with the lm, lmRob and loess

function respectively.

Supporting Information

Figure S1 The leave-one-out cross validation of the linear

regression for analyzing the relationship between the excess all-

cause mortality caused by an antigenic strain and its integrated

antigenic distance to its previous two strains. Each time, the excess

all-cause mortality caused by an antigenic strain and its integrated

antigenic distance to its previous two strains were removed and a

linear equation was fitted to the remaining data. Using the fitted

equation, we then predicted the total excess mortality caused by

the antigenic strain based on its integrated antigenic distance to its

previous two antigenic strains.

Found at: doi:10.1371/journal.pcbi.1000882.s001 (0.34 MB TIF)

Figure S2 The scatterplot of the sum of (sub)type-attributed excess

mortality that we calculated and the reported excess mortality in

each season. The red, blue and green points represent the A(H1N1),

A(H3N2) and B dominant seasons respectively. A (sub)type is defined

to be dominant in the season when its ratio of virus isolates is the

biggest in that season. The black line is the diagonal line of the plot.

The boxed dots are those with large deviations.
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Found at: doi:10.1371/journal.pcbi.1000882.s002 (0.42 MB TIF)

Figure S3 The nonparametric (the red line) and robust

logarithm (the black line) regression between the excess all-cause

mortality and the antigenic distance to the previous first antigenic

strain for influenza A(H3N2) virus. The nonparametric regression

is done using the loess method with span 1.5. The equation and its

R-squared shown on the plot are for the robust logarithm

regression.

Found at: doi:10.1371/journal.pcbi.1000882.s003 (0.34 MB TIF)

Figure S4 The nonparametric (the red line) and robust

logarithm(the black line) regression between the excess all-cause

mortality and the antigenic distance to the previous third antigenic

strain for influenza B virus. The nonparametric regression is

done using the loess method with span 1.5. The equation and its

R-squared shown on the plot are for the robust logarithm

regression.

Found at: doi:10.1371/journal.pcbi.1000882.s004 (0.33 MB TIF)

Table S1 The seasonally virus isolates, antigenic strains and

excess all-cause mortalities of human influenza A(H1N1),

A(H3N2) and B from the year 1977 through 2009.

Found at: doi:10.1371/journal.pcbi.1000882.s005 (1.07 MB TIF)

Table S2 The Spearman and Pearson Correlation Coefficients

between the excess all-cause mortalities and the genetic distances

to its previous individual antigenic strains. The numbers in

parenthesis are the P-values of the corresponding coefficients. The

largest coefficient for each (sub)type is highlighted in bold. a: The

previous i-th antigenic strain is the i-th antigenic strain prior to an

antigenic strain that is considered as a challenging strain. b: Not

applicable due to the limited number of antigenic strains.

Found at: doi:10.1371/journal.pcbi.1000882.s006 (0.03 MB

DOC)

Table S3 The Spearman and Pearson Correlation Coefficients

between the excess all-cause mortalities and the integrated genetic

distances relative to the previous 1–5 antigenic strains as

background strains. The numbers in parenthesis are the P-values

of the corresponding coefficients. The largest coefficient for each

(sub)type is highlighted in bold. a: Not applicable due to limited

number of antigenic strains.

Found at: doi:10.1371/journal.pcbi.1000882.s007 (0.03 MB

DOC)

Table S4 The classical and robust regression analysis of the

relationship between the antigenic distance and the excess

mortality for human A(H1N1) using five different equations.

The table lists the function, R-squared and P-value for each

regression.

Found at: doi:10.1371/journal.pcbi.1000882.s008 (0.04 MB

DOC)

Table S5 The performance comparison between the EADpred

method and one of the best site-based methods in predicting

antigenic variants (see Methods). a: Based on the method proposed

by Liao et al [11].

Found at: doi:10.1371/journal.pcbi.1000882.s009 (0.03 MB

DOC)

Table S6 The confidence interval of the Spearman and Pearson

Correlation Coefficients between the excess all-cause mortalities

and antigenic distances to previous individual antigenic strains.

The numbers in parenthesis are the 95% confidence interval of

corresponding coefficients. The numbers in red are the coefficients

with P-value smaller than 0.05. a: The previous i-th antigenic

strain is the i-th antigenic strain prior to an antigenic strain that is

considered as a challenging strain. b: Not applicable due to the

limited number of antigenic strains.

Found at: doi:10.1371/journal.pcbi.1000882.s010 (0.03 MB

DOC)

Table S7 The confidence interval of the Spearman and Pearson

Correlation Coefficients between the excess all-cause mortalities

and the integrated antigenic distances relative to the previous 1–5

antigenic strains as background strains. The numbers in

parenthesis are the 95% confidence interval of corresponding

coefficients. The numbers in red are the coefficients with P-value

smaller than 0.05. a: Not applicable due to limited number of

antigenic strains.

Found at: doi:10.1371/journal.pcbi.1000882.s011 (0.03 MB

DOC)

Table S8 The classical and robust regression analysis of the

relationship between the antigenic distance and the excess

mortality for human A(H3N2) using five different equations.

The table lists the function, R-squared and P-value for each

regression.

Found at: doi:10.1371/journal.pcbi.1000882.s012 (0.04 MB

DOC)

Table S9 The classical and robust regression analysis of the

relationship between the antigenic distance and the excess

mortality for human B virus using five different equations. The

table lists the function, R-squared and P-value for each regression.

Found at: doi:10.1371/journal.pcbi.1000882.s013 (0.04 MB

DOC)

Table S10 Antigenic distances between antigenic strains for

human influenza A(H1N1), A(H3N2) and B, and antigenic

distances between A(H1N1) viruses used for developing the

EADpred method.

Found at: doi:10.1371/journal.pcbi.1000882.s014 (0.54 MB

DOC)

Table S11 Six predicted epitopes of the A(H1N1) HA protein. a:

The epitopes are extended from the known epitopes based on

references 12–14. b: Two predicted novel antigenic eptiopes

supported by references 17 and 18.

Found at: doi:10.1371/journal.pcbi.1000882.s015 (0.03 MB

DOC)

Table S12 Values of five selected physiochemical properties of

the 20 amino acids. a: The hydrophobic values came from the

BLAS910101 entry in AAindex database [21].

Found at: doi:10.1371/journal.pcbi.1000882.s016 (0.05 MB

DOC)

Text S1 Supporting methods, legends for supporting tables and

figures.

Found at: doi:10.1371/journal.pcbi.1000882.s017 (0.10 MB

DOC)
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