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Jacques-Louis Lions, Université Pierre et Marie Curie, UMR CNRS 7598, Paris, France, 6 Institut Universitaire de France, Paris, France

Abstract

The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current
experiments on Escherichia coli have shown the precise structure of traveling pulses. We present here an alternative
mathematical description of traveling pulses at the macroscopic scale. This modeling task is complemented with numerical
simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of
the mesoscopic run-and-tumble process performed by bacteria. This can account for recent experimental observations with
E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered
motion versus dispersion). In addition, we can capture quantitatively the traveling speed of the pulse as well as its
characteristic length. This work opens several experimental and theoretical perspectives since coefficients at the
macroscopic level are derived from considerations at the cellular scale. For instance, the particular response of a single cell
to chemical cues turns out to have a strong effect on collective motion. Furthermore, the bottom-up scaling allows us to
perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive
tool for the investigation of bacterial collective motion.
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Introduction

Since Adler’s seminal paper [1], several groups have reported

the formation and the propagation of concentration waves in

bacteria suspensions [2,3]. Typically, a suspension of swimming

bacteria such as E. coli self-concentrates in regions where the

environment is slightly different such as the entry ports of the

chamber (more exposed to oxygen) or regions of different

temperatures. After their formation, these high concentration

regions propagate along the channel, within the suspension. It is

commonly admitted that chemotaxis (motion of cells directed by a

chemical signal) is one of the key ingredients triggering the

formation of these pulses. We refer to [4] for all biological aspects

of E. coli.

Our goal is to derive a macroscopic model for these chemotactic

pulses based on a mesoscopic underlying description. This

approach relies on kinetic theory adapted to the specific run-

and-tumble process that bacteria undergo [5,6]. We base our

modeling task on recent experimental evidence for traveling pulses

obtained in our group (Fig. 1). These traveling pulses possess the

following features which we are able to recover analytically:

constant speed, constant amount of cells and strong asymmetry in

the profile.

Many other micro-organisms exhibit collective behaviors. For

instance, Dictyostelium discoideum cells collectively switch their

cAMP-mediated signaling activity from stochastic to oscillatory

when a concentration threshold is reached [7]. These oscillations,

then synchronized at the scale of the population, give rise to non-

dissipating waves of cAMP that guide the cells during fruiting body

formation. Another example is given by Myxococcus xanthus that can

grab and pull a neighbor cell by the mean of their pili, resulting in

a long range alignment of the population and the formation of

aggregates [8]. In the first case the pulsatile aspect is crucial for

population scale communication and the speed of the cAMP

waves is one order of magnitude larger than the velocities of the

individual cells. In the second case, the physical contact between

cells is critical for the aggregation.

Mathematical models for chemotaxis highlight a positive

feedback which counteracts dispersion of individuals and may

eventually lead to aggregation. There is a large amount of

literature dealing with this subtle mathematical phenomenon (cf.

[9,10] and the references therein, see also [11] for alternative

models which are closer to our approach). Self-induced chemo-

taxis following the Keller-Segel model has been shown successful

for modeling self-organization of various cell populations under-

going aggregation [12–15].

In particular the Keller-Segel model has been proposed as a

basis for modeling the propagation of traveling waves [16–19]. We

refer to [20] for a complete review of contributions to this

modeling issue. It has been postulated that a single chemotactic

signal, namely the nutrient, could be responsible for the motion of

the wave. However it is required that the chemosensitivity function
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is singular when the nutrient concentration vanishes. Our

approach is more robust as we give a large class of fluxes for

which traveling pulses do propagate. Furthermore these fluxes are

derived from an accurate mesoscopic description of bacterial

interactions.

In addition to chemotaxis, the contribution of cell division has

been considered by many authors (cf. [21–23] and the references

therein). Following the theory of reaction-diffusion equations,

these authors have demonstrated the existence of traveling waves

under general assumptions. However taking into account

population growth seems unreasonable in view of the time scale

of the experimental setting we aim at describing.

An extension of the classical Keller-Segel model was also

proposed in seminal paper by Brenner et al. [24] for the self-

organization of E. coli. Production of the chemoattractant by the

bacteria triggers consumption of an external field (namely the

succinate). Their objective is to accurately describe aggregation of

bacteria along rings or spots, as observed in earlier experiments by

Budrene and Berg that were performed over the surface of gels [2].

However the experimental setting we are based on is quite

different from Budrene and Berg’s experiments: for the experi-

ments discussed in the present paper, the bacteria swim in a liquid

medium and not on agar plates. Therefore we will not follow [24].

On the other hand Salman et al. [25] consider an experimental

setting very similar to ours. However the model they introduce to

account for their observations is not expected to exhibit pulse

waves (although the mathematical analysis would be more

complex in its entire form than in [18]).

A new class of models for the collective motion of cells (e.g.

swimming bacteria, the slime mold D. discoideum) has emerged

recently. It differs significantly from the classical Keller-Segel

model. Rather than following intuitive rules (or first order

approximations), the chemotactic fluxes (u½S�, say: S being the

concentration of a chemotactic cue) are derived analytically from a

mesoscopic description of the run-and-tumble dynamics at the

individual level and possibly involving internal molecular path-

ways, [9,26–34]. The upscaling limit which links the macroscopic

flux u½S� to the kinetic description is now well understood since the

pioneering works [5,6,26]. Here we propose to follow the analysis

in [11,31]. We write accordingly the macroscopic chemotactic flux

in full generality as:

u½S�~J LtS,D+SDð Þ +S

D+SD
, ð1Þ

where S denotes the concentration of chemoattractant. We shall

derive an explicit formulation for the macroscopic quantity J.

Indeed it contains the microscopic features that stem from the

precise response of a single bacterium to a change in the

concentration of the chemoattractant S in its surrounding

environment. The upscaling limit is based on the following

experimental fact: the (collective) pulse speed and the (individual)

speed of bacteria differ by one order of magnitude. To the best of

Figure 1. Experimental evidence for pulses of Escherichia coli traveling across a channel. The propagation speed is constant and the shape
of the pulse front is remarkably well conserved. Observe that the profile is clearly asymmetric, being stiffer at the back of the front (see also Fig. 2).
Cell division may not play a crucial role regarding the short time scale.
doi:10.1371/journal.pcbi.1000890.g001

Author Summary

Modeling chemotaxis has raised a lot of interest in the
applied mathematics community in past decades. The
precise description of bacterial pulses traveling in a narrow
channel is a challenging issue in the self-organization of
cells. Indeed, our biological knowledge of signal integra-
tion in E. coli has grown in parallel with the development
of more involved mathematical models. There exists a
hierarchy of models for the analysis of bacteria E. coli
motion depending on the scale under consideration. In
this work, we derive macroscopic equations from the
mesoscopic scale. This allows us to perform qualitative and
quantitative analysis based on numerical simulations. We
compare our predictions with current experiments per-
formed with E. coli. The results can be interpreted at the
cellular scale due to the bottom-up integration. This
approach reveals better agreement with current experi-
ments than the widely used Keller-Segel model. We
conclude that the mesoscopic run-and-tumble description
is compatible with the propagation of a pulse at the
macroscopic scale.

Bacterial Traveling Pulses
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our knowledge, this is the first work where this powerful approach

has been applied to the propagation of bands in populations of E.

coli [35].

Results

Description of the experiments
When confined in micro environment, motile populations of

Escherichia coli exhibit robust collective behaviours in the form of

propagation of concentration waves. If this phenomenon is

relatively easy to observe, its quantitative study requires a

reproducible preparation of the system. To do so, we perform

the following experiment. Fluorescent bacteria are grown in a

nutritive medium until they reach a sufficient density and a good

motility. We then fill PDMS/glass micro channels directly with

this suspension, or after resuspension in a different medium. The

channels are then sealed with epoxy resin thus confining the

homogeneous suspension of motile bacteria. The centrifugation of

this system reproducibly accumulate bacteria at one end of the

channel while preserving the motility. When the centrifugation is

stopped, a sharp pulse forms and propagates along the channel.

Fluorescence video microscopy allows the measurement of the

speed and shape of the traveling pulse. Precise experimental details

are given in material and methods.

Description of the model
We describe the population of bacteria by its density r(t,x) (at

time t and position x). We consider here short timescales, hence

cell division is assumed to be negligible. The cell density follows a

drift-diffusion equation, combining brownian diffusion together

with directed fluxes being the chemotactic contributions. This is

coupled to reaction-diffusion equations driving the external

chemical concentrations. In this paper we consider the influence

of two chemical species, namely the chemoattractant signal S(t,x),
and the nutrient N(t,x). Although this is a very general

framework, it has been shown in close but different conditions

that glycine can play the role of the chemoattractant [25].

Similarly, glucose is presumed to be the nutrient. The exact nature

of the chemical species has very little influence on our modeling

process. In fact there is no need to know precisely the mechanisms

of signal integration at this stage. The model reads as follows:

Ltr ~ DrDr{+:(ru½S�zru½N�),
LtS ~ DSDS{aSzbr,

LtN ~ DNDN{crN:

8><
>: ð2Þ

The chemoattractant is assumed to be secreted by the bacteria

(at a constant rate b), and is naturally degraded at rate a, whereas

the nutrient is consumed at rate c. Both chemical species diffuse

with possibly different molecular diffusion coefficients. We assume

a linear integration of the signal at the microscopic scale, resulting

in a summation of two independent contributions for the directed

part of the motion expressed by the fluxes u½S� and u½N�. We

expect that the flux u½S� will contribute to gather the cell density

and create a pulse. The flux u½N� will be responsible for the

motion of this pulse towards higher nutrient levels.

The fluxes u½S� and u½N� are built from the kinetic description

of motion at the mesoscopic scale (see Materials and Methods). To

summarize we assume that bacteria follow a run-and-tumble

process mediated by the chemical micro-environment. The

tumbling rate is dependent upon the material derivatives DS=Dt
and DN=Dt (see [11,31] for related works), where

DS=Dt~LtSzv:+S, and v denotes the cell velocity. Namely,

we assume that the tumbling rate writes as follows:

l½S�~y0z w(DS=Dt). Here y0 is the basal rate of tumbling in

the absence of chemoattractant and w is a decreasing function:

tumble is more likely to occur if the chemoattractant concentration

decreases along the trajectory [36,37]. The (small) parameter

accounts for the small variations of tumbling rates which have

been measured experimentally (results not shown). The synthesis

of these phenonena yields a macroscopic equation for the cell

density r(t,x) (2), where the chemical drift is given by

u½S�~{

ð
v[V

vw v:+Sð Þ dv

DV D
, ð3Þ

where V denotes the set of possible velocities. The same holds for

u½N�. The dependency upon the time derivative LtS disappears

due to time/space scaling. We could keep this dependency at first

order, but we omit it for the sake of clarity.

Several systems such as (2) have been proposed and the upmost

classical is the so-called Keller-Segel equation [12,16]. In the

latter, the fluxes are proportional to the gradient of the chemical:

u½S�~x(S)+S, resp. u½N�~x(N)+N. Such a coupling is known to

possibly drive the system into aggregated configurations for which

the density of cells can become unbounded [9]. Notice that the two

possible choices coincide in the linear regime, i.e. for small

amplitudes of +S. They strongly differ however far from the linear

regime. Especially the flux u½S� given by (3) is bounded by the

individual speed of bacteria, whereas the chemotactic flux in the

Keller-Segel model generally becomes unbounded when aggrega-

tive instability occurs, which is a strong obstacle to the existence of

traveling pulses.

Analytical solutions in the case of a stiff response
function

We restrict our attention to the one-dimensional case due to the

specific geometry of the channels. It is usually impossible to

compute explicitely traveling pulse solutions for general systems

such as (2). To obtain qualitative properties is also a difficult

problem: we refer to [17,18,23] for examples of rigorous results in

this direction.

Here, we are able to handle analytical computations in the

limiting case where the signal response function w is indeed a step

function. This owes to the assumption of high sensitivity of

bacteria or large gradients of chemical. Then the fluxes (1) are

given by the expression (3) which reduces to

u½S�~xSsign(LxS), u½N�~xNsign(LxN): ð4Þ

We seek traveling pulses, in other words particular solutions of

the form r(t,x)~~rr(x{st), S(t,x)~~SS(x{st), N(t,x)~ ~NN(x{st)
where s denotes the speed of the wave. This reduces (2) to a new

system with a single variable z~x{st,

{sr’(z) ~ Drr’’(z){ r(z)u½S�(z)zr(z)u½N�(z)ð Þ’,
{sS’(z) ~ DSS’’(z){aS(z)zbr(z),

{sN ’(z) ~ DNN ’’(z){cr(z)N(z):

8><
>: ð5Þ

We prescribe the following conditions at infinity

r(+?)~0, S(+?)~0, N(+?)~N+: ð6Þ

Bacterial Traveling Pulses
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We impose sw0 without loss of generality. This means that the

fresh nutrient is located on the right side, and thus we look for an

increasing nutrient concentration N ’(z)w0. We expect that the

chemoattractant profile exhibits a maximum coinciding with the

cell density peak (say at z~0), and we look for a solution where

S’(z) changes sign only once at z~0. Then, the fluxes (4) express

under the traveling wave ansatz as

u½S�(z)~{xSsign(z), u½N�(z)~xN :

Integrating once the cell density equation in (5) we obtain

Drr’(z)~r(z) u½S�(z)zu½N�(z){sð Þ:

The flux u½S� takes two values (with a jump at z~0), whereas the

flux u½N� is constant. Therefore the cell density is a combination of

two exponential distributions

r(z)~

r0 exp l{zð Þ, l{~
{sz(xSzxN )

Dr
w0, if zv0,

r0 exp lzz
� �

, lz~
{sz({xSzxN )

Dr
v0, if zw0:

8>><
>>: ð7Þ

This combination of two exponentials matches with the numerical

simulations (Fig. 2) and the experimental observations (Fig. 2).

To close the analysis it remains to recover the two unknowns:

the maximum cell density r0 and the speed s, given the mass and

the constraint that LzS vanishes at z~0 (because S(z) reaches a

maximum at this location). We have the following implicit formula

for the speed of the pulse (see Text S1 for details):

xN{s~xS

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DSazs2

p : ð8Þ

We deduce from monotonicity arguments that there is a unique

positive traveling speed s [ (0,xN ).

Figure 2. Comparison between experimental data and numerical results obtained from the model. Superposition of three time-
snapshots of the experiments (dots, see also Fig. 1) and the numerical simulations of (2)–(4) (plain line). The time interval between snapshots is 2000s.
The density profile is clearly asymmetric and preserved along the time course of the experiment. The number of bacteria in the pulse is approximately
constant during the course (main contribution to growth takes place at the back of the pulse). The model reproduces faithfully the exponential tail at
the back of the peak. The profile s do not coincide perfectly in the last snapshot due to uctuations in the experimental speed of propagation.
Parameters chosen for the simulations are given in Table 1. The numerical speed is 1:8mm.s21.
doi:10.1371/journal.pcbi.1000890.g002
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On the other hand, the asymmetry factor is given by

l{

DlzD
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DSazs2

p
zsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DSazs2
p

{s
: ð9Þ

This is a key macroscopic quantity as it enables to retrieve some

parameters from experimental measurements. Interestingly

enough, the speed and the asymmetry factor do not depend on

the number of bacteria when the response function is stiff.

Formation of bacterial clusters
Mittal et al. have presented remarkable experiments where

bacteria E. coli self-organize in coherent aggregated structures due

to chemotaxis [38]. The cluster diameters are shown essentially

not to depend on the quantity of cells being trapped. This

experimental observation can be recovered from direct numerical

simulations of random walks [39].

We can recover this feature in our analytical context using a

model similar to (2) derived from a kinetic description. We

compute the solutions of (5) in the absence of nutrient (assuming

again a stiff response function). Observe that stationary solutions

correspond here to zero-speed traveling pulses, that is

{Drr’(x)zr(x)u½S�(x)~0, u½S�(x)~xSsign(S’(x)),

{DSS’’(x)zaS(x)~br(x):

�
ð10Þ

We assume again that sign(S’(x))~{sign(x). This simply leads

to,

r(x)~r0 exp ({lDxD), where l~
xS

Dr
:

This is compatible with the postulate that S(x) changes sign only

once, at x~0 (the source br(x) being even). The typical size of the

clusters is of the order l{1, which does not depend on the total

number of cells. This is in good quantitative agreement with

experiments exhibited in [38]. The fact that we can recover them

from numerical simulations indicates that these stationary states

are expected to be stable.

Cluster formation provides a good framework for investigating

pattern formation when we relax the stiffness assumption on the

response function w. We introduce the stiffness parameter d
through its derivative at the transition between unfavourable and

favourable regimes: w’(0)~{1=d. The case d~0 corresponds to a

step response function.

We get from the dispersion relation (see Text S1) that the

constant stationary state r(x):r0 is linearly stable if and only if

the following condition is fulfilled:

lr0vmd 1z(2p)2 l

L

� �2
 !

, ð11Þ

where the constant m depends on the other parameters (including

the mean square velocity Sv2T, see Text S1). Here L denotes the

size of the channel and l%L is the range of action of the chemical

signal (namely l~
ffiffiffiffiffiffiffiffiffiffiffi
DS=a

p
). The picture is not complete as we

have not investigated the stability of the non-trivial steady-state.

However this indicates that the stiffness parameter d plays an

important role regarding cluster formation. We show below that

stiffness plays an important role for coherent motion of a pulse too.

Numerical insights
We complete the theoretical analysis with some numerical

simulations of the full model (2)–(3) exhibiting propagation of

pulses (or not) in regimes where analytical solutions are not

available (Fig. 3). The set of parameters is given in Table 1. The

two parameters subject to variation are the stiffness parameter d
and the initial level of nutrient N0.

We can draw the following conclusions from our numerical

simulations. The first remarkable fact is that we do observe

traveling pulses (Fig. 3). Dispersion effects are counterbalanced by

self-attraction due to the signal S. These traveling pulses possess

the correct asymmetry in the profile, and the speed matches

experimental observations.

When the stiffness assumption for the internal response function

is relaxed, so that dispersion effects become too strong, no pulse

propagation is observed numerically (Fig. 4). This is in agreement

with analytical results obtained for the zero-speed solution in the

absence of nutriment. Indeed the cluster becomes unstable as d
gets large (11).

When the initial level of nutrient is low (or equivalently the

consumption rate is high), and conditions for a pulse to travel are

fulfilled, then only part of the bacterial population leaves the initial

bump (Fig. 5). The solution appears to be the superposition of a

traveling pulse and a stationary state (admissible in the absence of

nutrient). Solitary modes with smaller amplitudes may appear at

the back of the leading one (not shown). To predict which fraction

of mass starts traveling turns out to be a difficult question.

Discussion

We present in this article a simple mathematical description for

the collective motion of bacterial pulses with constant speed and

asymmetric profile in a channel. The nature of this model

significantly differs from the classical Keller-Segel system although

it belongs to the same class of drift-diffusion equations. Our model

is formally derived from a mesoscopic description of the bacterial

density, which allows for a more accurate expression of the cell

flux at the macroscopic level.

The main conclusion of our work is the compatibility of the

description of individual cell motion at the mesoscopic scale with

the macroscopic observations of collective cell movements. The

run-and-tumble process is qualitatively and quantitatively consis-

tent with the propagation of a pulse at constant speed.

We do not discuss the conditions ensuring the existence of a

traveling pulse solution to the system (5). This has been performed

in the case of a stiff response function when computations are

tractable analytically. We conjecture that existence holds under

rather general assumptions, but such mathematical developments

are beyond the scope of this work.

We point out the theoretical connection between the present

work and the observations of Mittal et al. [38]. The latter

corresponds somehow to zero-speed traveling pulses, namely

stationary clusters of bacteria. Our approach can be summarized

as follows: a nutrient is added to pull chemotactic clusters of cells.

This creates an imbalance in the fluxes which induces the

asymmetry of the traveling profile.

Quantitative and qualitative conclusions
We are able to compute the quantitative features of the traveling

pulse in the case of a stiff response function. According to (8) the

theoretical pulse speed does not depend upon the total number of

cells. This can be related to experimental evidence by Mittal et al.

[38] where bacteria self-organize into size-independent clusters. In

the case of a smooth tumbling kernel in (3), our model would

Bacterial Traveling Pulses
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predict a dependency of the speed upon the quantity of cells. But

this analysis suggests that the number of cells is presumably not a

sensitive biophysical parameter.

The speed also does not depend on the effective diffusion

coefficient of bacteria when the response function is stiff.

Therefore we expect to get the same formula if we follow the

hyperbolic approach of [31] in order to derive a macroscopic

model. Indeed the main difference is the diffusion coefficient

which is very small in the hyperbolic scaling. Nevertheless, the

density distribution would be very different, being much more

confined when described by the hyperbolic system. Furthermore,

scaling back the system to its original variables, we would obtain a

pulse speed being comparable to the individual speed of bacteria

(Materials and Methods). This is clearly not the case.

The asymmetry factor is another key outcome of the

experimental observations. We are able to give a formula for this

asymmetry when the response function is stiff. It turns out that

asymmetry is favoured when 2
ffiffiffiffiffiffiffiffiffi
DSa
p

is negligible with respect to

the speed of the pulse s (9). The former parameter is known as the

propagation speed of a reaction-diffusion front [12,40], except that

the sign of a is the opposite.

Although the chemotactic equation of (1)–(2) is significantly

different from the standard Keller-Segel model, they coincide in

the linear regime. It is well known that the Keller-Segel system is

subject to a bifurcation phenomenon due to its quadratic

nonlinearity [9,10]. In the context of cluster formation, we learn

from (11) that the stiffness parameter d plays an important role in

the stability of the homogeneous (flat) state. In other words, it is

required that the bacteria are sufficiently sensitive in order to form

a stable cluster. Clearly the same kind of mechanism acts here

(Fig. 3 as opposed to Fig. 4). However there is no mathematical

argumentation to sustain those numerical and intuitive evidence

yet.

The influence of the stiffness property of the signal integration

process is clear from numerical simulations of the full model (1)–

(2). When the response function is smooth, dispersion effects are

too strong and the population spreads out (Fig. 4). On the other

hand, a stiff response function enables the cells to remain packed

under the effect of the self-attractive chemical potential S.

Establishing the exact conditions that guarantee the propagation

of a traveling pulse seems to be a challenging task.

Dynamics of the nutrient have no influence when the response

function is stiff (only the sign of the gradient is important).

However the evolution of the nutrient plays an important role

when the response function is not stiff. It may happen than only

part of the population starts traveling when the nutrient is initially

at a low level (or is consumed with fast rate). A fraction remains

trapped on the boundary, in a cluster configuration, while the rest

of the population travels independently with constant speed (Fig. 5).

Perspectives
The next step consists in working at the kinetic level. Much has

to be done for the design of efficient numerical methods for the

description of collective motion of cells subject to chemotactic

interactions. It would also be feasible to point out the dependency

of the tumbling operator upon some internal variable (e.g. the

Table 1. Set of parameters.

Time scale �tt 100s Experimental
evidence

Space scale �xx 200mm Experimental
evidence

Effective bacterial diffusion Dr 4|10{6cm2:s{1 [47]

Chemical diffusion DS 8|10{6cm2:s{1 [4]

Chemical degradation a 4|10{3s{1 [25] and
experimental
fit

Effective bacterial chemotaxis speed xS 10{4cm:s{1 Experimental
fit

Effective bacterial chemotaxis speed xN 2:2|10{4cm:s{1 Experimental
fit

*Response function* w(Z) step or tanh ({Z=d)

*Total number of cells* M 5|105 Experimental
measurement

*Chemical secretion* b 4|105cell{1:s{1 [25]

*Nutrient diffusion* DN 8|10{6cm2:s{1

*Nutrient consumption* c 4|105cell{1:s{1 [25]

Reference set of parameters which have been used in the numerical simulations. The asterisks point out the parameters which have little influence on the dynamics:
they have been chosen in agreement with the other parameters (with respect to the order of magnitude). The three parameters a, xS and xN have been obtained from
the macroscopic observables s, l{ and lz using the formulas (7), (8): DSa~s2({lzl{)=(l{zlz)2 , xS~Dr(l{{lz)=2, xN ~Dr(l{zlz)=2zs. We obtain a value
for a which is consistent with [25]. See Materials and Methods for details.
doi:10.1371/journal.pcbi.1000890.t001

Figure 3. Propagation of a pulse wave. (Top) Experimental results under abundant nutrient conditions: M9 minimal medium supplemented with
4% glucose and 1% casamino acids (both ten times more concentrated than in the case of Fig. 5). (Bottom) Numerical simulations of system (2)–(3) in
the case of unlimited nutrient, and a stiff response function w. We observe the propagation of a traveling pulse with constant speed and asymmetric
profile. Specific parameters are: (d = 1021 and N0 = 103 (arbitrary units).
doi:10.1371/journal.pcbi.1000890.g003
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cytoplasmic concentration of the phosphorylated form of the

protein CheY, which is responsible for the reversal of motors).

This approach carries out the coupling between an internal

protein network and the external chemoattractant signals

[39,41]. Kinetic models are also relevant for describing this

microscopic mechanism [30,42] (the network is basically

transported along the cells’ trajectories). However the increase

in complexity forces to reduce the size of the network, and to use

rather caricatural systems mimicking high sensitivity to small

temporal variations (excitation) and adaptation to constant levels

of the chemoattractant.

Assuming independent integration of the chemical signals

constitutes a strong hypothesis of our model. There exist two

main membranous receptors triggering chemotaxis, namely Tar

and Tsr. As the signals which act in the present experiments are

not perfectly determined, we have considered the simplest

configuration. To further analyse the interaction between the

external signals, one should include more in-depth biological

description of the competition for a single class of receptor [43].

Materials and Methods

Strain
We use the E. coli strain RP437 which is considered wild type for

motility and chemotaxis. It is transformed with a pZE1R-gfp

maintained by a resistance to ampicillin. The bacteria constitu-

tively express a high level of green fluorescent protein which is

necessary for low magnification fluorescence video microscopy.

Culture
We grow the bacteria with 50 mg:ml{1 ampicillin on LB agar

petri dishes at 37uC and keep them for a maximum of 5 days at

4uC. The ‘‘unlimited nutrient’’ culture medium is M9 supple-

mented with 4% D-Glucose, 1% Bacto Casamino Acids and 1mM
MgSO4. Before each experiment described here, a single colony is

inoculated in 2ml of this medium (and 50 mg:ml{1 ampicillin) and

grown at 30uC under agitation until an OD600 of 0.5 is reached.

We use 15ml falcon tube with two positions caps to make sure that

oxygen is not limited during growth.

Figure 4. Dispersion of the cell population (no pulse wave). (Top) In this experiment, bacteria are cultivated at a concentration of
5.108cells.ml21 in the same rich medium as in Fig. 3. After, they are resuspended in LB nutrient to an OD600 of 3.108cells.ml21. We interpret the
absence of pulse propagation as following. Bacteria are adapted to a rich environmnent before resuspension. Thus they are not able to sense small
chemical uctuations necessary for clustering to occur when evolving in a relatively poor medium. (Bottom) Inuence of the internal processes stiffness.
When the individual response function w is not stiff, the effect of dispersion is too strong and no pulse wave propagates, as opposed to Fig. 3. Specific
parameters are: d = 10 and N0 = 103. In mathematical models of bacterial chemotaxis, it is commonly accepted that adaptation of cells to large
chemoattractant changes acts through the measurement of relative time variations: S21DS/Dt. In our context, this is to say that the stiffness
parameter d is proportional to the chemical level S. Hence after having dramatically changed the environment and before bacteria adapt themselves,
we can consider that the response function w is not stiff.
doi:10.1371/journal.pcbi.1000890.g004

Figure 5. Coexistence of a stationary cluster and a traveling pulse. At low level of nutrient the cell population splits into two subpopulations.
A fraction remains trapped at the boundary (as a stationary profile) and a fraction travels accross the channel with constant speed. Specific
parameters are: d = 1021 and N0 = 102.
doi:10.1371/journal.pcbi.1000890.g005
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Micro fabrication
The fabrication of micro channels are based on usual soft

lithography techniques [44]. 100mm high patterns are micro

fabricated on silicon wafers using SU-8 100 resin from MICRO-

CHEM. The PDMS is molded on the wafer and peeled after

curing. A clean glass slide and the micro patterned PDMS are

plasma treated for 20s and directly placed in contact thereby

forming a PDMS/glass micro channel. The result is a

500mm|100mm|1:8cm channel (width|height|length) that

is then filled with the homogeneous suspension of motile bacteria

and sealed with a fast curing epoxy resin.

Centrifugation
The glass silde is gently centrifuged (800rpm, 9cm from the axis)

at room temperature for 35min. The bacteria accumulate at the

end of a channel and stay motile.

Video microscopy
The channels is then placed in a chamber at constant

temperature (30uC) under a Leica MZ16F stereomicroscope

equipped for fluorescence. A CCD camera (CoolSnapHQ, Roper

Scientific) records one image every 100s of the fluorescence signal

in the channel.

Image processing
The movie is then processed using Matlab. We detect in each

frame the position of the pulse by its maximum and extract its

speed by fitting the successive positions by a linear regression.

Kinetic framework
The classical theory of drift-diffusion limit for kinetic modeling

of bacterial chemotaxis is a way to compute the macroscopic fluxes

u½S�, u½N� in (2) [27]. Because we assume a linear integration of

the different signals for each individual, we restrict the following

presentation to the action of a single chemical species S.

The population of bacteria can be described at the mesoscopic

scale by its local density f (t,x,v) of cells located at the position x
and swimming with velocity v. The kinetic equation proposed in

the pioneering works of Alt, Dunbar and Othmer [5,6] combines

free runs at speed v, and tumbling events changing velocity from v’
(anterior) to v (posterior), according to the Boltzman type

equation:

Ltf zv:+xf ~

ð
v’[V

T ½S�(v’?v)f (t,x,v’)dv’{l½S�(v)f (t,x,v), ð12Þ

where the tumbling rate satisfies l½S�(v)~
Ð

v’[V
T ½S�(v?v’)dv’.

The velocity space V is bounded and symmetric, usually

V~B(0,c) or V~S(0,c) (bacteria having presumably constant

speed). As we deal with the idealization of a two-dimensional

phenomenon in one dimension of space, we shall perform our

computations for V~½{c,c�, but the results contained in this

paper do not depend on this particular choice. Kinetic models of

chemotaxis have been studied recently in [42,45,46].

The turning kernel T describes the frequency of changing

trajectories, from v’ to v. It expresses the way external chemicals

may influence cell trajectories. A single bacterium is able to sense

time variations of a chemical along its trajectory (through a time

convolution whose kernel is well described since the experiments

performed by Segall et al. [37]). For the sake of simplicity we

neglect any memory effect, and we assume that a cell is able of

sensing the variation of the chemical concentration along its

trajectory. Following [31], this is to say that T is given by the

expression

T ½S�(v’?v)~y
DS

Dt

� �
~y LtSzv’:+xSð Þ: ð13Þ

The signal integration function y is non-negative and decreasing,

expressing that cells are less likely to tumble (thus perform longer

runs) when the external chemical signal increases (see Fig. 6 for

such a tumbling kernel in the context of the present application). It

is expected to have a stiff transition at 0, when the directional time

derivative of the signal changes sign [37,39,41]. Our study in

Section ‘Numerical insights’ boils down to the influence of the

stiffness, by introducing a one parameter family of functions

yd(Y )~y(Y=d).

Scales
The main parameters of the model are the total number of

bacteria M which is conserved, the maximum speed of a single

bacterium c~ maxfDvD; v [ Vg, and the mean turning frequency

l0~y0cd (where d denotes the dimension of space according to

our discussion above). The main unknown is the speed of the

traveling pulse, denoted by s. We rescale the kinetic model (12)

into a nondimensional form as follows:

t~~tt�tt, x~~xx�xx, v~~vvc, V~c ~VV , T~~TT y0:

We aim at describing traveling pulses in the regime �xx~s�tt.

Experimental evidence show that the bulk velocity s is much lower

than the speed of a single bacterium c. This motivates to introduce

the ratio ~s=c. According to experimental measurements, we

have &0:1. The kinetic equation writes:

Figure 6. Relative tumbling frequencies (at the mesoscopic
scale) obtained from the numerical experiment described in
Fig. 3: the tumbling probability is higher when moving to the
left (upper red line) at the back of the pulse, whereas the
tumbling probability when moving to the right is lower (lower
green line), resulting in a net ux towards the right, as the pulse
travels (see Fig. 3). Notice that these two curves are not symmetric
w.r.t. to the basal rate 1, but the symmetry defect is of lower order. The
peak location is also shown for the sake of completeness (blue line).
doi:10.1371/journal.pcbi.1000890.g006
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L~tt
~ff z~vv:+~xx

~ff ~
l0�xx

c

ð
~vv0[ ~VV

~yy L~tt
~SSz~vv0:+~xx

~SS
� �

~ff (~tt,~xx,~vv0)d~vv0
�

{j ~VV j~yy L~tt
~SSz~vv:+~xx

~SS
� �

~ff (~tt,~xx,~vv)
o

,

ð14Þ

where ~yy(z)~y(cz=�xx). Following the experimental setting (see

Introduction, Fig. 1 and Fig. 2) and the biological knowledge [4],

we choose the scales �xx&200mm, l0&1s{1, and c~20mm:s{1.

Hence l0�xx=c&10. Therefore we rewrite this ratio as:

l0�xx

c
~

m
,

where the nondimensional coefficient m is of order 1.

Drift-diffusion limit of kinetic models
To perform a drift-diffusion limit when ?0 (cf. [9,27,28,32],

and [29,31] for other scaling limits, e.g. hyperbolic), we shall

assume that the variations of y around its meanvalue y0 are of

amplitude e at most. It writes in the nondimensional version as

follows: y(Y )~1z w(Y ). Hence the chemotactic contribution is

a perturbation of order e of a unbiased process which is constant in

our case because the turning kernel does not depend on the

posterior velocity and the first order contribution is required to be

symmetric with respect to (v’,v). This hypothesis is in agreement

with early biological measurements. It is also relevant from the

mathematical viewpoint as we are looking for a traveling pulse

regime where the speed of the expected pulse is much slower than

the speed of a single individual. This argues in favour of a

parabolic scaling as performed here.

The resulting macroscopic equation writes as follows, with x the

position along the channel

LtrzLx {DrLxrzru½S�
� �

~0: ð15Þ

Unlike the classical Keller-Segel model (used for instance by

Salman et al. [25]), singularities cannot form (excessively

populated aggregates) with the chemotactic flux u½S� given in

(3). This is because the latter remains uniformly bounded (see also

Mittal et al. [38] where clusters emerge which are plateaus and thus

not as singular as described for KS system in a mathematical

sense).

We explain in the Text S1 how to derive the parabolic equation

from the nondimensional kinetic equation (14). We arrive to

equation (15) where the bacterial diffusion coefficient and the

chemotactic flux are explicitely given by

Dr~
1

4m

ð
v[½{1,1�

DvD2dv, u½S�~{

ð
v[½{1,1�

vw LtSzvLxSð Þ dv

2
:ð16Þ

In the limiting case where the internal response function w is

bivaluated: w(Y )~w01fYv0g{w01fYw0g, the flux rewrites simply

as

u½S�~ w0

2
1{

LtS

LxS

� �2
 !

z

sign(LxS):

For the sake of comparison, we highlight the corresponding

expressions which have been obtained by Dolak and Schmeiser. In

[31] authors perform a hyperbolic scaling limit leading to the

following chemotactic equation for the density of bacteria

Ltrz+: { D+rzrUSð Þ~0,

where D is an anisotropic diffusion tensor and the chemotactic flux

is given by

US~
1

A

ð
v[V

v1

y(LtSzv1+SD)
dv

� �
+S

D+SD
,

for some renormalizing factor A. The two approaches do not differ

that much at first glance (in particular when y is bivaluated).

Notice however that the ‘‘small’’ e parameter does not appear at

the same location: in front of the diffusion coefficient in the

hyperbolic limit and inside the chemotactic flux in the parabolic

limit.

Parameter estimation
The macroscopic observable quantities are: the shape of the

profile, namely the decay rates l{w0 and lzv0, and the pulse

speed s. On the other hand, there are three parameters which we

were unable to retrieve from the literature: the chemical

degradation rate a and the effective chemotaxis speeds xS and

xN (although [25] indicates a~5|10{3s{1 without reference).

We deduce from the three constitutive relations (7), (8), the

following formulas:

DSa~s2 {lzl{

(l{zlz)2
,

xS~Dr
l{{lz

2
,

xN~Dr
l{zlz

2
zs:

We get from experimental measurements the following values for

the observable quantities: l{~34 cm{1, lz~13 cm{1 and

s~1:8|10{4 cm:s{1.

Numerical simulations
System (2) is solved using the MATLAB software. The drift-

diffusion equation is discretized on a regular grid following a semi-

implicit finite-difference scheme. The initial conditions are as

follows: a decreasing exponential function centered on the left side

of the channel for the cell density, no chemical signal, and a

constant level of nutriment N0. The length of the computational

channel is 1:6 cm.

Supporting Information

Text S1 The Text S1 consists in three parts. First, we provide

analytical details yielding Formulae (8) and (9) in section

‘‘Results’’. Second, we perform the linear stability analysis referred

to in section ‘‘Results’’. Last, we perform the drift-diffusion limit

which yields to equations (15)–(16) in Materials and Methods.

Found at: doi:10.1371/journal.pcbi.1000890.s001 (0.07 MB

PDF)
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