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Abstract

Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and
their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma
oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory
response in the primary visual cortex is significantly modulated by the resonance between ‘‘spontaneous’’ and ‘‘stimulus-driven’’
oscillations. This gamma resonance can be precisely controlled by the synaptic plasticity of thalamocortical connections, and cortical
response is regulated differentially according to the resonance condition. The mechanism produces a selective synchronization
between the afferent and downstream neural population. Our simulation results explain experimental observations such as
stimulus-dependent synchronization between the thalamus and the cortex at different oscillation frequencies. The model generally
shows how sensory information can be selectively routed depending on its frequency components.
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Introduction

Synchronous oscillations [1–3] in neural networks are thought to

be important to sensory and cognitive functions [4,5]. In particular,

gamma band oscillations (30,70Hz) have been observed in various

neural circuits [6,7], and their role has been intensively studied

[8–11]. Gamma oscillations synchronize the response of neural

populations [12], selectively amplify local sensory signals [13],

enhance signal transmission by reducing noise [14], and regulate

information processing by phase-dependent gating [15]. However,

little is known about the mechanism by which the nervous system

controls or takes advantage of these gamma oscillation effects. Here

we suggest that sensory response can be precisely controlled by the

synaptic plasticity of a neural circuit, through the dynamic

modulation of spontaneous gamma oscillations. Using a model

neural network of the primary visual cortex (V1), we show that (i) the

resonance between spontaneous and stimulus-driven oscillations

regulates sensory responses and synchrony in a neural population;

(ii) the synaptic plasticity of thalamocortical neurons modulates the

frequency of spontaneous oscillation in V1; and (iii) this change of

spontaneous oscillation regulates gamma resonance, thus control-

ling the afferent-downstream synchrony. We found that this

synaptic modulation can either facilitate or depress the response

of the network to stimuli, by changing gamma resonance conditions.

Our results suggest that the brain can readily control its synchrony

condition for the proper processing of sensory information.

Results

Gamma oscillations in model neural network
We performed our simulations with a model cortical network of

excitatory (E) and inhibitory (I) neurons (1mm by 1mm, consisting

of 3341 neurons) adapted from our previous study [13] (Fig. 1A,

top). When feedforward input spikes (generated by random

Poisson process) were injected into the model visual cortex

network, neurons generated spontaneous gamma rhythms in their

firing pattern (Fig. 1B and C). The spontaneous oscillations were

detectable almost whenever the connections between E and I cells

were allowed and the input spike rate was above a certain level

(,10spikes/s) that can drive a measurable amount of cortical

responses (for detailed parameter tests, see ref. 13). As we reported

previously, the frequency of oscillation was modulated by changes

in the thalamocortical synaptic strength parameter that controls

the excitatory postsynaptic conductance (EPSC) in cortical

neurons induced by a feedforward input spike. In the first part

of this study, we fixed this thalamocortical synaptic strength and

examined the effect of temporal changes in input spike rate only.

Subsequently we studied how variations in thalamocorical synaptic

strength affect cortical responses.

Spontaneous and stimulus-driven oscillations
We first controlled input firing rate patterns to examine how

gamma oscillation is regulated when feedforward input spike rate

varies temporally (Fig. 1A, bottom). For static input, mean input

firing rate was set to 40spike/s, and the input spike correlogram

indicated no temporal correlation between input spikes (Fig. 1B).

Responding to this input, cortical neurons generated an oscillatory

output spikes pattern. The oscillation power spectrum showed one

strong spontaneous gamma peak at fsout = 38Hz; inter-spike interval

(ISI) distribution showed that most I cells fired in every gamma cycle,

while E cells fired, on average, less than once in a cycle (Fig. 1D). In

addition, I cells were synchronized more sharply than E cells in each

gamma cycle, indicating that this gamma rhythm was induced by
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fast-spiking I cells. For oscillating input, in contrast, we drove the

network with sinusoidally oscillating input (mean firing rate 40

spikes/s, mean oscillation amplitude 620 spikes/s), at the same

frequency as the spontaneous gamma oscillation frequency for static

input (fsout). In this instance, output oscillation frequency was the

same as input frequency (Fig. 1E), but the correlation of output spikes

became stronger, and the output rate pattern was phase-locked to

input oscillation cycle (Fig. 1C). The ISI distributions of E and I cells

were also sharpened, showing that the ‘‘gating’’ or ‘‘temporal

sharpening’’ effect [15] of sensory responses is enhanced by coherent

input oscillations [16,17] (Fig. 1E). We refer to this modulation as

‘‘resonance’’ between spontaneous and stimulus-driven oscillations.

Stimulus-driven oscillations: Input frequency variation
To further examine the resonance condition between sponta-

neous and driven oscillations, we injected various frequencies of

oscillating inputs to the network. Input frequency was varied

within the range fin = 25,55Hz, similar to the boundary of

spontaneous oscillation frequency observed in our previous study

[13]. When fin was markedly different from the spontaneous

oscillation frequency (fsout = 38Hz) for static input, the network

displayed two separate peaks in its spectrum (Fig. 2A, red and blue

arrows), showing that two different types of oscillations coexist in

the cortical response. The spontaneous oscillation peak (blue

arrows) remained the same (38Hz) but became weaker than in the

previous cases (Fig. 1D, E). The driven oscillation peak (red

arrows) appeared at fin, confirming that this oscillation was driven

by the input spikes pattern. Thus, in this case, spontaneous and

driven oscillations existed independently. In contrast, when fin was

relatively close but not identical to fsout, the spontaneous oscillation

peak at fsout disappeared, and the power spectrum displayed only

one peak near fin (Fig. 2A, purple arrows), demonstrating the
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Figure 1. Synchronized population response to static and oscillating inputs. (A) The model visual cortex network. Each excitatory (E) and
inhibitory (I) cell receives feedforward inputs from the thalamus, and cortical inputs from the other E and I cells within the range of lateral
connections. (B) Population firing rates and spike correlograms for static input and (C) for sinusoidally oscillating input at 38Hz. Correlograms were
normalized so that the uncorrelated state is set to unity. (D) Oscillation power spectrum of population firing rate and inter-spike interval (ISI)
distribution for static input and (E) for oscillating input. Note that ISI distribution is sharper in (E) than (D), even though gamma oscillation frequencies
are the same. For oscillation power spectrum, only the E cells result is displayed, because E and I populations showed identical peak distributions.
doi:10.1371/journal.pcbi.1000927.g001

Author Summary

In the nervous system, a network of neurons shows
interesting population activities. One example is a various
frequency of synchronized oscillations which are thought
to be important to sensory functions. In particular, it has
been reported that gamma frequency rhythms (30,70Hz)
in the cortex can significantly regulate the responses to
visual stimuli. In this study, we further investigate the
mechanism by which the nervous system can control the
effect of gamma oscillation on the modulation of neural
responses. We found that the sensory response of the
visual cortex strongly depends on the extent of synchro-
nization between external stimulus rhythms and sponta-
neous gamma oscillations in the cortical network. Further-
more, the simulation results show that the plasticity of the
neural circuit can modulate the frequency of spontaneous
gamma oscillations, thus readily controlling neural popu-
lation responsiveness. This finding is related to the
question of how the brain efficiently interprets external
input signals under various conditions, using its internal
neural connectivity. Our study provides insight into this
question.

Gamma Oscillation Resonance
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resonance between spontaneous and driven oscillations. In

addition, ISI distributions became sharper than in ‘‘irresonant’’

cases (Fig. 2B). Therefore, when fin is close enough to fsout,

spontaneous oscillation frequency is adjusted close to driven

oscillation frequency, and the resonance between two oscillations

strengthens cortical gamma rhythm, which enhances the synchro-

nization of cortical spike activities.

Responsiveness modulation by frequency-dependent
gamma resonances

Next, we examined how cortical responsiveness is modulated by

gamma oscillation resonance. We varied input frequencies

(fin = 25,55Hz) for different input oscillation strengths. The

oscillation amplitude of the input spike rate was set to 610

spikes/s for weak oscillation and 620 spikes/s for strong

oscillation; mean input rate was 40 spikes/s for all static and

oscillating inputs. We measured the output spike probability to a

single input spike as the response probability [13] of the cortical

neurons. When fin was close to spontaneous oscillation frequency

(fsout = 38Hz), where the gamma oscillation resonance was strong,

response probability was significantly enhanced (Fig. 2C), and

response delay was decreased (Fig. 2D). Response modulations

were larger for the stronger oscillation. We further investigated

whether these modulations might have resulted from temporal

Figure 2. Population response modulation by the resonance between spontaneous and driven gamma oscillations. (A) Cortical output
oscillation power spectrum and (B) ISI distributions for sinusoidally oscillating inputs. Note that the resonance between spontaneous and driven
oscillations occurs only when input frequency (fin) is close to spontaneous gamma frequency (fs

out). (C) Response probability and (D) Response delay to
all input spikes of various oscillation frequencies. (E) Response probability and (F) Response delay to temporally ‘‘unpaired’’ input spikes. (G) Relative
input timing (phase) in a gamma oscillation cycle. (H) Variation of input spike efficacy by input phase. The efficacy of unpaired input spikes was defined
as the relative probability to generate cortical spike, and was measured as a function of input phase. The efficacy was normalized so that the average of
each set was set to unity. (I) Maximum input spike efficacy in (H). This shows the network’s ability to ‘‘gate’’ or synchronize its output signals.
doi:10.1371/journal.pcbi.1000927.g002

Gamma Oscillation Resonance

PLoS Computational Biology | www.ploscompbiol.org 3 September 2010 | Volume 6 | Issue 9 | e1000927



correlation changes in the input spike pattern [18], simply due to

input frequency variation. In order to remove any influence from

input correlation, we sampled temporally ‘‘unpaired’’ input spikes

and again measured cortical responses to them. Input spikes were

chosen only if there were no other input spikes within 20ms before

and after in the same neuron. Even in this case, the response

probability was noticeably higher around the gamma resonance

area (Fig. 2E), confirming a significant change in cortical

responsiveness. However, response delay did not change as much

as in the previous result (Fig. 2F), suggesting that this value

strongly depends on the temporal correlation of input spikes.

We also examined the dependence of response modulation on

the oscillation phase in each cycle. A normalized efficacy of each

unpaired input spike was defined as a relative probability to

generate a cortical spike, and was measured as a function of input

spike phase (Fig. 2G) in each gamma cycle. In Fig. 2H, the input

spike efficacy plot shows a ‘‘pass’’ band before 0u phase with a

peak value around 290u, and a ‘‘block’’ band after 0u phase,

which is known as the mechanism of temporal regulation (or

selective gating) of sensory signals in gamma oscillation [15]. In

other words, input spikes within the pass band phase have a much

higher probability of generating cortical spikes than those within

the block band. We found that the pass band was sharpened by

gamma resonance. During resonance, the pass band amplitude

grew higher and the width narrowed (Fig. 2H, fin = 35Hz and

40Hz). The increase of the maximum in the normalized efficacy

means that the pass band is sharpened by gamma resonance

(Fig. 2I). As a result, the network’s ability to synchronize cortical

responses was enhanced by gamma resonance. This result suggests

that sensory responses can be manipulated by controlling gamma

resonance.

Spontaneous gamma oscillation frequency modulation
by synaptic plasticity

It was previously reported that the frequency of gamma oscillation

can be rapidly modulated by instantaneous changes in synaptic

excitation-inhibition balance [13,19,20]. Based on these findings, we

hypothesized that the synaptic plasticity of thalamocortical connec-

tions can control the frequency of spontaneous cortical gamma

oscillation, and therefore regulate sensory responses. To test this idea,

we first examined how the frequency of spontaneous cortical

oscillation was regulated by the change of thalamocortical synaptic

strength. In our simulations, we controlled the amplitude (gmax) of

EPSC driven by each input spike, as a simulation of the synaptic

plasticity of LGN-V1 connections (Fig. 3A). We confirmed that the

frequency of spontaneous cortical gamma oscillation (fsout) increased

as gmax increased (Fig. 3B), a conclusion that was qualitatively

observed in our previous simulations [13]. This frequency variation

can be explained by the modulation of synaptic excitation-inhibition

[19,20] and response delay [13]. In our simulations, fsout varied from

37Hz to 61Hz (Fig. 3C).

Resonance modulation by synaptic plasticity
Based on these results, we assumed that selective response

regulation (depending on input pattern) can be achieved by synaptic

plasticity through the control of gamma oscillation resonance,

because the resonance frequency of the system is shifted by the

changes in gmax. To further test this assumption, we varied gmax

under different input frequencies (fin = 40, 45, 50Hz) and measured

the response probability of the network (Fig. 4A). As we expected,

response probability increased near the gamma resonance region,

but the resonance point changed noticeably depending on input

frequency. For example, when fin = 40Hz, the response enhance-

ment was largest at gmax = 40mS/cm2, where gmax corresponds to

spontaneous oscillation frequency fsout,40Hz (Fig. 3C). When

fin = 50Hz, the resonance point shifted to gmax = 60mS/cm2, where

fsout is close to 50Hz. The response delay of cortical neurons was

similarly modulated (Fig. 4B). Gamma resonance thus occurs at

different points, depending on input frequency, fin, and the

amplitude of EPSC, gmax. In other words, when gmax is changed

through synaptic plasticity, gamma oscillation regulates the cortical

network response selectively, depending on fin.

Discussion

We have shown that sensory responses can be facilitated or

depressed, depending on the resonance condition between

Figure 3. Control of gamma oscillation by synaptic plasticity.
(A) The amplitude (gmax) of excitatory postsynaptic conductance (EPSC)
by thalamocortical input spikes is controlled as a simulation of synaptic
plasticity. (B) Spontaneous synchrony in the spike firings of E and I cells
for various gmax. (C) Spontaneous gamma oscillation frequency
modulation by synaptic plasticity.
doi:10.1371/journal.pcbi.1000927.g003
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spontaneous and driven oscillations in the cortex. Here we discuss

previous experimental observations that are relevant to our

findings. We demonstrate that these experimental results can be

explained by our model. We also discuss possible mechanisms by

which thalamocortical synaptic plasticity can be controlled by the

variation of visual stimuli, which enables the proper modulation of

the gamma oscillation resonance and the afferent-downstream

synchronization.

Synchronization between the feedforward and cortical
oscillation

Synchronized oscillations of various frequencies are observed in

the visual pathway [21–23] and are thought to convey information

about the visual scene [5,24]. Previously, Castelo-Branco and

colleagues reported a strong correlation of oscillatory responses

between the retina, LGN, and the visual cortex in an anesthetized

cat [25]. Their observations are in good agreement with our

model.

First, cortical oscillation frequencies are clustered as two distinct

bands (low-frequency 30–60Hz, high-frequency 60–120Hz).

These low- and high- frequency oscillations can coexist in the

cortex. High-frequency oscillations in the cortex are shown to be

the result of feedforward synchronization with the retina and LGN

activity whose oscillation frequencies are in this range. Low-

frequency oscillations are shown to be spontaneous gamma

oscillations in the cortical circuit. In our model simulation, cortical

spikes could be driven by feedforward oscillations of various

frequencies, from above spontaneous gamma frequency to over

120Hz (not shown here). Therefore, as shown in our results,

cortical responses can be synchronized by two different activities:

spontaneous and driven oscillations.

Second, cortical oscillation frequency strongly depends on

stimulus condition. For stationary stimuli, cortical neurons are

synchronized with high frequency (60–120 Hz) feedforward

oscillations. For dynamic stimuli, slow cortical oscillations (30–

60Hz) dominate, and subcortical high frequency oscillations

become transient. In our model, these two cases are different

‘‘resonance’’ modes; the mode can switch, depending on

whether the resonant point is closer to low-frequency cortical

gamma oscillation or high-frequency feedforward oscillation.

Since the temporal correlation of a feedforward spike train can

vary according to stimulus condition, thalmocortical synaptic

strength can be modified by activity-dependent short-term

plasticity [26]. If this modification arises differently for two

stimuli types, the observed variation of cortical oscillation

frequency is readily explained. The strengthened synapses

increase spontaneous cortical gamma oscillation frequency,

resulting in cortical synchronization with the high-frequency

feedforward oscillations. On the other hand, if thalamocortical

synapses don’t change, low-frequency spontaneous gamma

oscillations dominate, and the feedforward oscillation becomes

transient. As a result of this stimulus-specific synchronization

mechanism, cortical activity can be tuned to various oscillation

frequencies.

Figure 4. Gamma oscillation resonance tuning by synaptic plasticity. (A) Response probability modulation by frequency-dependent gamma
resonance. Response enhancement was defined as the difference between the responses to static input and to other inputs. Note that the peak value
of modulation (resonance point) varies by input frequency. (B) Response delay modulation. Negative values in response delay decrement mean
increased delay.
doi:10.1371/journal.pcbi.1000927.g004
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When cortical spontaneous oscillations are strong, LGN

activity can be synchronized to cortical oscillations with a

retarded phase. Because this situation requires a corticotha-

lamic feedback loop [25], it cannot be fully described by our

current model. Generally, this feedback is assumed as a

mechanism of population activity normalization or gain control

[27]. In our model, the addition of a corticothalamic feedback

loop could work as another possible controller of thalamocor-

tical synaptic strength. This mechanism will be further studied

in future work.

Another relevant example is that information in the hippocam-

pus is differentially routed, depending on its fast and slow gamma

frequency components [28]. This might be a slightly different

version of the above mechanism, and we suggest that our gamma

resonance model can be a promising candidate for this type of

input-specific neuronal synchronization.

Dynamic resonance tuning by short-term plasticity
Short-term synaptic plasticity [26,29] has been observed at

various places in the nervous system and is thought to be

important to the precise tuning of sensory responses depending on

stimuli conditions [30,31]. At the thalamocortical synapses of the

somatosensory system, plasticity usually appears as a form of short-

term depression [32–34]. Similar thalamocortical synaptic depres-

sion is also found in the visual system of the cat in vitro [35,36] and

in vivo [37]. However, the effect of thalamocortical synaptic

plasticity on visual cortex response is still open to question, because

it seems to work both ways: the cortical response can be either

depressed or facilitated [18,38,39].

From the observations above, it seems possible that stimuli-

dependent short-term plasticity at the thalamocortical synapse

controls the resonance between feedforward and cortical

activities. Rapid changes in synaptic excitation can modulate

the frequency and amplitude of gamma oscillations of a neural

network [19]. In our simulations, spontaneous gamma frequency

varied from 37Hz to 61Hz, which is comparable to measured

gamma peak frequency variation in humans [40] caused by

excitation-inhibition balance modulation. Since oscillation fre-

quency changes very rapidly in this way, cortical activity can be

modulated cycle-by-cycle in gamma rhythms. Thus it can be an

effective method of regulating dynamic sensory response to

rapidly varying stimuli. In addition, the gamma modulation effect

can be spatially localized fairly tightly: a small neural population

can be tuned selectively by well-localized feedforward inputs [13].

In this way, a neural network can suitably control its sensory

response to complicated (spatially and temporally) visual stimuli

patterns.

Oscillation resonance and long-term plasticity
Although there is no direct experimental evidence yet, it is also

possible to relate our model to developing visual systems in young

animals, as a tuning mechanism of thalamocortical and cortico-

thalamic synaptic strength. In this case, long-term plasticity [41]

becomes important. Long-term potentiation and depression (LTP

and LTD) are observed at thalamocortical synapses in the

developing somatosensory cortex [42] and visual cortex [43] and

are thought to contribute to the stimulus-dependent enhancement

of sensory responses. As with the short-term plasticity described

above, activity-dependent synaptic plasticity can differentially tune

the thalamocortical circuit, depending on the stimulus condition.

As a result, the resonance between feedforward and cortical

oscillations is modified accordingly, which may contribute to the

experience-dependent development of the sensory system. For

example, if thalamocortical EPSC varies differentially depending

on the visual stimulus pattern by spike timing dependent plasticity

(STDP) [44,45], this will change spontaneous cortical oscillation

frequency. LGN-cortex resonance, accordingly, will alternate

between two modes: ‘‘resonance’’ and ‘‘irresonance.’’ An exper-

imental observation that cortical plasticity can be driven by

different thalamic activity patterns [46] also suggests the possibility

of such a resonance control mechanism. Recently it was shown

that a single neuron equipped with STDP can robustly detect

input spike patterns [47], and that this downstream learning is

noticeably facilitated by oscillatory drive with ‘‘phase-of-firing

coding (PoFC).’’ Considering that synchronized oscillations are

commonly observed in the visual pathway [21–23], thalamocor-

tical synapses might be properly learned by oscillations in an

earlier pathway, or by activities in the corticothalamic feedback

loop.

In conclusion, we demonstrate that the resonance between

spontaneous and driven gamma oscillations can significantly

regulate sensory responses in a neural population. The synaptic

plasticity of thalamocortical neurons can readily control gamma

resonance by varying the frequency of spontaneous oscillation, and

therefore can selectively enhance or degrade the network’s

processing of information. Our results suggest a general model

of how the nervous system can make use of its internal plasticity for

the effective control of sensory responses under various conditions.

The simplicity and the wide applicability of our model make it a

serious candidate for further experimental tests.

Methods

Network model
A two-dimensional layer model of the cortex neural network

was used in our simulations, slightly adapted from our previous

work [13]. The network size is 1mm by 1mm, including 3341

neurons. The network consists of simplified E (75%) and I (25%)

model neurons with Hodgkin-Huxley type Na+ and K+ ion

channels and synaptic conductance channels.

The membrane potential of an individual neuron, v, is deter-

mined by C(dv=dt)~{gL(v{VL){GNa(v{VNa){GK (v{
VK ){gsE(t)(v{VE){gsI (t)(v{VI ){ginput(t)(v{VE), where s
is the type of neuron (E or I), C is the membrane capacitance, and

gL is the leakage conductance. gsE and gsI are the synaptic

conductances, providing the cortical E and I inputs. We used the

commonly accepted values for physiological parameters

(C = 1026 Fcm22, VL = 270mV, VNa = 55mV, VK = 280mV,

VE = 0mV, VI = 280mV and gL = 50*1026 Scm22). The Hodg-

kin-Huxley ion channel conductance GNa and GK takes the

generally known form [48,49] as in our previous work [13].

We have assumed spatially isotropic local cortico-cortical connec-

tions. A neuron’s synaptic conductance is given by gsE(t)~
WsE

P

r

Dr
sE

P

t0
GE(t{t0), gsI (t)~WsI

P

r

Dr
sI

P

t0
GI (t{t0), where

t0s are input spike timings. The spatial connection factor takes the

form Dr
ss0~ exp ({r=ls0 ), where r is the cortical distance, and s and

s9 are the type of connected neurons (E or I). The spatial connection

decay constants were set as lE = 200mm, lI = 100mm. The excitatory

and inhibitory postsynaptic conductance fluctuations were set as

Gs(t)~½exp ({t=t1){ exp ({t=t2)�=(t1{t2). The time constants

(t1,t2) in milliseconds were set as (3, 1) for s= E and (7, 1) for s= I.

The contribution of each cortical interaction was controlled by

weighting factor Wss9 for the type of neuron pair (s, s9).

The EPSC driven by thalamocortical feedforward input spikes

was given by ginput(t)~gmax

P

t0
GE(t{t0). gmax sets the maximum

fluctuation amplitude and was varied within 30,70 mS/cm2 as a

simulation of synaptic plasticity.

Gamma Oscillation Resonance
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Simulation and data analysis
Our simulations were performed using the GENESIS 2.3

environment (Text S1) [49]. Simulation outputs were analyzed

using Matlab scripts.

Supporting Information

Text S1 GENESIS simulator configuration: A two-dimensional

model neural network.

Found at: doi:10.1371/journal.pcbi.1000927.s001 (0.11 MB PDF)
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