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Abstract

Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in
particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might
extract this information is unclear and the potential computational advantages are unknown. The computational difficulty
of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly
dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking
nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that
depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the
activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited
this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related
transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth
and elevation (including front/back discrimination) in a known acoustic environment. We found that multiple
representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could
be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative
spike timing to extract spatial information about sources independently of the source signal.
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Introduction

Animals must be able to rapidly estimate the location of the

source of an unexpected sound, for example to escape a predator.

This is a challenging task because the acoustic signals at the two

ears vary with both the source signal and the acoustic

environment, and information about source location must be

extracted independently of other causes of variability. Psycho-

physical studies have shown that source localization relies on a

variety of acoustic cues such as interaural time and level

differences (ITDs and ILDs) and spectral cues [1]. At a neuronal

level, spike timing has been shown to convey information about

auditory stimuli [2,3], and in particular about source location

[4,5]. Although it is well accepted that ITDs can be extracted from

phase-locked responses, it is unknown how information beyond

this could be extracted from the spike timing of neurons. In

addition, the potential computational advantages of a spike timing

code in this task are unclear.

The sound S produced by a source propagates to the ears and

is transformed by the presence of the head, body and pinnae,

and possibly other aspects of the acoustic environment (such as

reflections). It results in two linearly filtered signals FL*S and

FR*S (linear convolution) at the two ears, where the filtering

depends on the relative position of the head and source. Because

the two signals are obtained from the same source signal, the

binaural stimulus has a particular structure, which is indicative

of source location. When these signals are transformed into spike

trains, we expect that this structure is transformed into

synchrony patterns. Therefore, we examined the synchrony

patterns induced by spatialized sounds in neuron models

consisting of spectro-temporal filtering and a spiking nonlinear-

ity, where binaural signals were obtained using a variety of

sound sources filtered through measured human head-related

transfer functions (HRTFs). We then complemented the model

with postsynaptic neurons responding to both sides, so that

synchrony patterns induced by binaural structure resulted in the

activation of location-specific assemblies of neurons. The model

was able to precisely encode the source location in the activation

of a neural assembly, in a way that was independent of the source

signal.

Several influential models have addressed the mechanisms of

sound localization at an abstract level [6–9]. Considerable

progress has also been realized in understanding the physiological

mechanisms of cue extraction, in particular neural mechanisms

underlying ITD sensitivity [10–14]. These studies mostly used

simplified binaural stimuli such as tones or noise bursts with

artificially induced ITDs. Several purely computational models

[15–17] address the full problem of sound localization in a virtual

acoustic environment with realistic sounds, although these do not

suggest how neurons might perform this task. Here we propose a

binaural neural model that performs the full localization task in a

more realistic situation, based on the idea that synchrony reflects

structural properties of stimuli, which in this setting are indicative

of source location.
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Results

Synchrony patterns induced by location-dependent
filtering

Consider a sound source located at azimuth h and elevation Q.

The signal S(t) arrives at the two ears as two linearly filtered signals

SL = HRTFL(h,Q)*S and SR = HRTFR(h,Q)*S (Figure 1, A). Other

aspects of the acoustic environment such as reflections and

distance would also impact the binaural signal, but their effect can

always be expressed with linear filters. In general, the signals at the

two ears are filtered versions of the source signal, where the filters

are determined by the relative positions of the head and source in

the acoustic environment. What are the correlates of this filtering

at neural level? Let us consider a neuron A which responds to

sounds from the left ear. A simplified way to model its response is

to consider that the sound is transformed into spike trains after

filtering through the neuron’s spectro-temporal receptive field NA

(Figure 1, B–C), that is, the filtered signal NA*SL = NA*

HRTFL(h,Q)*S is followed by a spiking nonlinearity (Figure 1,

D–E). Since we are interested in precise spike timing, we consider

that the spiking nonlinearity is represented by a neuron model, e.g.

integrate-and-fire or more complex models, rather than by a

Poisson process. The response of a neuron B to sounds from the

right ear would similarly be modeled as spike trains produced from

the signal NB*SR = NB* HRTFR(h,Q)*S.

None of these individual neurons expresses spatial tuning, but

we now consider the pair of neurons A and B and ask ourselves

when these two neurons fire in synchrony. More precisely, we

define the synchrony receptive field of this neuron pair as the set of

stimuli that induce synchronous firing in these neurons. Synchrony

occurs when the input signals to the two neurons match, that is,

when the following identity is met: NA* HRTFL(h,Q) = NB*

HRTFR(h,Q) (Figure 1, left column). In the left column of

Figure 1, the synchrony receptive fields of pairs of monaural

neurons contain the presented location, while in the right column

they do not. This identity expresses the condition that the

combinations of acoustical and neural filtering match on both

sides. Thus, the synchrony field is defined independently of the

source signal S, as long as the signal contains energy in the

neurons’ receptive fields. It is a set of pairs of acoustical filters

(HRTFL, HRTFR), which defines a spatial field: synchrony

between the two neurons signals spatial information independently

of the source signal. For example, if neuron A has receptive field

NA = HRTFR(h*,Q*) and neuron B has receptive field

NB = HRTFL(h*,Q*), then the synchrony field of the pair contains

the location (h*,Q*). This example corresponds to a recent signal

processing method designed by MacDonald [16], which was found

to be very accurate in estimating the azimuth of a sound source.

The same holds true if the receptive fields are band-pass filtered in

the same frequency band, i.e., NA = K*HRTFR(h*,Q*) and

NB = K*HRTFL(h*,Q*) (Figure 1, D–E). Thus, any given location

will elicit a specific pattern of synchrony in a way that is

independent of the signal S. Now consider a postsynaptic neuron

that receives inputs from these two neurons A and B: if it is

sensitive to the relative timing of its inputs then it will fire

preferentially when the two inputs are synchronous, that is when

the stimulus is in the synchrony receptive field of its inputs

(Figure 1, F–G).

To better understand how the neural pattern of synchrony

encodes source location, consider that each signal or filter in the

processing chain is described by a set of columns of various

heights, in the same way as a graphic equaliser (Figure 2): each

column represents the level or phase of an individual frequency

component. In Figure 2, signals are in pink, acoustical filters

(HRTFs) in green and neural filters (receptive fields) in blue.

Combining two filters (or filtering a signal) corresponds to adding

each column of the first filter on top on the corresponding column

of the second filter. The first two columns illustrate the case when

the source location X is not in the synchrony receptive field of the

neuron pair (A, B): when the signal is combined with the left

HRTF and with the receptive field of neuron A, it does not match

the combined signal on the other side (combination of signal, right

HRTF and receptive field of neuron B). Thus neurons A and B do

not fire in synchrony. On the other hand (next two columns), when

location Y is presented, the two signals match and the neurons fire

in synchrony, which can make a postsynaptic binaural neuron fire.

From this illustration, it clearly appears that the two signals would

also match if the signal S (pink cubes) were different, and that the

synchrony receptive field contains more than a single pair of

HRTFs – therefore higher spatial selectivity requires several

different neuron pairs. The next two columns illustrate the

synchrony receptive field of two other neurons C and D, which

contains location X but not Y. Thus location X induces synchrony

between A and B, while location Y induces synchrony between C

and D. Therefore the pattern of synchrony indicates the location

of the sound source, independently of the source signal S. This

idea of binaural matching was recently implemented in a signal

processing method to estimate the azimuth of a sound source [16],

with excellent performance. In that algorithm, the set of ‘‘neural

filters’’ corresponds to all possible HRTFs (no band-pass filtering)

and the ‘‘synchrony pattern’’ is reduced to a single neuron pair,

where synchrony and coincidence detection are replaced by

maximum correlation. On the other hand, if neural filters consist

only of gains and delays, then the binaural matching would

correspond to the Equalisation-Cancellation model [18–20],

where synchrony and coincidence detection are replaced by

cancellation.

A given source location, then, will activate a specific assembly of

postsynaptic neurons – all those neurons for which the synchrony

field of their inputs contains that location – so that source locations

are mapped to the activation of (possibly overlapping) neural

assemblies (Figure 3A). To test this principle, we simulated a virtual

acoustic environment using measured HRTFs and implemented a

spiking network model which responded to the binaural signals as

Author Summary

There is growing evidence that the temporal coordination
of spikes is important for neural computation, especially in
auditory perception. Yet it is unclear what computational
advantage it might provide, if any. We investigated this
issue in the context of a difficult auditory task which must
be performed quickly by an animal to escape a predator:
locating the source of a sound independently of the
source signal. Using models, we found that when neurons
encode auditory stimuli in spike trains, the location-
specific structure of binaural signals is transformed into
location-specific synchrony patterns. These patterns are
then mapped to the activation of specific neural assem-
blies. We designed a simple neural network model based
on this principle which was able to estimate both the
azimuth and elevation of unknown sounds in a realistic
virtual acoustic environment. The relationship between
binaural cues and source location could be learned
through a supervised Hebbian procedure. The model
demonstrates the computational relevance of relative
spike timing in a difficult task where spatial information
must be extracted independent of other dimensions of the
stimuli.

Sound Localization with Spike Timing

PLoS Computational Biology | www.ploscompbiol.org 2 November 2010 | Volume 6 | Issue 11 | e1000993



described above (Figure 3). A variety of short sounds (noise bursts,

musical instruments, voices, tones; Figure 4) was filtered through

pairs of human HRTFs to reproduce the natural acoustical filtering

of sounds due to the presence of the head, body and pinnae. Neural

filtering was modeled as band-pass filtering followed by some

additional linear transformations (Figure 3B). These were either all

the transformations that we may possibly need to represent all

locations, i.e., the complete set of HRTFs (the ideal model), or only

delays and gains (the approximate model). The ideal model should not

be taken to imply that the auditory system actually implements

HRTF filtering, which would be physiologically unreasonable, but

that the neural receptive fields may correspond to band-pass filtered

HRTFs. Figure 5 shows 12 examples of such neural filters, which

look very similar to gammatone filters, except for slight changes in

their envelopes. Nevertheless, these filters may be too diverse to be

represented in the auditory system, which motivated the approx-

imate model: in narrow frequency bands, filters can be well

approximated by a more restricted set including a range of gains

Figure 1. Synchrony patterns induced by location-dependent filtering. The left hand panels (A, B, D, F) show the signal pathway for a set of
neurons tuned to the presented location of the sound, and the right hand panels (A, C, E, G) show the pathway for neurons not tuned to the
presented location. (A) The sound source S propagates to the left ear (blue) and right ear (green) and is acoustically filtered by location-dependent
HRTFs. (B, C) Signals resulting from filtering through the spectro-temporal receptive fields of two pairs of monaural neurons tuned at 1 kHz. The
source location is in the synchrony receptive field of the first neuron pair (B). (D, E) Spike trains produced after neural filtering, for neurons tuned at
frequencies between 150 Hz and 5 kHz. The signals shown in B and C correspond to the spike trains highlighted in yellow. The source location is in
the synchrony receptive field of each frequency-specific neuron pair in panel D but not in panel E. (F, G) Spike trains from the left and right channels
are reproduced here superimposed. Postsynaptic neurons that receive coincident inputs from their two presynaptic neurons produce spikes (red
patches). The neural assembly in F is tuned to the presented location whereas the assembly in G is not.
doi:10.1371/journal.pcbi.1000993.g001

Sound Localization with Spike Timing
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and delays. The resulting signals were then transformed into spike

trains with noisy spiking models (mostly integrate-and-fire neurons,

with more complex models in one case). Finally, postsynaptic

neurons received inputs from two monaural neurons, and were

modeled in the same way (Figure 3B). For each source location, we

assigned a neural assembly by selecting all the neurons for which the

synchrony field of the inputs contained that location, making one

neuron per frequency channel (Figure 3C,D). The output of the

model was the assigned location of the maximally activated

assembly (Figure 3E), and the goal was to predict the actual

location of the source. The ideal model is conceptually close to a

recent signal processing method designed by MacDonald [16],

while the approximate model resembles the Equalisation-Cancel-

lation model [18–20], although these two techniques are not neuron

models (and the former was only applied on the broadband signal

rather than in multiple frequency bands). We describe their

relationship with our model in more detail in the Discussion.

Estimation results for the ideal model
Figure 6B and C show the activation (total spike count) of all

location-specific neural assemblies in the ideal model for two

particular sound presentations, at locations indicated by black

crosses. In both examples, the assigned location of the maximally

activated assembly (indicated by white crosses) is indeed the actual

source location. Although in these figures we represented model

outputs on a map, this topographical representation is not present

in the model itself. Figure 6D–F shows the activation of three

particular neural assemblies as a function of source location. It

appears that these assemblies are spatially tuned in that they fire

more when the source is at their assigned location. The spatial

receptive fields of these assemblies also reveal ring-like structures:

these correspond to the cones of confusion [1], where the distances

to the two ears are constant, so that interaural cues are very similar

(the rings correspond to circles around the approximate symmetry

axis that goes through the two ears). If the head were perfectly

spherical, there would be no way to distinguish between these

locations, but the model does so thanks to the irregular shape of

the head and to the presence of the body (see also Figure 7).

Quantitatively, for the ideal model with 80 frequency channels,

the average estimation error for white noise was almost zero

degrees for azimuth (Figure 6G) and 1.5 degrees for elevation

(Figure 6H). Other types of sounds did not have as much power in

Figure 2. Relationship between synchrony receptive field and source location. We represent each signal or filter by a set of columns, which
can be interpreted as the level or phase of different frequency components (as in a graphic equalizer). In the first two columns, the sound source
(pink) is acoustically filtered through the pairs of HRTFs corresponding to location X (green), then filtered through the receptive fields of neurons A
and B (blue), and resulting signals are transformed into spike trains (red and blue traces). In this case, the two resulting signals are different and the
spike trains are not synchronous. In the next two columns, the source is presented at location Y, corresponding to a different pair of HRTFs. Here the
resulting signals match, so that the neurons fire in synchrony: location Y is in the synchrony receptive field of neuron pair (A,B). The next 4 columns
show the same processing for locations X and Y but with a different pair of neurons (C,D). In this case, location X is in the synchrony receptive field of
(C,D) but not location Y. When neural filters are themselves HRTFs, this matching corresponds to the maximum correlation in the localization
algorithm described by MacDonald [16]. When neural filters are only phase and gain differences in a single frequency channel, the matching would
correspond to the Equalisation-Cancellation model [18–20].
doi:10.1371/journal.pcbi.1000993.g002
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all frequency bands (Figure 4), and consequently the estimation

error was larger for these sounds, but remained very small for

speech (1 degree azimuth and 3 degrees elevation) and musical

instruments (2 degrees azimuth and 6 degrees elevation), even

though they were not used to build the model. This performance

for previously unknown sounds is the key property we were

expecting to see in the model, as the synchrony patterns are

location-specific and independent of the source signal. The error

was substantially higher for pure tones, particularly for elevation (6

degrees azimuth and 28 degrees elevation, which is close to the

chance level of 36 degrees given the distribution of source

locations). This is not surprising since for high frequencies the ITD

cues are ambiguous due to periodicity, and for low frequencies

ILD cues are very weak, giving only one dimension in the binaural

cues.

Not surprisingly, the model could correctly categorize the sound

as coming from the left or right (100% success rate for all types of

sounds), but it also performed well in more difficult categorization

Figure 3. Overview of the model. (A) The source signal arrives at the two ears after acoustical filtering by HRTFs. The two monaural signals are
transformed along the auditory pathway (decomposition into multiple frequency bands by the cochlea and further neural transformations) and
transformed into spike trains by monaural neurons. These spike trains converge on neurons which fire preferentially when their inputs are coincident.
Location-specific synchrony patterns are thus mapped to the activation of neural assemblies (shown here as (azimuth, elevation) pairs). (B) Detailed
model architecture. Acoustical filtering (R,L) is simulated using measured HRTFs. The resulting signals are filtered by a set of gammatone filters ci with
central frequencies between 150 Hz and 5 kHz, followed by additional transformations (‘‘neural filtering’’ Fj

L/R). Spiking neuron models transform
these filtered signals into spike trains, which converge from each side on a coincidence detector neuron (same neuron model). The neural assembly
corresponding to a particular location is the set of coincidence detector neurons for which the synchrony field of their inputs contains that location
(one pair for each frequency channel). (C) Model response to a sound played at a particular location. Colors represent the firing rate of postsynaptic
neurons, vertically ordered by preferred frequency (the horizontal axis represents a dimension orthonogal to the tonotopical axis). The neural
assembly that encodes the presented location is represented by white circles. (D) Same as in (C), but neurons are ordered by preferred interaural
delay. (E) Total response of all neural assemblies to the same sound presentation, as a function of their assigned location. The most activated
assembly encodes for the presented source location.
doi:10.1371/journal.pcbi.1000993.g003

Sound Localization with Spike Timing
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Figure 4. Cochleograms of test sounds used in simulations: white noise; vowel-consonant-vowel (VCV); instruments; pure tones
(between 150 Hz and 5 kHz, uniformly distributed in ERB scale). The cochleograms show the output of the gammatone filters used in the
model, half-wave rectified and low-pass filtered [56].
doi:10.1371/journal.pcbi.1000993.g004

Figure 5. Examples of neural filters in the ideal and approximate model, which are band-pass filtered HRTFs. Each filter is 45 ms long.
The central frequency varies between columns, while the HRTFs vary between rows in the first three rows. The resulting filters are similar to
gammatone filters (shown in the last row), but not identical (see for example the differences in envelope within the first column, and within the last
column).
doi:10.1371/journal.pcbi.1000993.g005

Sound Localization with Spike Timing
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tasks: discriminating between front and back (70% for pure tones

and 90–98% for other sounds), and between up and down (64%

for pure tones and 93–98% for other sounds), as shown in

Figure 6I. This indicates that different neural assemblies were

activated for front and back locations and that the model was thus

able to exploit small specific interaural differences, as we show

below.

It might be surprising that the model can estimate elevation

and even discriminate between front and back while it only uses

binaural cues. Figure 7 explains how across-frequency integra-

tion (i.e., looking at the spatial tuning of neural assemblies

rather than that of individual neurons) allows the model to

estimate both azimuth and elevation. The mechanism is

illustrated with ITD cues but the same holds for ILD cues.

When the ITD is estimated in a fine frequency band, it varies

with frequency for the same source location, because of sound

diffraction by the head [21]. Specifically, it is larger at lower

frequencies. Because the head is not spherical, this frequency-

dependence of ITDs is location-specific. When the ITD is

observed is a single frequency band, it is consistent with many

possible locations (Figure 7A, solid curve), because two

dimensions (azimuth, elevation) are mapped to a single one

(ITD). In a spherical head model, these possible locations form

the cone of confusion [1]. When the ITD is observed in another

frequency band, it is also consistent with a whole set of loca-

tions (Figure 7B, dashed curve), but this set is frequency-

dependent. Therefore if the sound contains the two frequency

components, the intersection of the two sets of possible loca-

tions is a single point corresponding to the true location of the

source (Figure 7C). In other words, if source location is two-

dimensional, it can be estimated using two independent

observations. Pure tones cannot benefit from this disambigua-

tion, consistently with the poor performance seen in Figure 6G–

H (magenta bars). There is experimental evidence that humans

can indeed use binaural cues to estimate elevation [22], which

we comment on in the Discussion.

Figure 6. Estimation results in the ideal model. (A) Left (blue) and right (green) head-related impulse responses (HRIR) for a particular location
passed through a gammatone filter. (B, C) Activation of all location-specific neural assemblies for two particular source locations, represented as a
function of their assigned location. The black+shows the sound location and the white x shows the model estimate (maximally activated assembly).
(D–F) Spatial receptive fields of three neural assemblies, i.e., total activation as a function of source location. (G) Mean error in azimuth estimates for
white noise (red), vowel-consonant-vowel (blue), musical instruments (green) and pure tones (magenta). Front/back confusions do not contribute to
azimuth errors in this panel. (H) Mean error in elevation estimates. (I) Categorization performance discriminating left and right (L/R), front and back (F/
B) and up and down (U/D).
doi:10.1371/journal.pcbi.1000993.g006
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Estimation results for the approximate model
It might be unrealistic to assume that the receptive fields of

auditory neurons have so much diversity as to include all possible

HRTFs. Besides, it is not straightforward to see how the auditory

system could learn these acoustical filters. To address this issue, we

tested an approximate model in which neural filtering consisted only of

band-pass filtering with various gains and delays, which could be

produced by many mechanisms: axonal or dendritic propagation,

inhibition, voltage-gated conductances, etc. Within fine frequency

bands, such simple transformations can approximate but not

completely match HRTF filtering (Figure 8A) and therefore

performance might be expected to drop. However, we found that

the location-dependent responses of neural assemblies were very

similar to those seen in the ideal model, but slightly less specific

(Figure 8B–D). Quantitatively, estimation errors were still small,

although not as much as in the ideal model (2 to 7 degrees azimuth

and 7 to 20 degrees elevation, excluding pure tones; Figure 8 G–I

and Supplementary Figure S1). In this approximate model, it might

be thought that binaural neurons perform a cross-correlation of

delayed monaural inputs, as in the classical Jeffress model [6].

However, because the inputs to these neurons are precise spike

trains rather than Poisson processes, the operation that they perform

is more accurately described as a similarity operation (firing when

the inputs are similar) than as a cross-correlation. In particular, this

operation includes level differences as well as timing differences. We

comment on this issue in the Discussion.

In the approximate model, neurons in a location-specific

assembly can be fully described by their preferred frequency,

interaural delay and gain difference (in log scale). Figure 8E shows

the preferred delay of neurons as a function of their characteristic

frequency for two neural assemblies tuned to the same location but

with front and back reversed, and Figure 8F shows the preferred

interaural level difference as a function of frequency. It appears

that the preferred delay is approximately constant at high

frequencies but irregular at low frequencies (,1 kHz). By

construction, the preferred delay corresponds to the ITD in the

neuron’s frequency channel at these locations, as measured as the

peak of crosscorrelation of the band-passed filtered HRTFs. These

frequency-dependent patterns are consistent with previous mea-

surements in HRTFs [21,23] and with theoretical predictions: for

high frequencies, acoustical waves behave as light rays and the

ITD is determined by the difference in the shortest paths from the

source to the ears, but for low frequencies (with wavelength larger

than the size of the head) sound propagation is governed by

diffraction, which predicts larger and frequency-dependent ITDs

[21]. The interesting consequence for sound localization is that the

frequency-dependent pattern of ITDs is location-specific, and is

therefore a cue for both azimuth and elevation, and can also be

used to discriminate between front and back, as is illustrated in

Figure 7. Psychophysical studies showed that, indeed, head

diffraction and torso reflections provide elevation cues even when

pinnae cues are absent [22].

Figure 7. Illlustration of how the model can estimate both azimuth and elevation. (A) ITD measured at 217 Hz as a function of source
location. When the sound is presented at azimuth 245u and elevation 210u, the ITD is consistent with all locations shown by the solid curve. For a
spherical head, this curve corresponds to the ‘‘cone of confusion’’. (B) ITD measured at 297 Hz vs. source location. The pattern is similar but
quantitatively different from ITDs measured at 217 Hz (A), because sound diffraction makes ITDs frequency-dependent [21]. The ITD at location
(245u,210u) is consistent with all locations shown by the dashed curve. (C) When the sound includes frequency components at 217 Hz and 297 Hz
and ITDs can be measured in both channels, source location is unambiguously signaled by the intersection of the two level lines (green cross),
corresponding to the ITD measured at the two frequencies. The red circle shows that this intersection resolves a potential front-back confusion.
doi:10.1371/journal.pcbi.1000993.g007

Sound Localization with Spike Timing
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The estimation error decreased as the number of frequency

channels in the model was increased (Figure 8, J–L). For example,

for white noise, the estimation error in azimuth was halved using

240 channels instead of 80 (Figure 6A). Except for pure tones, the

performance did not seem to have converged to an asymptotic

value, so we expect the error to be even smaller with more

channels. A human cochlea has 3,000 inner hair cells, of which

around 1800 have characteristic frequencies between 150 Hz and

5 kHz. For pure tones, the performance did appear to be

approaching an asymptotic value, which is not surprising as there

are limitations in the available acoustical cues.

In many previous studies, possible source locations were

constrained in the horizontal plane (for example [16]). For

comparison, we show in Supplementary Figure S2 the estimation

error of the model in this case (with 80 frequency channels). The

performance was significantly better, especially for the ideal

Figure 8. Estimation results in the approximate model. (A) Comparison of a gammatone-filtered HRIR (blue) and an approximate filter (green;
gammatone with best delay and gain). (B, C) Activation of neural assemblies for two particular source locations, as in Figure 6. (C) shows a mistake of
the model. (D) Spatial receptive field of a particular neural assembly, as in Figure 6. (E) Preferred interaural delay vs. preferred frequency for neurons in
two assemblies tuned to locations differing only by a front-back reversion. (F) Interaural gain difference vs. preferred frequency for the same
assemblies. (G–I) Performance of the model, as in Figure 6. (J–L) Estimation results as a function of the number of frequency channels used.
Simulations were all performed using 240 channels. To obtain estimates of the error using a smaller number of channels while keeping the same
frequency range, a randomly chosen subset of the 240 channels was chosen. Error estimates are averaged over many such random choices. (J) Mean
error in azimuth estimates for white noise (red), vowel-consonant-vowel sounds (blue), instruments (green) and pure tones (magenta). (K) Mean error
in elevation estimates. (L) Categorization performance discriminating left and right (solid), front and back (dashed) and up and down (dotted). For all
classes of sounds except the pure tones, the left/right categorization performance is 100% for all points.
doi:10.1371/journal.pcbi.1000993.g008
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model, which made zero errors except for pure tones (which

provide ambiguous information at high frequencies).

Robustness
The model relies on selective synchronization and sensitivity to

synchrony, which might require specific neural properties, such as

low intrinsic noise and short membrane time constant. Figure 9A

shows how the estimation error depends on the level of intrinsic

neuronal noise in the model. It appears that the performance in

azimuth estimation is very robust to noise, and that elevation

estimates are reasonably accurate with a noise level up to about

2 mV (standard deviation of the membrane potential). Since the

model must be able to resolve submillisecond differences in spike

timing, we expected that the membrane time constant of neurons

should be small. The results we previously showed were obtained

with a membrane time constant of 1 ms, and Figure 9B shows that

the model gave reasonable estimates up to about 4 ms, which is not

unreasonably short for auditory neurons [24–26]. Since the models

did not explicitly include voltage-gated conductances [27] and

coordinated inhibition [28], which both shorten the integration time

constant, this value should be understood as the effective time

constant that accounts for these effects. When the time constant was

larger than 10 ms, performance was close to chance level, which

indeed confirms that the model relied on precise spike timing.

In all previous figures, the performance of the model was only

tested in quiet, although physiological noise was included in the

neural models. In Figure 9C, we added uncorrelated white noise to

the left and right signals and we tested how accurately the

approximate model could localise white noise (500 ms). It should

be stressed that source locations were not constrained to the

horizontal plane, but that the model was nonetheless robust to

moderate levels of distracting noise.

All previous results were obtained with simple integrate-and-fire

models. However the model is based on the principle that neurons

synchronize when their inputs are similar, which should be mostly

independent of the specific way in which these inputs are

transformed into spike trains. We checked this idea by replacing

the neuron models by adaptive exponential integrate-and-fire

models tuned to regular spiking cortical cells [29]. This model can

predict the spike trains of cortical neurons in response to somatic

time-varying current injection [30] and includes two major

features of cortical pyramidal cells: spike-frequency adaptation

and realistic spike initiation [31]. As we expected, the model was

still able to accurately estimate source location, with quantitatively

similar results (Figure 9D–F).

Learning
In the model, source location is indicated by the activation of a

specific neural assembly. Thus, estimating the source location

requires that each physical location has been assigned to a neural

assembly. We suggest that this assignment could be obtained

through Hebbian learning, for example by associating neural

activation with visual cues. In Figure 10, we show the response of a

population of postsynaptic neurons with various preferred

frequencies, interaural delays and gains to a long broadband

sound (20 s) played at a particular location. Picking the maximally

active neuron in each frequency channel (white crosses) defines a

neural assembly that is indeed very close to the choice we

previously made from the knowledge of HRTFs (black crosses).

We estimated the performance of the model when the location-

specific assemblies were learned in this way from 7 seconds of

white noise played at each location (Figure 10, C–E). The error in

azimuth, elevation and categorization was only slightly worse

(compare with Figure 8, G–I). Note that the training data consisted

Figure 9. Robustness of the model. (A) Mean error in azimuth (blue) and elevation (green) as a function of the level of intrinsic noise in the
model, measured as the standard deviation of the membrane potential. (B) Mean error as a function of the membrane time constant of coincidence
detector neurons. (C) Mean error as a function of the signal to noise ratio, with uncorrelated white noise in both ears. (D, E, F) Performance of the
model using AdEx neurons in place of LIF neurons (as in Figure 6).
doi:10.1371/journal.pcbi.1000993.g009
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of white noise while the test data included different types of sounds

(speech and musical instruments).

Since source location is encoded in the identity of (possibly

overlapping) neural assemblies, learning consists in assigning a

correct label to an assembly rather than in tuning parameters.

Therefore, the same network can encode several acoustic

environments: it is only the mapping from assembly activation to

physical location that is environment-specific. Humans can learn

this mapping when their acoustical cues change, for example when

molds are inserted into their ears [32–34] (although these

experiments mainly modify spectral cues rather than binaural

cues). Interestingly, although learning a new mapping can take a

long time (several weeks in the first study), the previous mapping is

instantly recovered when the ear molds are removed, meaning that

the representations of the two acoustical environments do not

interfere, consistently with our model. We tested this idea by using

two different sets of HRTFs (corresponding to two different

human subjects) with the same network model. Figure 11A–D

shows that the same source location activates two different neural

assemblies depending on the HRTF set. We defined two mappings

from neural activation to physical location, one for each HRTF

set, by associating a neural assembly with each location, as

previously. When a sound was presented through a particular

HRTF set, it maximally activated a neural assembly assigned to

the correct HRTF set at the correct location (Figure 11E), so that

the model was still able to accurately estimate the source location

(Figure 11F), as well as to identify the acoustical environment.

Discussion

The acoustical transformation of a sound between source and

ear is a linear filter that depends on their relative positions. The

binaural stimulus resulting from the two ears receiving different

filtered signals of the same source has a structure that is indicative

of source location. We looked for correlates of this binaural

structure in neuron models described by spectro-temporal filtering

Figure 10. Learning delays and gains. (A, B) Response of a population of postsynaptic neurons with various preferred frequencies, interaural
delays and gains to a long broadband sound (10 s) played at a particular location. (A) Maximum neural response (color-coded) over all the gains, for
each frequency and relative delay. (B) Maximum neural response over all the delays, for each frequency and relative gain. In both (A) and (B), the
white x symbols show the maximum response for each frequency, and the black+symbol shows the choice of best delay (A) and relative gain (B) for
that location in the approximate model, based on the cross-correlation of HRIRs. (C, D, E) Performance of the approximate model (as in Figure 8) using
delays and gains learned from hearing 7 example sounds of 1 s duration from each location.
doi:10.1371/journal.pcbi.1000993.g010
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and spiking nonlinearity. We found that the synchrony receptive field of

a pair of monaural neurons, defined as the set of stimuli that

induce synchronous spiking in these neurons, defined a set of

source locations (more precisely, filter pairs) independently of

source signal. This is a very interesting property for source

localization because an animal must be able to estimate the

location of an unexpected sound. These location-specific synchro-

ny patterns are then mapped to the activation of location-specific

assemblies of postsynaptic neurons. The spiking model we

implemented was indeed able to accurately locate a variety of

sound sources in a virtual acoustic environment, and was robust to

significant changes in model properties, including changes in the

neuron models themselves, and to both physiological and

acoustical noise. It demonstrates the computational relevance of

relative spike timing to extract spatial information about sources

independently of the source signal. In the model, source location is

encoded into overlapping neural assemblies, and the mapping

from neural activation to source location could be learned by

Hebbian mechanisms (for example by association with visual cues).

Because only this latter mapping depends on the acoustical

environment, the model could simultaneously store several

representations of different environments and both accurately

estimate source location and identify acoustical environment.

Cues for elevation
Our model only uses binaural cues, while it is known that the

dominant cue for elevation is monaural spectral information in

high frequencies [1,35]. It may be surprising that the model can

estimate elevation with only binaural cues, but psychophysical

results show that human subjects can extract information about

elevation from signals that are low-pass filtered below 3 kHz,

where monaural spectral information is minimal [22], except in

the median plane. Indeed, for any elevation in the median plane,

the left and right signals are close to identical, therefore binaural

cues do not provide information about elevation. Interestingly, we

find the same pattern in our model (Figure 12A): performance in

estimating elevation is close to chance level in the median plane.

The azimuth error was also larger away from the median plane

(Figure 12B), which is consistent with psychophysical experiments

(see Figure 4A in [36]). Since the model does not use high-

frequency monaural spectral information, it might be more

relevant to compare psychophysical results with our model

performance when both are constrained to the low-frequency

range. Supplementary Figure S3 shows the performance of the

approximate model when frequency ranges from 150 Hz to 3 kHz

(as in reference [22]), which is close to the results shown earlier

(Figure 8G–I). The same estimation error patterns were also seen

in this case. It could be argued that the model indirectly uses

monaural cues in the form of elevation-dependent spectral

notches, but it only does so by comparing the two binaural signals

rather than extracting spectral information from each monaural

signal, which explains why it cannot estimate elevation in the

median plane.

Previous models
Previous neural models focused on the mechanisms of cue

extraction such as ITD sensitivity, using delayed tones or noise

bursts (as in e.g. [13]), whereas we addressed the problem of

estimating the location of arbitrary unknown sounds in a realistic

acoustical environment. Since our model relies on coincidence

Figure 11. Simultaneous representation of two acoustical environments (two sets of HRTFs). (A, B) Best delay and relative interaural gain
for two assemblies (black and white circles) corresponding to the same location in the two different HRTF sets, as in Figure 8E and F. (C, D) Response
of the postsynaptic neurons to a sound at a particular location with one HRTF set, as in Figure 3C and D. The black circles show the neurons tuned to
the correct location for one set, the white for the other. (E) Summed responses of location-specific assemblies for the two HRTF sets (each assembly
has a preferred location and set), for a particular location and HRTF set. The circles represent the source location in the correct (black) and incorrect
(white) set. The maximally activated assembly encodes for both location and HRTF set. (F) Summed responses of neural assemblies as a function of
preferred location, for both sets (sum of the two sets of responses in E).
doi:10.1371/journal.pcbi.1000993.g011
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detection between monaural inputs, it could be compared to the

Jeffress model [6], where a neuron is maximally activated when

acoustical and axonal delays match - although the Jeffress model is

restricted to azimuth estimation. However, because in our model

the inputs to these binaural neurons are precise spike trains rather

than Poisson processes, the operation that they perform is more

accurately described as a similarity operation (firing when the

inputs are similar) than as a cross-correlation. In particular, this

similarity operation includes level differences as well as timing

differences. Indeed, there is considerable difficulty in implement-

ing the Jeffress model with neuron models when realistic acoustical

cues are considered, because ILDs always co-occur with ITDs and

disturb spike timing. Figure 13A–C shows that model performance

indeed drops when neural filtering is restricted to band-pass

filtering and delays (no gains). In our model, the sensitivity of

binaural neurons to ILDs comes from the fact that monaural

neurons fire earlier as sound level increases, which is unavoidable

if spikes are triggered when a threshold is reached. This ‘‘time-

intensity trading’’ has been observed in the auditory nerve [37]:

the effect is small but within the sensitivity of the binaural system.

It has not yet been measured in bushy cells, which would

correspond to the monaural neurons in our model (see below).

Several computational algorithms address the full problem of

sound localization in a virtual acoustic environment with realistic

sounds, but without a neural implementation. In our model, two

monaural neurons fire in synchrony when the combinations of

acoustical and neural filtering match on both sides. This is

conceptually similar to the Equalisation-Cancellation (EC) model

[18–20], in which compensating interaural gain and delay are

chosen so that the two signals maximally match (i.e., by

minimizing the difference). In the original EC model, this was

done for the broadband signals but later versions of the model

used multiple frequency bands [15]. Besides the fact that our

model has a straightforward interpretation in terms of neural

responses, we highlight two conceptual differences. Firstly, the

signal transformations are not restricted in principle to delays and

gains (as in our approximate model), but could include any sort of

filtering (as in the ideal model). Although the performance of the

approximate model was good, the ideal model was more accurate,

in fact almost perfect when locations where restricted to the

horizontal plane. When considering more complex environments

(with reflections), the difference could be even more important.

Secondly, our model provides an online, instantaneous estimation

of source location, which could potentially change if the source

Figure 12. Mean error in estimates of elevation (A) and azimuth (B) of white noise in the approximate model as a function of the
azimuth of the sound source. The elevation error at zero azimuth is close to the chance level of 36 degrees.
doi:10.1371/journal.pcbi.1000993.g012

Figure 13. Performance of the model in low frequencies (under 3kHz). (A, B, C) Performance of the approximate model, as in Fig. 5G–I, for
low frequencies only (80 channels distributed on the ERB scale from 150Hz to 3kHz).
doi:10.1371/journal.pcbi.1000993.g013
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moves. Additionally, the fact that the spike trains of the location-

specific assemblies are locked to the signal may be useful to bind

the spatial information with other types of information, for

example to listen to a source at a particular location, or to

integrate multimodal information (e.g. binaural information with

visual motion). Recently, MacDonald [16] proposed a signal

processing method (with no neural implementation) to localize

sound sources in the horizontal plane that is conceptually very

similar to our ideal model, where coincidence detection is replaced

by Pearson correlation between the two transformed monaural

signals. Interestingly, the estimation was found to be quite robust

to background noise. Our model provides a neural implementa-

tion and works in multiple frequency channels rather than on the

entire signal. It also provides signal-locked estimations. Perhaps

more importantly, our approximate model provides a framework for

learning to localize without explicit knowledge of HRTFs.

Biological plausibility
The model we implemented includes the following components:

acoustical environment, auditory periphery, and central neurons.

First, we modeled acoustical stimuli by using a variety of

recorded sounds (noise, speech, musical instruments), and the

acoustical environment was reproduced using human HRTFs,

measured in anechoic conditions. This includes the diffraction of

sounds by the head, pinnae and torso, which is much more

realistic than using fixed ITDs and ILDs: even without considering

the high frequency spectral notches introduced by the pinnae,

ITDs are frequency-dependent for a given source location [21].

We also checked that model performance was robust to additional

acoustical noise (Figure 9C). Thus, it can be considered as a

reasonably realistic reproduction of the acoustical environment of

humans in anechoic conditions. A more realistic model would

include reflections, at least from the ground. If the delay between

the direct sound and the reflection is large, then psychophysical

studies suggest that the reflected sound is suppressed by the

auditory system [38], but it would presumably require specific

mechanisms, which we did not address. If the delay is short, it

could change the binaural cues but because the physical laws of

sound propagation are linear, their effect could still be modeled as

location-dependent linear filtering, simply with different HRTFs

than in the anechoic case. Therefore it should not impair the

performance of the model, as long as the acoustical environment is

known.

Our model of the auditory periphery is rather simple, compared

to recent detailed models of auditory nerve fibers [39]. The main

reason is practical. In the model we simulated up to 240 channels,

with various sounds, each one played at all measured locations

(azimuth and elevation, almost 200 locations), totaling up to

90,000 filters and 106 neurons. Simulations took several days even

after being accelerated using graphics processing units (GPUs).

Using more realistic models is possible in principle, but would

require faster hardware or substantially improved numerical

techniques. The second reason is to keep the model simple

enough to clearly demonstrate the underlying principle. Nonethe-

less, it includes the following ingredients: outer ear filtering

(implicitly included in the HRTFs), band-pass filtering, compres-

sion, half-wave rectification, physiological and acoustical noise and

spiking. Middle ear filtering was not included, but since it affects

both ears equally (and therefore does not affect interaural

differences), it should not have any impact on the performance

of our model, which we checked with white noise stimuli (not

shown). To generate spikes from the filtered signals, we used noisy

neuron models (integrate-and-fire or more complex models in

Figure 9D–F) rather than Poisson processes. These models

implicitly include low pass filtering of the input signal (via the

leak current). In Figure 13, we checked that the model also worked

if sounds only contained frequencies below 3 kHz, where the

temporal fine structure of sounds is still represented in the firing of

auditory nerve fibers (we also found similar results for sounds

below 1.5 kHz). To decompose sounds into frequency bands, we

used gammatone filters. Other filters could be used, such as

gammachirps, but the principle of the model does not rely on these

details. Finally, the model included strong nonlinearities (half-wave

rectification and compression) but they did not seem to affect the

performance of the model.

There were two types of neurons in our model: monaural

neurons and binaural neurons. In our description of the synchrony

receptive field, we considered that the responses of monaural

neurons consist of linear filtering followed by spiking nonlinearity.

While this is clearly an approximation, it seems reasonable for the

earliest neural structures in the auditory system. In the specific

model we implemented, the strong nonlinearities in signal filtering

(half-wave rectification and compression) did not seem to affect the

principle of the model. We found that model estimations were still

accurate when postsynaptic potentials were as long as about 4 ms,

which is consistent with electrophysiological measurements of

neurons in many structures in the auditory system [24–26]. The

model was also robust to rather large levels of intrinsic noise

(Figure 9A). However two assumptions restrict the set of candidate

neural structures where these neurons could reside: neurons

should be mainly monaural and their firing should be precisely

time-locked to the stimulus. Most likely candidates are neurons in

the cochlear nucleus, such as bushy cells. These cells are indeed

essentially monaural and their spikes are precisely time-locked to

sound stimuli [40,41]. In the approximate model, we assumed that the

receptive field of these neurons can be modeled as a band-pass

filter (gammatone) with various gains and delays. Differences in

input gains could simply arise from differences in membrane

resistance, or in the number and strength of the synapses made by

auditory nerve fibers. Delays could arise from many causes: axonal

delays (either presynaptic or postsynaptic), cochlear delays [42],

inhibitory delays [43]. In the ideal model, we assumed a larger

diversity of receptive fields, in fact we assumed that all

combinations of HRTFs and band-pass (gammatone) filters were

represented, which might seem unrealistic. However, it does not

mean that HRTFs themselves are represented in the auditory

system. As is seen in Figure 5, these combined filters look very

much like gammatone filters, but with variable envelopes. The

variability of receptive fields of bushy cells could perhaps be

characterized using reverse correlation techniques.

Spherical bushy cells project to binaural neurons in the medial

superior olivary nucleus (MSO) [44]. Thus it seems natural to

identify the binaural neurons in our model with these cells (the

inferior colliculus (IC) and the dorsal nucleus of the lateral

lemniscus (DNLL) also contain neurons with similar properties). In

small mammals (guinea pigs, gerbils), it has been shown that the

best phases of binaural neurons in the MSO and IC are scattered

around 6p/4, in constrast with birds (e.g. barn owl) where the best

phases are continuously distributed [45,46]. In larger mammals

such as cats, best IPDs in the MSO are more continuously

distributed [47], with a larger proportion close to 0 (Figure 18 in

[47]). It has not been measured in humans, but the same optimal

coding theory that predicts the discrete distribution of phases in

small mammals predicts that best delays should be continuously

distributed above 400 Hz (80% of the frequency channels in our

model). Figure 14 shows the distribution of best phases of binaural

neurons in the approximate model as a function of preferred

frequency (nearly identical results were obtained for the ideal
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model). It appears that the distribution is consistent with these

predictions in humans (Figure 3 in [12]). However, one fact that is

in contradiction with our model is that the best delays in both birds

and mammals (including humans, based on fMRI studies [48]) are

almost always smaller than half the characteristic period, i.e., they

are within the p-limit. To check whether this was a critical element

of our model, we estimated the performance of the approximate

model when all best delays were constrained to the p-limit, and we

found that it was essentially unchanged (Supplementary Figure

S4). This is not very surprising since best delays above the p-limit

are mostly redundant.

Challenging sound localization problems
The HRTFs used in our virtual acoustic environment were

recorded at a constant distance, so that we could only test the model

performance in estimating the azimuth and elevation of a sound

source. However, in principle, it should also be able to estimate the

distance when the source is close (when the source is far, binaural

cues are not informative of distance because the sound wave

becomes a plane wave). A more difficult problem is that of

reflections. In principle, our framework applies equally well to any

acoustical environment, whether anechoic or not, but the mapping

between neural assemblies and physical location must be known,

meaning that the acoustical environment must be familiar. To

estimate the location of a source in an unknown environment, one

possibility would be to isolate the direct sound from the reflections,

but this requires additional mechanisms, which probably underlie

the precedence effect [38]. Finally, a challenging question is how the

auditory system might perform this task in the presence of multiple

sources or ambient noise [49], or use localization cues to listen to a

particular source [50,51]. In our model, binaural neurons respond

only when their inputs receive consistent signals, so that spectro-

temporal regions where noise dominates the signal should be

ignored. Thus, we suggest that our model could address this more

challenging task by ‘‘listening in the dips’’ of the noise to extract

reliable information, in the same way as humans are thought to

understand speech in noisy environments [52].

Methods

All programming was done in the Python programming

language, using the ‘‘Brian’’ spiking neural network simulator

package [53]. Simulations were performed on Intel i7 Core

processors with dual NVIDIA GTX295 graphics processing units

(GPUs). Linear filtering was carried out in parallel on the GPUs

with a custom algorithm designed for large filterbanks (around

30,000 filters in our simulations, or 90,000 in the simulations for

Figure 8, J–L), reducing computation times for each sound from

hours to minutes. The largest model (Figure 10) involved

approximately one million simulated neurons. The overall

structure and architecture of the model is illustrated in Figure 3.

Virtual acoustics
Sound sources used were: broadband white noise; recordings of

instruments and voices from the RWC Music Database (http://

staff.aist.go.jp/m.goto/RWC-MDB/); recordings of vowel-conso-

nant-vowel sounds [54]; and pure tones between 150 Hz and

5 kHz, uniformly distributed in ERB scale (Figure 4). All sounds

were of 500 ms duration, cut to this length in the case of the VCVs

(from around 600ms), and repeated twice in the case of the

instruments (of length 250ms), and were presented at 80 dB SPL.

Sounds were filtered by head-related impulse responses (HRIRs)

from the IRCAM LISTEN HRTF Database (http://recherche.

ircam.fr/equipes/salles/listen/index.html). HRIRs from this and

other databases do not provide sufficiently accurate timing

information at frequencies below around 150Hz, and so subsequent

cochlear filtering was restricted to frequencies above this point.

Cochlear and neural filtering
Head-filtered sounds were passed through a bank of fourth-

order gammatone filters with center frequencies distributed on the

Figure 14. Distribution of interaural phase differences (IPD) in the binaural signals and preferred IPDs of binaural neurons. The color
codes follow the conventions of Fig. 3 of Harper and McAlpine (2004). (A) Distribution of IPDs across all HRTFs (including all measured azimuths and
elevations), as a function of frequency. The dark triangle corresponds to the physical limit of ITDs, which is smaller than half a period for low
frequencies, while the light triangle corresponds to the situation when the maximum ITD is between p and 2p, which makes larger IPDs more
represented than smaller ones (imagine folding a larger triangle at the vertical lines IPD = 2p and IPD =p). (B) Distribution of best IPDs of neurons in
the approximate model as a function of their preferred frequency. Best IPDs were measured using delayed white noise. The horizontal line at 400 Hz
represents the frequency above which best delays should be continuously distributed, according to Harper and McAlpine (2004). A very similar
distribution was obtained with the ideal model (not shown).
doi:10.1371/journal.pcbi.1000993.g014
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ERB scale, modeling cochlear filtering [55,56]. Additional linear

filters were then applied: either the entire set of head filters (ideal

model) or only gains and delays (approximate model). 80 channels

were used in all models except for Figure 8, J–L, in which 240

channels were used. Center frequencies were chosen from 150Hz

to 5kHz in all models except for Supplementary Figure S3, in

which an upper limit of 3kHz was used.

Neuron model. The filtered sounds were half-wave rectified

and compressed by a 1/3 power law I~k(½x�z)1=3 (where x is the

sound pressure in pascals). The resulting signal was used as an

input current to a leaky integrate-and-fire neuron with noise. The

membrane potential V evolves according to the equation:

tm
dV

dt
~V0{VzI(t)zs

ffiffiffiffiffiffiffiffi
2tm

p
j(t)

where tm is the membrane time constant, V0 is the resting

potential, j(t) is Gaussian noise (such that Sj(t),j(s)T~d(t{s))
and s is the standard deviation of the membrane potential in the

absence of spikes. When V crosses the threshold Vt a spike is

emitted and V is reset to Vr and held there for an absolute

refractory period trefrac. These neurons make synaptic connections

with binaural neurons in a second layer (two presynaptic neurons

for each binaural neuron). These coincidence detector neurons are

leaky integrate-and-fire neurons with the same equations but their

inputs are synaptic. Spikes arriving at these neurons cause an

instantaneous increase W in V (where W is the synaptic weight).

Parameter values are given in Table 1.

Adaptive exponential integrate-and-fire (AdEx) neuron
model

For Figure 8C–F, an AdEx neuron was used. We used the

equations and parameters for a regular spiking AdEx neuron from

[29], with an additional white noise current (gLsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C=gL

p
). The

leak conductance was adjusted so that the membrane time

constant was 1 ms, as previously (giving gL = 281 nS). The

acoustical input to the encoder neurons was also scaled to provide

the same input level as before, relative to threshold. The standard

deviation of the noise and the synaptic weights were doubled so as

to represent the same proportion of the distance between threshold

and rest as in the previous model (s= 2 mV and W = 10 mV).

Finally, the model had the same refractory properties as in the

previous model.

Selecting gains and delays in the approximate model
For a given location and frequency channel with corresponding

HRIRs L and R (after gammatone filtering), the gains (gL, gR) and

delays (dL, dR) of the two presynaptic monaural neurons were

chosen to minimize the RMS difference

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
(gLL(t{dL){gRR(t{dR))2dt

s

subject to the conditions max(gL, gR) = 1, dL$0 and dR$0. The

RMS difference is minimized when the delays correspond to

the maximum of the cross-correlation between L and R,

C(t)~
Ð

L(s)R(tzs)ds, so that C(dR2dL) is the maximum, and

gR=gL~C(dR{dL)=
Ð

R(t)2dt.

Estimating location from neural activation
Each location is assigned an assembly of coincidence detector

neurons, one in each frequency channel. Each of these neurons

has a pair of presynaptic neurons for which the synchrony field

contains the given location (see Results). In the approximate

model, this is obtained by selecting appropriate gains and delays

for the presynaptic neurons as explained above; in the ideal model,

the filters of the presynaptic neurons are the gammatone-filtered

HRTFs for the given location. When a sound is presented to the

model, the total firing rate of all neurons in each assembly is

computed. The estimated location is the one assigned to the

maximally activated assembly.

Learning
In the model of learning shown in Figure 10, location-specific

assemblies are learned by presenting unknown sounds at different

locations to the model, where there is one coincidence detector

neuron for each choice of frequency, relative delay and relative

gain. Relative delays were uniformly chosen between 20.8ms and

0.8ms, and relative gains between 28 dB and 8 dB uniformly on a

dB scale. In total 69 relative delays were chosen and 61 relative

gains. With the 80 frequency channels, this gives a total of roughly

106 neurons in the model. When a sound is presented at a given

location, we define the assembly for this location by picking the

maximally activated neuron in each frequency channel, as would

be expected from a Hebbian learning process.

Supporting Information

Figure S1 Confusion matrices for azimuth and elevation

estimates. Confusion matrices for azimuth (A, C) and elevation

(B, D) estimates for the ideal model (A, B) and the approximate

model (C, D). The color of each square represents the probability

that the model selects the location on the vertical axis given the

source location on the horizontal axis.

Found at: doi:10.1371/journal.pcbi.1000993.s001 (0.14 MB PDF)

Figure S2 Performance of the approximate and ideal models in

the case when locations are constrained to the horizontal plane.

Performance of the approximate and ideal models in the case

when locations are constrained to the horizontal plane. (A) Mean

error in azimuth estimation for the ideal model, as in Fig. 6G. (B)

Categorization performance for the ideal model, as in Fig. 6I. (C,

D) Same as A and B for the approximate model.

Found at: doi:10.1371/journal.pcbi.1000993.s002 (0.16 MB PDF)

Figure S3 Performance of approximate model when neural

filtering is restricted to bandpass-filtering and delays (no gains) or

gains (no delays). Performance of approximate model when neural

Table 1. Neuron model parameters.

Parameter Value Description

Vr 260 mV Reset potential

V0 260 mV Resting potential

Vt 250 mV Threshold potential

trefrac 5 ms
0 ms

Absolute refractory period
(for binaural neurons)

s 1 mV Standard deviation of membrane potential
due to noise

tm 1 ms Membrane time constant

W 5 mV Synaptic weight for coincidence detectors

k 0.2 V/Pa1/3 Acoustic scaling constant

doi:10.1371/journal.pcbi.1000993.t001
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filtering is restricted to bandpass-filtering and delays (no gains; top

row) or gains (no delays; bottom row). Colors and lines follow the

same conventions as in Figure 6. In both cases, performance is

significantly worse. (A,D) Error in azimuth. (B,E) Error in

elevation. (C,F) Categorization performance (as in Figure 6).

Found at: doi:10.1371/journal.pcbi.1000993.s003 (0.17 MB PDF)

Figure S4 Performance of approximate model when delays are

constrained in the p-limit. Performance of approximate model

when delays are constrained in the p-limit: in each band with

central frequency f, all delays are replaced by delays between 21/

(2f) and 1/(2f) with the same phases. Colors and lines follow the

same conventions as in Figure 6. (A) Error in azimuth. (B) Error in

elevation. (C) Categorization performance (as in Figure 6).

Found at: doi:10.1371/journal.pcbi.1000993.s004 (0.14 MB PDF)
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