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Abstract

Cellular gene expression measurements contain regulatory information that can be used to discover novel network
relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically
and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for
network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or
naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our
approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL), which provide a sufficient set
of independent perturbations for maximum network resolution. We compare the performance of our network
reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm,
all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the
adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the
QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this
novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide
gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network
relationships between a tyrosine biosynthesis gene (TYR1), and genes involved in endocytosis (RCY1), the spindle
checkpoint (BUB2), sulfonate catabolism (JLP1), and cell-cell communication (PRM7). Our algorithm provides a synthesis of
feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships
from the analysis of population level genetic and gene expression data.
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Introduction

Network analyses are increasingly applied to genome-wide gene

expression data to infer regulatory relationships among genes and

to understand the basis of complex disease [1,2]. Probabilistic

graphical techniques, which model genes as nodes and the

conditional dependencies among genes as edges, are among the

most frequently applied methods for this purpose. A diversity of

such approaches have been proposed including Bayesian networks

[3–5], undirected networks [6–8], and directed cyclic networks [9–

11]. The popularity of these methods derives, in part, from the

structure of these models that is well suited to algorithm

development and because the network representation of these

models can be used to construct specific biological hypotheses

about the processes governing the activity of genes in a system [3].

As an example of this latter property, genes connected by an edge

may indicate (at least) one of the genes is regulated by the other.

In graphical network inference, a theoretical principle that is

now well appreciated [5,10–17] is that ‘perturbations’ of the

network can be leveraged to reduce the set of possible networks

that can equivalently explain gene expression. In fact, since

equivalent models can indicate conflicting regulatory relationships,

perturbations are often necessary to extract regulatory relation-

ships with any confidence. If the perturbations are controlled (e.g.

knockouts of single genes), then a network among n genes can be

recovered very efficiently with n knockouts [12]. Alternatively,

perturbations that arise from naturally segregating variants, or

combinations of genetic variants produced from carefully designed

crosses, can also be leveraged [5,10,11,13–19]. Perturbations of

this type, caused by genetic polymorphisms in a population that

alter the expression of genes across a population sample, are

expression quantitative trait loci (eQTL) [15].

Despite the acknowledged importance of perturbations in

network analysis, there has been little theoretical work concerning

sets of perturbations that maximally limit the set of equivalent

models for arbitrary directed networks. Limiting the set of

equivalent models is of particular concern in cases where the true

network has cyclic structure, where the set of statistically

indistinguishable models may include drastically different topolo-

gies [20]. In this paper, we present theory concerning a minimally
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sufficient set of (genetic) perturbations to infer a maximally limited

equivalent set of network architectures, which can subsequently be

reconstructed using a single, convex optimization procedure. We

demonstrate that for a specific type of network among both genes

expression products and genotypes (an interaction or conditional

independence network [21]), when including an appropriate set of

genetic perturbations for the genotypes, specifically locally

occurring cis-eQTL [14], the interaction network contains all the

information necessary for directed network reconstruction. We can

therefore estimate the regulatory relationships or features of a

network directly from the interaction network with many different

approaches [7,8,22–24]. Here, we use the adaptive lasso [25], a

convex optimization procedure, to efficiently solve this model

selection problem. This approach allows us to avoid the reliance

on computationally inefficient heuristics [3–5,10,11,16,18,19] with

non-unique solutions, which can generate many possibly poor-

fitting networks when considering sample sizes that are typical of

experiments collecting genome-wide gene expression data.

Our algorithm includes three steps. First, an association analysis

is carried out to identify strong local (cis-eQTL) perturbations of

gene expression. Second, we combine the gene expression data

and genotypes for the cis-eQTL, and use an adaptive lasso

regression procedure [8,25] to identify an interaction network [21]

among gene expression products and cis-eQTL genotypes. The

novel component of our algorithm is incorporated into this step,

where we can immediately extract a unique, directed acyclic or

cyclic network, given each gene in the network analysis has a

unique cis-eQTL. Third, to ensure the edges in the interaction

network correspond to the correct dependencies in the directed

graph, we do a permutation test to ensure marginal independence

between the cis-eQTL and the upstream gene based on the

undirected edges recovered. We only use genetic perturbations

that are cis-eQTL because of empirical evidence that local genetic

polymorphism tends to have larger effects than trans-eQTL [26–

28], and are therefore statistically more likely to be linked to locally

causal variants. If the true network is a directed cyclic graph and if

one uses trans-eQTL to attempt to find the true model, there can

still be a larger equivalence class of models, since there is no way to

know which gene a trans-eQTL actually feeds into in a cyclic graph

because of equivalence (this is shown in the ‘‘Recovery’’ Theorem

in the Methods). Our approach mirrors directed network inference

approaches that seek to identify conditional independence and

dependence relationships but avoids a computationally demanding

step of iteratively testing for these relationships [11,20,29,30].

To test this algorithm, we explore performance for simulated

data. Specifically, the simulations are designed to capture scenarios

where the underlying network is relatively sparse, and the strength

of both the cis-eQTL and regulatory relationships is strong enough

to detect given a relatively small numbers of samples, on the order

of the number of genes being tested. We investigated networks of

modest size (either 10 or 30 genes), since we wished to focus on

cases where the set of genes being tested have strong cis-eQTL in

linkage equilibrium, which in a typical eQTL genome-wide

association study will be much smaller than the total number of

genes being tested, [27,28]. As a benchmark, we compare the

performance of our algorithm to the PC-algorithm [29,31], the

QDG algorithm [14], the QTLnet algorithm [16], and the NEO

algorithm [18]. We find that our algorithm can outperform all of

these approaches in terms of controlling the false-discovery rate,

and having greater power (given a large enough sample size) for

the recovery of directed acyclic graphs and directed cyclic graphs.

To empirically assess our algorithm, we also analyze data from a

well powered intercross study in yeast [27]. From this analysis, we

identify 35 genes with strong, independent cis-eQTL, and

leveraged these perturbations to identify novel interactions. While

we analyze the data from an intercross, both the theoretical results

as well as the algorithm itself can be applied to natural populations

as well.

Results

The gene expression network model
Biologically, our goal is to identify relationships between the

expression of multiple genes, such as the case depicted in Figure 1.

In this figure we see that the expression level of Gene A has an

effect on the expression level of Gene B, mediated through some

biological process (i.e. unobserved factors). Even though we do not

directly observe all the factors involved in the regulatory

interaction, we still want to be able to detect that there is a

regulatory effect, including the relative magnitude, the presence,

and direction of the effect. To resolve these relationships uniquely,

we need perturbations of expression, which in this case arise from

genetic polymorphisms affecting expression. Therefore, both gene

expression and genotype data needs to be collected on the same set

of individuals, for all genes of interest, as well as all genotypes that

will possibly act as perturbations of expression. Overall, one can

consider our model selection process as acting on the joint

covariance between and within the gene expression products and

genotypes identified as being strong QTL. In our algorithm we

further focus on cis-eQTL, because of recent studies indicating that

there are widespread genetic polymorphisms local (i.e. cis) to genes

that cause significant changes in expression [26–28].

We want to identify the genes with strong cis-eQTL (x) with

linear effects on gene expression (y) parametrized by genetic effect

parameters (b), and then identify unique regulatory relationships

among gene expression products parametrized by l. For p

measured gene expression phenotypes and m loci for which we

have genotypes, the directed graphical model of the network has

pzm nodes and (p(p{1)zpm) possible edges, representing

p(p{1) possible regulatory relationships among the genes, and pm

possible perturbation effects of loci (eQTL) on each of the

expression phenotypes. Written in matrix notation, the network

model for a sample of n individuals can be represented as:

YnxpLpxp~XnxmBmxpzEnxp, ð1Þ

Author Summary

Determining a unique set of regulatory relationships
underlying the observed expression of genes is a
challenging problem, not only because of the many
possible regulatory relationships, but also because highly
distinct regulatory relationships can fit data equally well. In
addition, most expression data-sets have relatively small
sample sizes compared to the number of genes measured,
causing high sampling variability that leads to a significant
reduction in power and inflation of the false positive rate
for any network reconstruction method. We propose a
novel algorithm for network reconstruction that uses a
theoretically and empirically well-behaved method for
selecting regulatory features, while leveraging genetic
perturbations arising from cis-expression Quantitative Trait
Loci (cis-eQTL) to maximally resolve a network. Our
algorithm has good performance for realistic samples sizes
and can be used to identify a unique set of acyclic or cyclic
regulatory relationships that explain observed gene
expression.

Network Reconstruction by Convex Feature Selection
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where Y is a matrix of gene expression measurements, L is a

matrix of regulatory effects, X is a matrix of observed

perturbations, B is a matrix of genetic effect parameters, and

E*N 0,Rð Þ, where R is a diagonal matrix. Non-zero elements of

L and B are edges representing regulatory relationships and

eQTL effects, respectively, where the size of the parameter

indicates the strength of the resulting relationship, as shown in

Figure 1. Versions of this model are used regularly in analysis of

networks [3,8,10] when assuming that gene expression measure-

ments are taken from independent and identically distributed (iid)

samples, where the regulatory relationships can be approximated

by a system of linear equations, and the distribution of expression

traits across samples is well modeled with a multivariate normal

distribution. Another common assumption we make use of in our

algorithm is that most detectable eQTL effects will have a

significant linear component, especially for cis-eQTL [27,28],

where the polymorphism has simple switch-like behavior, such as

determining whether transcription of the gene is up or down

regulated.

A potential pitfall of modeling expression traits using directed

networks of the type in Equation (1) is the problem of likelihood

equivalence between models. Figure 2 presents a simple example

that illustrates the problems raised by equivalence for network

inference. In this example, the true model, which is a linear

pathway between four genes x?y?z?t, is indistinguishable from

three other equivalent models. Each of these equivalent models

has a very distinct implication for regulatory relationships among

these genes but they are indistinguishable, regardless of the sample

size. To be able to distinguish between these models, one needs to

either collect time-course data to determine the temporal sequence

in which regulation occurs [32], or alternatively, perturb the

expression level of these genes in some fashion.

The algorithm
Our goal is to identify a unique network underlying the

observed expression and genotype data, especially when the

sample size is at most 1,000 (a large, biologically realistic sample

size). To accomplish this, in the Methods we prove a set of

theorems to show that if each gene being considered has its own,

unique eQTL, then one can go from the sample covariance

among gene expression phenotypes and genotypes (defined as S in

the Methods, see Figure 3a), to the inverse covariance (i.e.

precision matrix or undirected network defined as S in the

Methods, see Figure 3b), then subsequently to a directed cyclic

network underlying the expression data (defined as L, see

Figure 3c), where the last step makes use of our ‘‘Recovery’’

Theorem. In the algorithm, we begin with a screening process to

identify a set of expression traits with putative strong cis-eQTL

(Step 1). We then make use of the adaptive lasso function for

reconstruction of conditional independence networks (i.e. the

structure of the inverse covariance matrix, Figure 3b) (Step 2) to

identify genes with strong induced dependencies among cis-eQTL

genotypes and gene expression phenotypes and reconstruct the

unique directed acyclic or cyclic network that is a result of these

induced edges. Finally, for each putative strong induced

dependency, we further filter the induced edges based on a

permutation test (Step 3), to ensure marginal independence

between the upstream gene and the downstream cis-eQTL:

Step 1: Selection of expression phenotypes. A standard

genome-wide association analysis is performed on each expression

trait, focusing on genetic polymorphisms in a cis-window around a

gene (e.g. a 1Mb window) [28]. Each marker is tested individually

using either a linear statistical model or non-parametric test

statistic (e.g. Spearman rank-correlation), with a correction for

multiple tests using either a control of false discovery rate [33], a

conservative Bonferroni correction (i.e. a=n, where a is the

significance level and n is the number of tests), or through a

permutation approach to compute significance based on the

empirical distribution of test statistics after shuffling the data, as in

Stranger et al. [28]. After this initial association analysis is

performed, the remaining cis-eQTL and their associated genes are

further filtered such that the cis-eQTL genotypes are strongly

independent of one another. In our analyses we use the very

conservative cutoff r2
v~0:03 between any pair. This ensures that

each cis-eQTL represents a unique perturbation, which is

Figure 1. Example of biological relationships that can be
reconstructed by the algorithm. An expression Quantitative Trait
Locus (eQTL) directly alters the expression level of Gene A, a
relationship that we represent in our network model with the
parameter b. This gene in turn has an effect on Gene B through an
unobserved pathway represented by the ‘Factors’ node. While these
factors are unobserved we can still infer that there is a regulatory effect
of Gene A on the downstream Gene B, which is represented in our
network model by the parameter l.
doi:10.1371/journal.pcbi.1001014.g001

Figure 2. Example of a graphical model equivalence class when
determining regulatory relationships among four genes
(x,y,z,t). Edges represent the direction of regulation. In this case, the
true regulatory network connecting the four genes (blue) has the same
sampling distribution as the other three incorrect models (red). Without
perturbations (i.e. eQTL), each of these models will equivalently
describe the pattern of expression observed among these genes for
any data-set.
doi:10.1371/journal.pcbi.1001014.g002

Network Reconstruction by Convex Feature Selection
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especially important for small sample sizes, when the sampling

variability of the entire data-set is high.

Step 2: Regulatory network reconstruction. Once the set

of expression phenotypes are identified, we combine the genotype

and gene expression data, so as to infer a joint gene expression, cis-

eQTL interaction network, (i.e. identifying which elements of the

matrix S are non-zero). This model selection method is similar to

the network recovery method proposed by [22], except using the

adaptive lasso instead of the regular lasso [8]. The adaptive lasso

procedure is performed by first solving the lasso problem:

argmaxa {
Xn

i~1

yi{ziað Þ2{g
Xpzm{1

j~1

Daj D

( )
ð2Þ

then using the coefficients from this problem to solve the following

adaptive lasso problem [25]:

argmaxf {
Xn

i~1

yi{zifð Þ2{g
Xpzm{1

j~1

ŵwj Dfj D

( )
ð3Þ

for every phenotype, yi in the reduced data-set, where ŵw~DâaD{1=2,

z is the combined gene expression products and associated cis-

eQTL genotypes, and a and f are the corresponding regression

coefficients, whose non-zero structure should asymptotically be the

same as S, given an appropriate choice of the penalty parameter g.

The penalty parameter g is chosen by five fold cross validation

based on the mean-squared prediction error across both steps of

the procedure. In addition, all variables are centered to have mean

zero and rescaled to have variance one, so that the gene expression

products and genotypes with small or large variances will not be

penalized differently. After the interaction network is determined,

we infer the directed regulatory network immediately from the

interaction network structure, based on the results shown in the

‘‘Recovery’’ Theorem.

While we could make use of any undirected inference approach

that infers the conditional independence network [11,20,29,30] for

Step 2, we use the adaptive lasso because of its theoretical

advantages [25] and empirical performance, as far as finding

sparse solutions with the lowest mean-squared error (by cross-

validation) [8]. A lasso type procedure can be used for model

selection [22] by shrinking parameters to exactly zero and is

convex [34], providing computationally efficiency. However, there

has been theoretical work showing that since the lasso shrinks non-

zero parameters too harshly, it will not always return the true

model asymptotically (i.e. as sample size goes to infinity). In fact

the conditions under which it will return the correct model may be

very unlikely for high dimensional problems [35]. The adaptive

lasso was proposed to remedy this problem, and in general appears

to have better properties as far as model selection both

theoretically and in practice, without sacrificing the convexity of

the lasso [8,25].
Step 3: Edge interpretation and filtering. The primary

goal of the ‘‘Recovery’’ Theorem is to map the problem of

learning a directed cyclic graph among a set of phenotypes onto

the problem of learning an undirected graph among a set of

phenotypes and appropriately selected genotypes (i.e. unique cis-

eQTL), then determining the corresponding directed cyclic graphs

from the original problem. Each edge in this idealized larger

undirected graph between the genotypes and the phenotypes

represents an induced dependency between a given cis-eQTL and

the immediate upstream phenotype of that cis-eQTL’s cis-gene.

Yet in practice, some of these edges identified in the undirected

graph may arise from trans-effects, i.e. a given cis-eQTL may also

have a large marginal correlation with another gene expression

product in the data-set, that is not explained away entirely by the

relationships inferred among phenotypes. In this case a further test

can be performed, to ensure that for any putative induced

dependencies identified from the undirected graph, the cis-eQTL

and upstream gene are marginally uncorrelated. For this we

perform a resampling method of the marginal correlation between

cis-eQTL and upstream phenotype, and only use the edges which

are very likely induced dependencies, in this case where the

probability of observing a larger marginal correlation, given that

they are uncorrelated, is 0.90. This threshold of 0.90 was used as a

highly conservative threshold for marginal independence.

Simulation analyses and comparison to other network
recovery algorithms

To benchmark the performance of our algorithm, we compared

it to the PC-algorithm [29,31], the QDG algorithm [11], the

QTLnet algorithm [16], and the NEO algorithm [18]. The other

previously proposed cyclic algorithms either do not scale well (e.g.

Figure 3. Outline of the structure of Step 2 of the algorithm. (a) After selection of phenotypes in Step 1, we produce a covariance matrix
between observed gene expression products, and their associated unique cis-eQTL. (b) A convex feature selection method (the adaptive lasso) is used
to learn the structure of the inverse covariance matrix, which is also the conditional independence or interaction network among gene expression
products and cis-eQTL genotypes. (c) The directed cyclic network among expression products can then be recovered directly from the conditional
independence network, using the ‘‘Recovery’’ Theorem. For Step 3, each of the induced edges between expression phenotypes and cis-eQTL, shown
in (b), are tested to ensure marginal independence using a permutation test.
doi:10.1371/journal.pcbi.1001014.g003

Network Reconstruction by Convex Feature Selection
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the approach of Li et al. [9]) or have prohibitively complex

implementations (Richardson’s cyclic recovery algorithm [20] or

the algorithm of Liu et al. [10]). The PC-algorithm is designed to

recover directed acyclic graphs using iterative tests of conditional

dependence and independence, is a computationally efficient

algorithm (scales to thousands of genes for sparse networks), and

has competitive performance with other directed acyclic graph

reconstruction algorithms [29,36]. Additionally, the PC-algorithm

forms the backbone of the QDG algorithm where it is used to

construct an undirected graph (the skeleton of the directed acyclic

graph) among expression phenotypes before orienting these edges

using known QTL [11]. The QTLnet algorithm proposes a full

Markov chain Monte Carlo approach to network inference, but

does not scale above twenty phenotypes because of convergence

rates of the Markov chain, and does not explicitly model directed

cyclic graphs [16]. We also compared our algorithm to the NEO

algorithm [18], and found that our approach controlled the false-

discovery rate much better and had higher power for small

networks (p~5, results not shown), but the implementation of the

NEO algorithm available from the author was not stable for our

simulations of larger networks (pw~10), and so we did not

include it in a larger comparison.

To compare the performance we simulated data from the model

presented in Equation (1) with strong cis-eQTL, low sample

variances, and different topologies, representing a scenario where

there are strong eQTL, and few direct interactions between genes,

with sample networks illustrated in Figure 4. The four different

classes of simulations included directed acyclic graphs for 10

phenotypes, with sparse and dense topologies (Figure 4a, 4b), and

directed cyclic graphs for dense (Figure 4c) and intermediate

topologies (Figure 4d), with 10 and 30 phenotypes respectively, for

a total of 160 distinct network topologies generated across all the

Figure 4. Examples of four network topologies used to simulate gene expression data from 160 total topologies. Sparse acyclic (a),
dense acyclic (b), and dense cyclic (c) graphs were simulated for networks with 10 genes. Intermediately dense cyclic networks were simulated
networks with 30 genes (d). Nodes represent expression levels of genes and the directed edges represent regulatory (conditional) relationships
among genes, where the strength of the relationships were determined by sampling from a uniform distribution. Each phenotype (node) has a
unique, independent cis-eQTL feeding into into it (not shown), with constant effect.
doi:10.1371/journal.pcbi.1001014.g004

Network Reconstruction by Convex Feature Selection
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simulations. This simulation is biologically motivated by the need

for strong, statistically independent cis-eQTL and interactions

among genes, as observed in previous studies [26–28].

We simulated a set of either 10 or 30 expression phenotypes and

genotypes for sample sizes of n~50, 100, 200, 300, 400, 600,
800, and 1000 for both directed acyclic graphs and directed cyclic

graphs. We simulated an F2 cross with the R package QTL [37],

with either 10 or 30 independent known unique cis-eQTL of

constant effect (diag(B)~1), and error variances of 1|10{2. The

regulatory effects (L) were sampled from a uniform distribution

with parameters (1=2,1) or ({1,{1=2) with equal probability.

The network topologies were generated by randomly connected

variables with equal probability, where the expected number of

edges for each variable was either one, two, or three.

Five replicate simulations were performed, sampling a new

network topology and parameterization each time, and the power

and false-discovery rate were computed for the adaptive lasso, PC-

algorithm, QDG algorithm, and QTLnet algorithm for 10

expression traits, and all except QTLnet for 30 expression traits

(because of the scaling of QTLnet). In addition, because we

simulate the QTL independently, with no trans effects, we do not

perform the third step of our adaptive lasso algorithm. We

compared the performance for both directed acyclic graphs as well

as directed cyclic graphs. In Figure 5 and Figure 6 we show the

power and false discovery rate for recovering the correct set of

directed edges using these methods. While some of the power and

false-discovery rate curves show large fluctuations with increasing

sample size in Figure 5 and Figure 6, this is due to elevated

Figure 5. Performance of our algorithm using the adaptive lasso for directed acyclic graphs compared to other algorithms. These
other algorithms include the PC-algorithm, the QDG algorithm, and the QTLnet algorithm for reconstructing different acyclic topologies of 10 genes.
For a sparse directed acyclic topology (as in Figure 4a), the power (a) and false discovery rate (b) are plotted as a function of the sample size for five
replicate simulations. Similarly, for a dense directed acyclic topology (as in Figure 4b), the power (c) and false discovery rate (d) are plotted.
doi:10.1371/journal.pcbi.1001014.g005

Network Reconstruction by Convex Feature Selection
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sampling variability due to each replicate simulation having a

unique topology and parameterization.

For two of these scenarios, we show that our algorithm using the

adaptive lasso can outperform the PC-algorithm, the QDG

algorithm, and QTLnet in terms of statistical performance (see

Figure 5c, 5d and Figure 6a, 6b) with similar computational

scaling. In general, only the QDG algorithm has competitive

performance with the adaptive lasso (see Figure 6c, 6d). This

indicates that the necessary sample size to have a significant

performance gain over the QDG algorithm may be much larger

than is biologically realistic for larger more complex networks.

These are significant results in two ways, the first being that we

show that a feature selection method using linear regression can 1)

identify directed regulatory architecture (given sufficient pertur-

bations) and 2) it can also outperform state of the art network

reconstruction algorithms, given a sufficient samples size and

appropriate model dimension.

The adaptive lasso approach appears to work the best for

smaller problems (i.e. 10 phenotypes) with denser topologies (i.e.

Figure 4b, 4c) and performs better than other approaches in such

cases (see Figure 5c, 5d and Figure 6a, 6b). This may be because

smaller dimensional problems behave asymptotically at a faster

rate. Unfortunately, this suggests that for larger problems (e.g.

hundreds to thousands of phenotypes), unless the true topology is

relatively sparse, the adaptive lasso, and perhaps all of these

approaches will have poor performance without unrealistically

Figure 6. Performance of our algorithm using the adaptive lasso for directed cyclic graphs compared to other algorithms. These
other algorithms include the PC-algorithm, the QDG algorithm, and the QTLnet algorithm for reconstructing different cyclic topologies of 10 genes (a)
and (b) or 30 genes (c) and (d). For a dense directed cyclic topology (as in Figure 4c), the power (a) and false discovery rate (b) are plotted as a
function of the sample size for five replicate simulations. Similarly, for an intermediately dense directed cyclic topology of 30 genes (as in Figure 4d),
the power (c) and false discovery rate (d) are plotted.
doi:10.1371/journal.pcbi.1001014.g006

Network Reconstruction by Convex Feature Selection
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large sample sizes (e.g. thousands) for both directed acyclic and

cyclic graphs. We also performed a simulation for a small network

(e.g. 10 phenotypes and 10 cis-eQTL), with dense directed acyclic

topology and 200 or 1000 individuals with random variances and

eQTL effects simulated from a C(2,1) distribution. We found a

uniform reduction in power (10–20%) across all methods, as well

as a modest increase in false discovery rate (5–10%). Increased

sample size appeared to correct for this additional randomness in

the parameterization (results not shown).

Yeast network analysis
We used our algorithm to reconstruct network structure for

genome-wide gene expression data and genetic markers assayed in

112 segregants of a cross between two strains of Saccharomyces cerevisiae,

reported by Brem and Kruglyak [27]. This cross was between a lab

strain (BY4716) and a wild strain (RM11-1a), with 2,957 genetic

markers genotyped and expression levels for 5,727 genes measured.

While the sample size is relatively small, the study was well powered,

with many strong cis-eQTL and interactions among genes [27]. An

individual marker analysis was run around the cis region of each gene

(25 kb around the start site of the gene) to identify a set of gene

expression products with strong cis-eQTL ({log10(p-value)v

1|10{5), which identified 262 genes. We further filtered this set

to remove cis-eQTL genotypes with high linkage, by filtering for a set

with pairwise r2
v0:03 between any two cis-eQTL genotypes.

Additionally, we tested the robustness of the inferred edges by

randomly sampling the flanking genetic markers 20 times for all cis-

eQTL and refitting the model. The percentage recovery for the top

six recovered directed edges for the 20 resamplings are shown in

Table 1. All missing data for a given genotype or phenotype was set

to the sample mean of the respective variable.

After the additional filtering described above, we were left with

35 genes with unique, independent cis-eQTL, with an undirected

network shown in Figure 7a, and possibly directed network shown

in Figure 7b. Performing the adaptive lasso procedure on these 35

gene expression phenotypes and 35 genotypes identified 91

possibly directed edges among these genes, and 145 undirected

edges among the genes. These hits were further filtered to ensure

they represented induced dependencies, leaving six edges with

relatively strong evidence of directionality (see Table 1 and

Figure 7b). These include four edges feeding out of the TYR1

gene, a gene involved in tyrosine biosynthesis [38]. Since TYR1 is

also a hub in the undirected network (see Figure 7a), this suggests

that amino acid biosynthesis, and perhaps anabolism in general is

driving the expression of many of this particular subset of genes.

The genes in which TYR1 appears to have direct effects on have

diverse molecular and biological functions including endocytosis

(RCY1), sulfonate catabolism (JLP1), cell-cycle checkpoint (BUB2),

and cell-cell communication (PRM7) [39–42].

Additionally PRM7 feeds into POC4, a proteasome chaperone

protein [43], representing possible cross-talk between cell-cell

communication response and protein processing. Finally, SEN1, a

helicase indicated in RNA polymerase 2 termination [44], appears

to robustly directly affect MST27 an integral membrane protein

implicated in vesicle formation [45]. In the implied undirected

graph, there were striking topological features, including an

average degree of 8.28 (relatively dense), and four genes appeared

to be major hubs of a sort, TYR1, NUP60, RDL1, and POC4.

These hub genes may represent major axes of variation driving the

expression of this subset of genes including processes such as

amino acid biosynthesis, information transfer across the nuclear

envelope [46], and protein degradation. While most of the edges in

the network were not orientable, there still appeared to be many

dependencies (even with a possibly high false-discovery rate),

indicating a potentially complex set of regulatory interactions,

projected on this subset of genes, driving variation in expression.

Additionally, there were many edges from eQTL that would

appear to be trans associations (i.e. with large marginal correla-

tions), demonstrating that many of the pathways that mediate

these trans genetic effects are not captured in the observed sets of

genes. Based on the simulation study, and the complexity of the

recovered network (which most likely indicates a high false

discovery rate), a much higher sample size would need to be

collected to definitively resolve this possible set of regulatory

interactions, and have increased confidence in the directional

interpretation of the induced edges.

Discussion

Our algorithm represents a novel approach to directed network

recovery by making use of a convex optimization approach for

regulatory feature selection when analyzing gene expression

products and cis-eQTL. This is the first algorithm that makes

use of sufficient sets of cis-eQTL to infer unique directed cyclic

networks from gene expression data with a feature selection

methodology. Our use of the adaptive lasso procedure for feature

selection has significant computational and theoretical advantages,

since the underlying optimization program is convex (ensuring a

computationally efficient, unique solution), is model selection

consistent, and has the oracle property (asymptotically, the

estimates of the non-zero regression coefficients behave as if the

model was known a priori) [25]. There have not been many

algorithms proposed for genome-wide cyclic regulatory network

recovery, [9–11,20] and they all have either computational or

theoretical challenges associated with them, including heuristic

searches through regulatory network space with no guarantee to

reach networks with the strongest evidence given the data

[10,11,18], or lack sufficient perturbations to allow unambiguous

regulatory inference [9,20]. With respect to directed acyclic

Table 1. Directed regulatory edges identified by the adaptive lasso for S. cerevisiae cross.

Regulator gene Target gene Scaled effect % Recovery from adjacent marker resamplings

TYR1 RCY1 0.035 0.05

TYR1 JLP1 0.123 0.35

TYR1 BUB2 20.0056 0.55

TYR1 PRM7 0.0576 0.55

SEN1 MST27 20.135 0.85

PRM7 POC4 0.154 0.15

doi:10.1371/journal.pcbi.1001014.t001
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network recovery, we see in the simulations that our feature

selection approach with sufficient perturbations outperforms the

PC-algorithm, the QDG algorithm, and the QTLnet algorithm for

dense, small scale problems as shown in Figure 5c, 5d and

Figure 6a, 6b. This increase in performance is a direct function of

the adaptive lasso procedure correctly identifying the children of a

given node, which will then force an edge to appear between the

additional co-parents of that node, and its unique cis-eQTL. Once

all these induced edges are identified, the structure of the directed

network can be elucidated, since all the expression parents of each

gene will be known. Our algorithm also does this all in a single

optimization procedure, avoiding sets of iterative tests, where type-

I and type-II errors can build up at each stage, such as in the PC-

algorithm. Alternatively for larger more complex graphs the

performance appears to be similar to that of the QDG algorithm

Figure 6c, 6d, perhaps because the asymptotic properties take

much larger sample sizes to be practically realized.

For the analysis of the yeast data the topology of the identified

network included many undirected cycles, with the few orientable

edges being acyclic, as shown in Figure 7. In addition there were a

set of genes which appeared to be hubs (the most connected being

TYR1, NUP60, RDL1, POC4, and SEN1, PCD1, and SAN1 to a

lesser extent). This phenomena is probably in part due to an

inflation in false-positives because of the small sample size, and a

complex underlying model with many unobserved variables. Yet a

subset of these edges may represent hub genes capturing different

broad patterns of variation across this entire sub-network. Even

though most of the edges in this network are not orientable, an

experiment could be devised where each of these hubs was

perturbed, and given the topology it would produce a prediction

about how a relatively large set of other genes in the hub’s

neighborhood would behave. More strongly, in the case of the

TYR1 gene which had the most orientable edges, it suggests that if

the process driving that gene’s expression was stopped, many other

genes would also be affected, but not vice-versa.

A number of assumptions concerning biological networks are

implicit to our algorithm. These include assumptions that are

common to most graphical modeling techniques, such as sparsity,

faithfulness, linearity of regulatory relationships, and normally

distributed error, as well as an assumption that is specific to our

algorithm: the presence of known, independent perturbations from

cis-eQTL. The common assumptions are reasonable when

constructing a first approximation to regulatory network structure.

Sparsity and faithfulness (i.e. the true network does not contain

pathological parametrizations where there is parameter cancella-

tion) are essential assumptions that are implicit in algorithms for

both directed and undirected network inference algorithms

[5,6,11,16,20,29,30]. Regulatory relationships are not linear, but

linearity is the simplest approximation that provides biologically

relevant information, i.e. there is a detectable relationship between

two genes, or no relationship. An assumption of normality is

conservative in terms of being the most ‘random’ distribution that

could have generated the data, since given an observed covariance

structure, normal distributions have maximum entropy [47].

Given the absence of knowledge about the specific biological

process generating the distribution of expression measurement

error, and barring any clear evidence of non-normality in data,

such a conservative approximation is appropriate.

The assumption of independent, detectable cis-eQTL effects is

the most restrictive assumption. Other methods have proposed to

use trans-eQTL directly to increase the power to detect causal

relationships and reduce the space of equivalent models [5,9–

11,16,18,19]. We require the assumption of only cis-eQTL,

because without it, there is no longer the exact isomorphism

between the undirected graph among genotypes and phenotypes

and the directed cyclic graph among phenotypes. This occurs

because in the case of directed cyclic graphs, it is statistically

impossible to know which phenotype in a network a trans-eQTL

directly feeds into, unless their is prior knowledge about the true

causal structure of the system, as with the assumption we make

about cis-eQTL. This statistical degeneracy arises as a result of the

‘‘Recovery’’ Theorem, where when there is a set of equivalent

models with independent, unique perturbations, that contains

reversals of cycles, each equivalent directed cyclic graph will have

Figure 7. Sparse network reconstruction among 35 gene expression products. These genes were filtered for having strong, independent
cis-eQTL (pairwise r2

ƒ0:03) using the adaptive lasso algorithm for a Saccharomyces cerevisiae cross between a wild strain and lab strain [27], with 112
segregants (see text for details). (a) Recovered undirected network among these 35 gene expression products and (b) putative directed network
reconstructed for the same genes, based on the edges between cis-eQTL (not shown) and the 35 genes. Bold edges represent directed edges with
strong confidence based on a resampling procedure (see text for details).
doi:10.1371/journal.pcbi.1001014.g007

Network Reconstruction by Convex Feature Selection

PLoS Computational Biology | www.ploscompbiol.org 9 December 2010 | Volume 6 | Issue 12 | e1001014



an alternative perturbation topology (i.e. the mapping between

unique eQTL and gene expression phenotypes, determining

which eQTL causally affects which gene expression product).

Alternatively, as we show in real data, even if there do appear to

be many trans-eQTL we can still detect a subset of edges from the

cis-eQTL that behave how we would like (by using Step 3 of the

algorithm). While this may reduce our power to detect directed

cycles in practice, it ensures that for real data-analysis we are more

confident in the edges we reconstruct. Another possible solution to

the incorporation of trans-eQTL would be to use the adaptive lasso

to generate the initial undirected graph among genotypes and

phenotypes, then to orient the edges in the graph using an iterated

testing approach, as in the NEO algorithm [18], the algorithm of

Millstein et al. [19], or the QDG algorithm [11]. We do not expect

the requirement of unique cis-eQTLs to be a good approximation

for all regulatory modeling situations. However, this assumption

also seems reasonable, given recent biological observations of

strong local polymorphism associations with gene expression

(eQTL) which are often not in linkage disequilibrium [26-, 28, 48,

49]. What is more, due to the structure of linkage disequilibrium in

outbred populations (the correlation structure among genotypes) it

is often possible to identify a large set of cis-eQTL that are

uncorrelated and each have unique expression phenotypes, e.g. a

set of eQTL that are present on different chromosomes or are far

away from one another in terms of genetic map distance [28].

As a final comment, the theory of sufficient perturbations that

maximize regulatory resolution, which is used as the foundation of

our algorithm, is quite general, and could be used to integrate

multiple data types to make predictions about putative causal

regulators underlying complex phenotypes, such as disease [1,2].

The ‘‘Recovery’’ Theorem defines a class of perturbation

architectures where there is a direct isomorphism between two

very different types of networks: the inverse covariance structure (an

undirected network) with perturbations and a directed cyclic graph

representing a regulatory network. The theory does not require

perturbations to be cis, just that there be an appropriate set of

perturbations that provide resolution. More complex perturbation

sets, which include sufficient perturbations as a subset, can also

provide maximum resolution. One could therefore construct

algorithms similar to the algorithm presented in this paper, without

the local cis perturbation restriction. Moreover, the specific topology

of eQTL effects need not be known, if one is willing to accept the

cost of larger network equivalence classes and therefore less total

regulatory resolution. With this restriction lifted, it would be possible

to jointly infer the genetic perturbation architecture simultaneously

with regulatory architecture, although such a joint reconstruction

would require much larger sample sizes.

Methods

The network model
The network model is presented in equation (1). For this model,

we make the assumption that in the true network model, L is

sparse. In addition, we assume that R, the error covariance matrix

of expression products, is diagonal, and diag Lð Þ~1, where the

constraint on the diagonal of L ensures model identifiability. This

constraint corresponds to a lack of self-loops, since the parameters

representing self-loops are confounded with the error variance

parameters specified by R. These latter assumptions on R and L
(i.e. no error covariance or self-loops) are standard, and used by all

popular graphical network inference algorithms, directed and

undirected, proposed to date [3,6,9–11,14,20,29,31]. The model

depicted by Equation (1) is a completely observed structural

equation model (SEM) [50].

Likelihood and equivalence
The conditional log-likelihood of the model defined by

Equation (1) can be written as:

‘ YDX; L,B,Rð Þ!log det Syy

� �� �
{Tr SSð Þ, ð4Þ

where the full precision matrix S and empirical covariance matrix

S are:

S~
Syy Syx

ST
yx Sxx

" #
~

LR{1LT LR{1BT

BR{1LT BR{1BT

" #
ð5Þ

S~
1

n

YTY YTX

XTY XTX

" #
, ð6Þ

with the data matrices Y and X re-centered.

We can define a fully parametrized model matrix C:

C~
LR

-1
2

BR
-1
2

" #
, ð7Þ

since by definition Rw0, and diag Lð Þ~1, both L and B can be

rescaled by the positive square root of the error precision matrix

R{1.

From Equation (5), Equation (6), and Equation (7) the

relationship between the fully parametrized model matrix C, and

the full precision matrix S is

CCT~S: ð8Þ

This defines a system of homogeneous polynomials of degree two

which exactly specifies the relationship between the directed graph

C, which may contain no cycles (a directed acyclic graph or DAG)

or may contain cycles (a directed cyclic graph or DCG), and the

moralized undirected graph S.

Definition of equivalence [51]: Two sparse directed cyclic graphs

specified by the model in Equation (1), with parametrization C1 and C2, are

equivalent in distribution iff for all parametrizations C1,AC2 : C2CT
2 ~C1CT

1 and for

all parametrizations C2,AC1 : C1CT
1 ~C2CT

2 .

Intuitively, the parametrization defined by C1 and C2 provide a

unified representation of the directed cyclic graph among gene

expression products along with the set of perturbations of

expression (i.e. genotypes). This definition of equivalence allows

us to characterize our theory of sufficient perturbations.

‘‘Recovery’’ theorems
Given the importance of having as small a set of equivalent

models as possible for making meaningful inference, and the

necessity of perturbations for minimizing equivalence classes, it is

of interest to know what will constitute a sufficient set of

perturbations, i.e. to shrink the size of arbitrary equivalence

classes as much as possible. In the following section we provide

proofs of three theorems that describe such a set. We note that it

should also be possible to use the work of Richardson on cyclic

causal discovery [20] to arrive at the same theoretical condition

concerning a set of sufficient perturbations, though it is beyond the

scope of this work to show this connection. Here, we use an

independent and simpler proof based on normal theory and

matrix algebra. Our theory also provides a generalization of the

Network Reconstruction by Convex Feature Selection
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work of Chaibub Neto et al. [11], which shows that sets of unique

(or ‘‘driving’’) QTL for each phenotype can be used to uniquely

orient edges in a directed cyclic network. Our approach allows us

to represent the problem of directed network inference as a model

selection problem within a regression equation for each pheno-

type. This allows us to avoid the reliance on computationally

inefficient heuristics [3,10,11], which can generate many possibly

poor-fitting networks depending on how the algorithm is run,

when considering sample sizes that are typical of experiments

collecting genome-wide gene expression data.

The ‘‘Recovery’’ Theorem demonstrates how the set of

equivalent DCGs can be recovered from the precision matrix

between expression phenotypes and loci (the matrix Syx). This last

result is incorporated into our algorithm for inferring sparse

network structure with a sufficient perturbation (eQTL) set. Note

that while the algorithm depends on sparsity for efficient network

recovery, the results of these theorems are general and do not

require such a constraint. In addition, we note in a further

Lemma that even in the case of directed cycles, if we know which

phenotype a perturbation feeds into, we can further reduce the size

of the equivalence class to a unique directed cyclic graph.

Theorem 1: Given two distribution equivalent directed cyclic

graphs, with equivalent parametrizations C1 and C2, any matrix A
which satisfies C1A~C2, must be orthonormal (i.e. AAT~I).

Proof of Theorem 1: Since C1AATCT
1 ~C2CT

2 , and from the

definition of equivalence, if C1 and C2 are equivalent, then

C1CT
1 ~C2CT

2 . Therefore, C1AATCT
1 ~C1CT

1 . Left multiply by CT
1

and right multiply by C1, then CAATC~CC, where C~CT
1 C1 is

a positive definite invertible matrix of rank p. Left and right

multiply by C{1, and AAT~I.

The matrix A can be thought of as a linear operator that allows

transformations between models which produce the same

covariance (and inverse covariance) structure (even between

models which are not faithful). We use this operator to prove

the following theorem after rescaling the network and perturbation

parameters as in Equation (7): Li~LiR
{1

2

i , Bi~BiR
{1

2

i :

Theorem 2: If there exists an ordered set S~ s1,s2, . . . ,sp

� �
of

rows of the perturbation graph parametrized by B1 such that

L1~B
Sð Þ

1 P1, where L1 is a diagonal matrix of rank p and P1 is a

signed permutation matrix, then 1) if L1 parametrizes a DAG,

then for any parametrization L1 of any DAG, there does not exist

an alternative equivalent DAG or DCG, and 2) if L1 parametrizes

a DCG, then for any parametrization of any DCG, there exists a

finite set of equivalent DCGs, where each equivalent DCG

contains a reversed directed cycle with reference to the original

DCG.

Proof of Theorem 2: Given L1 exists, assume there exists an

alternative equivalent model parametrized by B2 and L2. Then,

by Theorem 1, there exists an orthonormal matrix A where

L1A~L2, B1A~B2, and L1A~L2. Because L1 and L2 are

invertible, we have: A~L{1
1 L2. This implies that L1LT

1 ~L2LT
2 .

Since L1 is diagonal for any parametrization B1, L1LT
1 and L2LT

2

must also be diagonal for all equivalent parametrizations L1,L2. If

there does not exist a signed permutation matrix P2 such that

F~L2P2, with F diagonal, then there always exists a parametri-

zation of L2 where L2LT
2 is not diagonal, and therefore not

equivalent (since all non-zero elements of L2 are free to vary).

Therefore A~PT
2 is either an identity matrix or a signed

permutation matrix. Now consider L1A~L2. Because in this

parametrization, diag Lð Þ~diag R
1
2

� �
, the only allowable equiv-

alent model transformations must have positive non-zero

elements along the entire diagonal. Therefore, if L parametrizes

a DAG, then A~I, and if L parametrizes a DCG, then A~P
where P is any signed permutation matrix which ensures non-

zero positive elements along the diagonal of L. This corresponds

directly to reversing the order of any set of directed cycles in the

graph.

This theorem allows us to understand constraints on possible

equivalent models in the specific case when each node has at least

one unique perturbation. In the next theorem, we focus on the

structure of the moralized graph (i.e. the precision matrix S) for

these models, and see how it maps back to the set of possible

unmoralized directed graphs that generated the moralized graph.

We define the set of parents of a particular node, yi, from the

directed graph as pa(yi), and the set of all nodes in an undirected

graph S that have edges to node z as adj(S,z).

‘‘Recovery’’ Theorem: If in S there exists an independent

perturbation vertex set x~(x1, . . . ,xq) and a response vertex set

y~(y1, . . . ,yq) where Vi,Dadj(Syx,yi)D§1 and Axj[pa(yi), then the

only equivalent directed cyclic graphs among y that could have

generated S contain permutations of cycles, and can be recovered

from Syx.

Proof of the ‘‘Recovery’’ Theorem: The existence of an

independent perturbation vertex set and response vertex set that

satisfies these conditions corresponds directly to a perturbation

topology and parametrization specified by L1 from Theorem 2.

Given this observation, Theorem 2 ensures the constraint on

possible equivalent models. Finally, the reason the structure can be

recovered from Syx is apparent from Equation (5) and (7), where

Syx~LBT, and therefore SL1
yx~LLT

1 Since LT
1 is diagonal it won’t

change which elements of SL1
yx are zero or non-zero.

In the case of DAGs, a generalization of this theorem is trivial

to prove for graphs defined over arbitrary probability measures,

since the process of moralization of a graph connects all the

parents of a given node. Since in this specific perturbation case,

each node has at least one unique parent (from the perturba-

tions), then a connection will be induced between the unique

perturbation parent and each of its co-parents, indicating exactly

what the unique set of parents are for that given node.

Alternatively, as we saw in Theorem 2, the assumptions of

normality and linearity are key to showing that even for directed

cyclic graphs that have unique perturbations, there still exists

multiple equivalent models. In the ‘‘Recovery’’ Theorem we see

that we can still determine these ‘minimal’ equivalence classes

from the moralized graph. It is interesting to observe that the

perturbation topology can completely change among equivalent

directed cyclic graphs, whereas it cannot for directed acyclic

graphs. If one knows which node each perturbation feeds into,

then the following is true:

Lemma: If the underlying perturbation topology, B1, is

known, then the cardinality of all directed cyclic equivalence

classes is reduced to one.

This further reduction of the equivalence relationships is

apparent when one considers that each equivalent perturbation

topology specifies exactly one member of the equivalence class

(from the ‘‘Recovery’’ Theorem). Therefore, if one knows the

true perturbation topology, then one knows the true regulatory

model. This allows us to infer a unique directed cyclic graph in

the case where we know which phenotype each genetic

perturbation feeds into. Hence, the reason behind making our

major biological assumption: to only consider the genetic effects

of cis-eQTL and assume that the cis-eQTL feeds directly and

uniquely (i.e. non-pleiotropically) into the local gene. With trans-

eQTL, unless there is prior knowledge about exactly which gene

each trans-eQTL affects (i.e. about the pathways in question),

there is no way to reduce this equivalence class to a unique

directed cyclic graph.
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Algorithms
Adaptive lasso. For Step 1 of the algorithm, we perform an

individual marker analysis of each genetic polymorphism in a

window around the start site of the gene, and only include the

markers that are significant given a Bonferroni correction for

multiple testing. We then filter these sets of cis-eQTL such that

they are effectively independent given the linkage disequilibrium

structure of the data. For the analysis of the yeast data, we found

that a maximum pairwise r2
v~0:03 between cis-eQTL geno-

types was a very conservative threshold given a resampling test of

random markers across the genome (results not shown).

For Step 2 of the algorithm, the lasso problems from Equation

(2) and (3) are solved using the cyclic coordinate descent method of

Friedman et al. [52], as implemented in the ‘glmnet’ package,

called by the ‘parcor’ package [8]. While this method is an

approximation to solving the adaptive lasso for the log-likelihood

defined in Equation (4), there are theoretical connections between

an exact solution to the problem, and this approximate solution

which suggest that in some cases the approximation will not

perform much worse than the exact solution (i.e. highly penalized

cases) [23].

For Step 3 of the algorithm, we performed a permutation test to

very conservatively ensure that the induced edge found between

an upstream gene, and the cis-eQTL, did not arise from a trans-

effect of the cis-eQTL. To do this we randomly resampled the

genotype data 10,000 times for each induced edge, and

determined the proportion of the time the absolute value of the

marginal correlation between upstream gene and cis-eQTL under

the empirical null model was greater than the absolute value of the

observed marginal correlation. We only treated induced edges as

representing a directed relationship between a pair of phenotypes

if the probability of observing a greater value under the empirical

null model was greater than 0.90.

PC-algorithm. While this is only designed to reconstruct

directed acyclic graphs, it has been used in a combined gene

expression and genotype context to reconstruct directed cyclic

graphs [11]. The PC-algorithm reconstructs the skeleton (i.e. set of

edges regardless of edge orientation) of a partially directed acyclic

graph (PDAG) by performing forward tests of conditional

independence. It first starts by constructing a correlation graph

(i.e. a conditional independence graph where one conditions on

the empty set), then in a forward step-wise manner, removing

edges in the neighborhood of each node by increasing the size of

the conditioning set based on the neighborhood of each node.

Once the cardinality of the conditioning set is equal to or larger

than the neighborhood for all nodes, the algorithm terminates.

While this is being done, all identified v-structures (co-parents of a

common child) are being tabulated, so that afterwards these edges

can be oriented. Then, there is a set of rules, based on the seed v-

structures which orient a small initial set of edges, which orient

many additional edges in the network, by propagating the

implications of the few initial oriented edges, with respect to the

d-separation criterion defined for directed acyclic graphs [29,31].

We applied the PC-algorithm by giving it the entire set of gene

expression products with cis-eQTL as well as all of the cis-eQTL

genotypes as well. There is one tuning parameter, a, for the

implementation ‘PCalg’, which represents the level of significance

each test of conditional independence has to pass to correspond to

removing an edge from the skeleton of the network. We used a

conservative value of a~0:001, based on simulation results

presented in Kalisch et al. [29]. For directed acyclic graphs, the

PC-algorithm will also use the cis-eQTL to orient each of the edges

in the network correctly and uniquely. For directed cyclic graphs,

the PC-algorithm will try to orient the edges to form a directed

acyclic graph, but often will fail, and draw a random DAG instead.

We also apply the PC-algorithm to directed cyclic network

recovery by having it identify both the skeleton with perturbations,

and then have it attempt to orient as many edges as possible, given

that every regulatory relationship should be orientable with the

PC-algorithm when there are sufficient, unique perturbations.

While in some cases this will fail, especially as the sample size

grows and it becomes more sensitive to variations away from the

assumption of no cycles, in practice it is able to orient many edges

correctly in a directed cyclic graph.

QDG algorithm. The default settings were used for the QDG

algorithm, as provided by the authors [11]: a~0:005 for the PC-

algorithm skeleton reconstruction step, the skeleton reconstruction

method based on the PC-algorithm, and the number of random

restarts of iterative testing of different global edge orientations was

set to ten. The QDG algorithm uses either the PC-algorithm or

UDG algorithm [53] to generate a skeleton among phenotypes

[12]. Then, the QDG algorithm orients edges between phenotypes

based on a LOD score computed by leveraging each phenotype’s

known QTL. To find a globally optimal orientation of edges, an

iterative search over orientations is performed to find all possibly

cyclic networks which fit the data well [11]. We tried both methods

in the QDG algorithm to generate the skeleton, and did not see a

significant difference in performance for our simulations (results

not shown).

QTLnet algorithm. The default settings were used for the

QTLnet algorithm, as provided by the authors [16]: we ran it for

20,000 iterations, sampling every 20th iteration after a burn-in of

2,000 iterations. The QTLnet algorithm uses a fully Bayesian

Markov chain Monte Carlo approach to solve the problem of joint

phenotype genotype network inference, constraining the proposed

graph transitions to directed acyclic graphs [16]. In our analyses,

we use the Bayesian model averaged output of the QTLnet

algorithm, and include an edge only if its posterior probability of

inclusion is greater than 0.50.

NEO algorithm. We used the default settings for the NEO

algorithm, based on the code available from the author’s website:

http://www.genetics.ucla.edu/labs/horvath/aten/NEO/ [18].

The NEO algorithm uses multiple QTL to orient edges between

an arbitrary pair of phenotypes based on different structural

equation model based statistics [18], but has no mechanism to

remove edges among phenotypes by conditioning on other

phenotypes, and will therefore often have high false-discovery

rate for recovery of the network generating the data among

phenotypes. This was another justification, aside from the scaling

of the algorithm, for why we did not include it in our broader

comparison of alternative methods.
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22. Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable

selection with the lasso. Ann Stat 34: 1436–1462.
23. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation

with the graphical lasso. Biostatistics 9: 432–441.

24. Anjum S, Doucet A, Holmes C (2009) A boosting approach to structure learning
of graphs with and without prior knowledge. Bioinformatics 25: 2929–2936.

25. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:
1418–1429.

26. Schadt E, Monks S, Drake T, Lusis A, Che N, et al. (2003) Genetics of gene

expression surveyed in maize, mouse and man. Nature 422: 297–302.
27. Stranger B, Forrest M, Dunning M, Ingle C, Beazley C, et al. (2007) Relative

impact of nucleotide and copy number variation on gene expression phenotypes.
Science 315: 848–853.

28. Brem R, Kruglyak L (2005) The landscape of genetic complexity across 5,700
gene expression traits in yeast. Proc Natl Acad Sci 102: 1572–1577.
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