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Abstract

Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in
turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is
largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain
transcription factor family. In comparison to the situation in mammalian species, this important family of transcription
regulators has expanded enormously in plant species and contains over 100 members in the model plant species
Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for
the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach.
Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our
computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with
reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription
factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs
demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In
addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain
transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved
among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be
a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-
protein interactions and the interplay between protein sequences and network evolution.
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Introduction

Our ability to derive structural information from primary

protein sequences has matured [1–4]. In contrast, the way in

which the primary protein sequence defines protein-protein

interaction specificity is still largely unknown. Nevertheless, several

approaches to answer this question have recently been described

[5–17]. These methods focus mostly on protein-peptide interac-

tions, which are more amenable to computational and experi-

mental analysis than interactions between full length proteins. In

addition, protein structures or quantitative data about interaction

energy are used, which is information that is in general not

available. Though, current experimental proteomic techniques

allow unraveling protein interaction networks at unprecedented

scale [18–21] and this opens the door towards computational and

experimental approaches for studying protein-protein interaction

specificity at the sequence level.

Most proteins are member of protein families, which are groups

of evolutionarily related proteins that are characterized by the

presence of specific domains. When proteins from a given family

interact with each other these interactions are often highly specific

[22]. In this particular context it is even more difficult to analyze

how interaction specificity is defined than in the general case, as

the protein sequences show a high degree of overall similarity with

various small local differences. A particular example of such a

protein family is given by the plant MIKC MADS domain

transcription factor family [23,24]. The proteins from this family

contain a MADS (M), Intervening (I), K-box and C-terminal

domain, and have the potential to form various homo- and

heterodimers [25,26]. The MADS and K-domain are known to be

involved in mediating these protein-protein interactions [27], and

the I-domain is thought to be important for determination of

interaction specificity [28,29]. MADS domain protein-protein

interaction specificity is tightly linked to specific functions, as
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exemplified by the ABC(DE) model of floral organ formation,

which ascribes roles to specific combinations of MADS proteins in

the development of particular floral organs [30–32]. The quartet

model describes how floral organ identity is specified at the

molecular level by the activity of four different tetrameric MADS

protein complexes [33]. A second process in which specific MADS

domain transcription factor complexes are involved is the timing

of flowering [34,35].

The ability to form various homo- and heterodimers is in

particular relevant for eukaryotic transcription factors such as the

MADS domain transcription factors [36–38]. Aspects of dimer-

ization that are of functional importance include differential gene

regulation by formation of dimers with distinct properties, as well

as the addition of the monomer-to-dimer transition as an extra

layer of regulation.

For the MADS domain transcription factor family as well as for

other protein families, duplications occurred during evolution [39]

which are often lineage- or species-specific. After a duplication,

one of the copies experiences relaxed selection pressure and hence

can evolve a specialized or new function. It is currently unclear to

what extent changes in protein-protein interactions contribute to

this process of sub- or neo-functionalization. Moreover, in several

cases there is apparently no change in function between the two

copies, leading to functional redundancy. This should be reflected

in similar protein interaction patterns, even if the amino acid

sequences of the proteins have diverged. Examples of redundancy

in interaction patterns related to functioning have been described

for members of plant MADS domain protein families [40,41].

Similarly, examples of functional divergence related to changes in

protein-protein interaction specificity have been described [42,43].

Insight into sequence level determinants of MADS domain

protein-protein interaction specificity is thus of broad biological

significance.

Here we present a combined computational and experimental

approach towards understanding how protein-protein interaction

specificity is encoded in the MADS domain protein sequences. We

started with our recently developed interaction prediction method

[44], which provided a set of predicted interaction motifs. The

importance of these short amino acid sequences was tested

experimentally by introducing mutations and comparing the

observed interaction pattern for mutated proteins with the

predicted interaction pattern. We analyzed conservation and

variability of those motifs, which gives insight into their role in

shaping MADS domain protein functioning and the evolution of

the plant MADS domain transcription factor protein-protein

interaction network. At a general level, we show that protein

interaction data sets can be interrogated to obtain sequence level

insight into protein interaction specificity. Members of large

protein families perform in general the same biochemical tasks,

e.g. transcriptional regulation, but the exact biological function of

each individual protein is influenced by its unique set of

interactions. The approaches developed in this study set the stage

for further investigations to understand how protein-protein

interactions and hence protein functioning, is encoded in primary

amino acid sequences.

Results

Predicted motifs responsible for MADS domain protein-
protein interaction specificity

The basic premise of our computational approach, IMSS

(Interaction Motif Search and Selection) [44], is that specific motifs

in a protein sequence together determine the proteins’ interaction

pattern. The algorithm first searches for pairs of motifs that are

overrepresented in pairs of interacting protein sequences, followed

by motif pair selection via a feature selection approach. This results

in a set of correlated, complementary motif pairs, that when present

in pairs of protein sequences predicts whether these proteins interact.

In general, a single motif does not determine the interaction

specificity for a given protein, but rather this is determined by a

combination of several motif pairs. A detailed overview of IMSS is

given in the Methods section, including adaptations of the method

made, relative to its original implementation.

We applied IMSS to all members of the Arabidopsis MIKC

MADS domain transcription factor family, using the available

interaction data [25]. Our data consists of in total 152 interactions

between 35 proteins, and 478 non-interacting combinations; there

is however a large spread in the number of interactions per

protein, with six proteins that have only one interaction, and four

that have more than 20. Previously these proteins were clustered

based on their interactions [25] and although in some cases the

most closely related paralogs clustered together, meaning that they

have quite similar interaction specificities (e.g. AGAMOUS (AG),

SHATTERPROOF1 (SHP1), SHATTERPROOF2 (SHP2) and

SEEDSTICK (STK)) in other cases such paralogs did not cluster

together and had quite different interaction specificities (e.g.

APETALA1 (AP1), CAULIFLOWER (CAL) and FRUITFUL

(FUL) or SUPPRESSOR OF OVEREXPRESSION OF CO 1

(SOC1) and AGAMOUS LIKE14 (AGL14)).

We applied IMSS with three different settings: (1) the Arabidopsis

data as described above were used as input data with the original

IMSS algorithm as presented before [44] (‘‘ara_original’’); (2) usage

of ‘‘ara_original’’ with small modifications described in the Methods

section (‘‘ara_new’’); or (3) usage of Arabidopsis data together with

data from additional species as input (‘‘all_species’’). Leave-one-out

cross-validation on the Arabidopsis proteins was used to select the best

performing model We also tested leave-family-out cross-validation

with similar results (not shown). To assess the quality of our

predictions, both in the cross-validation setting discussed here and in

Author Summary

Proteins are active in complexes and therefore it is of
utmost importance to understand their protein-protein
interaction patterns. Over the last decade, various large-
scale screening methods have been developed and
implemented providing insight into interactomes for a
number of model species. Despite all these efforts, our
knowledge about molecular mechanisms determining
interaction specificity and underlying protein network
formation is limited. Here, we applied an integrated
computational and experimental approach to identify
short sequence motifs that determine interaction specific-
ity for members of the large and important MADS domain
transcription factor family. We show that the method is
able to predict MADS domain transcription factor interac-
tion networks for non-model plant species with a
reasonable accuracy. Subsequently performed experi-
ments revealed the possibility to rewire protein-protein
interaction networks in a desired manner by generating
small dedicated mutations in predicted interaction motifs.
Additional bioinformatics analyses led to interesting
hypotheses about protein-protein interaction network
evolution. All together, these results provide insight in
the way protein-protein interaction specificity is laid down
in primary protein sequences and open the road towards a
better understanding of protein complex formation and
the possibility to control this important process.

MADS Protein Interaction Specificity
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the experimental validation described below, we use the F-score,

which is the harmonic mean of precision and recall.

With 0.44+/20.3 (average +/2 standard deviation) the F-score

for ‘‘ara_new’’ was slightly higher than the F-scores for the other

two settings (‘‘ara_original’’, 0.41+/20.3; ‘‘all_species’’, 0.40+/

20.3). However, these differences are clearly very small, and

indeed the overlap between the predicted interaction motifs is

relatively large, especially between ‘‘ara_orig’’ and ‘‘ara_new’’.

Around 90% of the sequence positions are simultaneously either

covered or not covered by a motif in each of these two models.

This number is somewhat lower between these two models and the

‘‘all_species’’ model (around 75%). By comparing with randomly

generated motif-hits with the same distribution over the proteins

but randomized positions, we found that the overlaps in motifs

between our three IMSS settings are statistically significant with

p,0.001 (data not shown).

For each protein the resulting predicted protein-protein

interaction motifs from ‘‘ara_new’’ are given in Table S1. Motifs

were found in all the different domains (MADS, I, K and C), but

occurred most frequently at the border between the MADS and I-

domain, in line with the proposed role of the I-domain in

determining dimerization specificity [28,29,45]. This ‘hotspot’

region is homologous to a region in the human MADS domain

protein Myocyte Enhancer Factor-2 (MEF2) [46] that interacts

with a helix of the Cabin1 protein (Figure 1). The motif that is

complementary to most of the motifs in the MIKC MADS hotspot

region is found in the K-box of the interacting proteins, a domain

that is predicted to form a-helices [47–49] comparable to Cabin1.

This data suggests a specific mode of interaction between the I-

region of plant MADS proteins and the K-domain of their

interaction partners.

Remarkably, no interaction motifs were predicted in the first

helix in the MADS domain. This helix contacts both the

equivalent helix in the partner MADS domain and the DNA to

which the MADS domain binds [46] (Figure 1). Hence, it is

involved in protein-protein contacts, but our computational

analysis predicts that these contacts do not contribute to

interaction specificity. They might be important, however, in

determining interaction affinity of MADS protein dimers in

general. This proposed decoupling of protein-DNA and protein-

protein interaction specificity determination is in line with earlier

experimental observations [50] and is an example of modularity at

the protein structure level, which might be important from an

evolutionary perspective as it allows independent diversification of

these two functions. Note however that we cannot exclude the

possibility that determinants of interaction specificity are present in

the first helix of the MADS domain but are missed by our

approach.

In addition to the above-mentioned hotspot region, several

motifs are found in the K-domain. This region is indeed known to

be involved in dimerization, and in fact for a couple of proteins

experimental data is available showing that mutations in the K-

domain change interaction specificity. In particular, for AP3 and

PI, several mutations are known that influence their partner

formation [51,52] and although IMSS does not predict motifs for

AP3, for PI indeed two motifs are predicted in the K-domain (and

none in the MADS or I-domain). Another example of a motif

occurrence in the K-domain which can explain previous

Figure 1. Combining predicted protein-protein interaction motifs and modeled protein structures. (A) Modeled dimer for the Arabidopsis
MADS domain protein SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1). Blue indicates the DNA binding helix (in which no protein-protein interaction
motifs are present). Residues indicated in spacefill (Ala57, Asn60 and Met61) are part of an experimentally validated interaction motif in the so-called
‘hotspot region’ (see text for details). (B) Crystal structure (PDB 1n6j) of human MADS domain protein MEF2 (grey) in complex with Cabin1 (red). Cabin1
contacts MEF2 via Met62 and a few other amino acid residues. MEF2 Met62 is the equivalent of Met61 in SOC1, with both amino acid residues having
comparable positions in the structure. The residues of Cabin1 that contact Met62 (Ser101, Gly104 and Ile106) are shown in red spacefill. Based on the
MEF2-Cabin1 structure we hypothesize a similar kind of binding of the a-helix-forming K-box from a SOC1 interacting MADS domain protein on top of
the SOC1 MADS/I domain. (C) The black box indicates the predicted interaction motif in the ‘hotspot region’ of the SOC1 protein. The predicted
complementary interaction motif (red box) is located in the K-box domain of the MADS domain protein interacting with SOC1.
doi:10.1371/journal.pcbi.1001017.g001
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experimental observations is a motif found in CAL, which

coincides with the cal-4 E131K mutation [53].

MADS domain protein-protein interaction prediction for
other species

Besides obtaining information on the molecular mechanisms

underlying MADS domain protein-protein interactions, our IMSS

method can be used to predict MADS domain interactomes for

other plant species. In order to test the usefulness of IMSS for this

purpose, interactions were predicted for MADS domain proteins

of plant species from which some experimental protein-protein

interaction data are available (‘‘all_species’’ model; see Text S1

and Table S2). These additional data consist of 188 interactions

between 98 proteins. Although, the ‘‘ara_new’’ model obtained

the best prediction performance for Arabidopsis MIKC MADS

domain proteins based on leave-one-out cross-validation and

performed best in the experimental validation (see below), it

turned out to have only a very low performance on data from non-

Arabidopsis species, for which it obtained a recall of only 0.16. We

cannot calculate precision or F-score for these additional species,

because in most cases only interactions are known and no

information is available about non-interactions. However, based

on leave-one-out cross-validation the ‘‘all_species’’ model obtained

a recall of 0.60+/20.44 for the data from other species. The

reason for this strong difference in performance is that despite a

quite similar position of motif hits in Arabidopsis between the

models (see above), their exact definition is somewhat different.

Some of the motifs obtained upon training with Arabidopsis

information only, appeared to be too ‘‘strict’’ and hence, occurring

only in few cases in non-Arabidopsis sequences (data not shown). As

mentioned above, the ‘‘all_species’’ model obtained a F-score of

0.40+/20.3 for the Arabidopsis interactions. Hence, the perfor-

mance of this model for Arabidopsis is only slightly lower than what

was obtained without adding these additional data (‘‘ara_new’’),

and the recall on these additional data is comparable to what is

obtained for Arabidopsis. The model obtained after training with

this augmented dataset provided insight into interaction patterns

among family members across plant species (Tables S3 and S4)

and demonstrates the usefulness of the method for the prediction

of interactions of MADS domain proteins from species for which

only sequence information is available.

Validation of predicted interaction motifs
Predicted interaction motifs point to sites in the MADS protein

sequence that may be essential for determination of protein-protein

interaction specificity (for comparison with existing analyses see

Tables S7 and S8). If this hypothesis is correct, then introducing

mutations in these sites should lead to modified interaction patterns.

We chose several Arabidopsis MIKC MADS proteins as experimental

test-cases for this hypothesis. When selecting validation targets, we

aimed for applying mutations to different regions in the MADS

proteins and using MADS proteins with a range of different

biological functions. In addition, our aim was to demonstrate gain of

interaction partners, and in part we aimed for obtaining swaps of

interactions partners (see Text S1). The reason for the latter is that

loss of interaction partners is in principle simple to obtain by

modification of the sequence, which probably affects also the folding

of the particular domain in which the mutation is introduced.

However, obtaining gain of interaction demands well thought

amino acid changes that result in modified characteristics of an

interaction site. The selected MADS domain proteins for our

validation approach are involved in flowering time determination

(AGAMOUS-LIKE24 (AGL24), SHORT VEGETATIVE

PHASE (SVP), SOC1), floral meristem or organ identity specifica-

tion (AP1, CAL and AG) or have an unknown function (AGL14). As

described below, the experimental validation results for ‘‘ara_new’’

were somewhat better than the results for ‘‘ara_original’’ or

‘‘all_species’’: its F-score on all mutants is 0.54 vs. 0.48 for the

other two settings (we also tested whether this model was still

performing best when leaving out any of the mutations, which was

indeed the case for all mutations). Because of its better performance,

in the presentation of the results below, we will focus on the

‘‘ara_new’’ results, unless otherwise indicated. Note that the slightly

better performance of the experimental validation in case of

‘‘ara_new’’ is consistent with its better performance as judged by

leave-one-out cross-validation on the Arabidopsis interaction data.

Mutations were designed based on the predicted interaction motifs

(Table S1, Table S5, and Text S1) and the mutant proteins tested in a

matrix-based yeast-two-hybrid assay against the collection of

Arabidopsis MADS domain proteins [25]. The approach is illustrated

in detail for the AGL14 and SOC1 proteins (Figure 2; Table 1).

These two MADS proteins share over 50% sequence identity and

group in the same phylogenetic clade [24], but have quite different

interaction patterns. In contrast to AGL14, SOC1 contains a

predicted interaction motif at the junction between the MADS

domain and I-region, the position that coincides with the

aforementioned ‘hotspot-region’. Swapping the amino acids in this

region between SOC1 and AGL14 was sufficient to exchange a large

part of their interaction specificity, as was predicted by the IMSS

method. In particular, for the mutated SOC1 protein we predicted a

loss of 13 of its interaction partners, and for the mutated AGL14

protein a gain of 15 (the difference of two relates to the accuracy of

our method for the original interaction data). Experimentally,

mutated SOC1 lost 20 of its interaction partners, and of the six

that it kept, two were indeed also found as interactions partners for

AGL14. Mutated AGL14 gained seven interaction partners, all of

which were indeed also interacting with SOC1. As mentioned above,

to assess the quality of our predictions, we use the F-score, which is

the harmonic mean of precision and recall. Here, the F-score is

calculated for predicting interaction patterns of mutated MADS

domain proteins with the predictor that is trained with original

Arabidopsis interaction data only. The F-score for our predictions for

these two mutated proteins is 0.71 (AGL14) and 0.63 (SOC1). To put

these values in perspective, we used as a null model the interaction

pattern obtained by the wild type proteins. Using this null model

would give a substantially lower F-score of 0.56 and 0.38, respectively,

which means that our predictor performs much better in this case. F-

scores for all the experimental test-cases are shown in Table S5.

All mutations that we introduced led to changes in interactions.

Overall, in eight out of 15 cases (,53%) the mutations we

introduced led specifically to loss of interactions, in three cases

(,20%) specifically to gain of interactions, and in the remaining

,27% of cases, both loss and gain were obtained (Figure 3,

Table 1, and Table S6). The number of gains and losses that our

IMSS method (‘‘ara_new’’ model) predicted, displayed a good

correlation with the experimentally observed number of gains and

losses (Pearson correlation coefficient 0.76, p-value 0.0005). When

separating gains and losses, the correlation coefficient values are

0.63 and 0.67, respectively (p-value,0.006).

The changing interaction patterns were predicted with a

reasonable accuracy for most of the mutated proteins (Figure 3B;

Table 1). In particular, only for five out of 15 cases our predictions

had a worse F-score than the F-score obtained using the original

interaction pattern as predictor for the mutated proteins (null

model). For seven out of 15 mutations our predictions had a better

F-score and for an additional three cases, the obtained F-scores

were similar to each other. These latter cases all concerned

mutations in the CAL protein, which were introduced based on

MADS Protein Interaction Specificity
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results of the ‘‘ara_original’’ model, but that in the ‘‘ara_new’’

model were predicted to have no effect. Surprisingly, the effect of

the CAL double mutation was that no interaction remained at all.

Almost the same holds for the AP1 double mutation (only one

interaction remained). One particular explanation for these results

could be that introduction of double mutations has the unfortunate

side-effect of disturbing the structure of the proteins to a large

extent. This might in particular be the case when these two

mutations, which are far apart in the sequence of those proteins,

coincide in the 3D structure of the protein. Although no structure

data is available for these proteins outside the MADS domain, we

investigated this possibility by performing an intramolecular

correlated mutation analysis on a large set of AP1 orthologs (for

CAL, too few orthologous sequences were available). The analysis

predicted several intramolecular interactions of residues in the K-

box helix around the mutation side with residues in the I-region

around the mutation side, e.g. residue E149 in the K-box with

residue S74. Based on this observation, we hypothesize that double

mutations in AP1 and CAL (which is closely related to AP1)

introduce too large structural changes leading to instability or mis-

folding of the protein. Hence, the fact that our predictions are not

correct in this case can be rationalized.

In SVP we introduced two single mutations and a double

mutation aiming to change its interaction pattern towards that of

the closely related AGL24 proteins. Alternative splicing has been

reported for SVP and the protein named SVP1, which was used in

this particular experiment, is encoded by the fully spliced SVP

transcript [54]. Although SVP and AGL24 are phylogenetically

grouped in the same clade [24], they act opposite in flowering, being

a repressor and activator of this process, respectively. In this case the

two mutations are in close proximity in the sequence and within one

predicted interaction motif positioned at the ‘hotspot region’

between the MADS and I domain of the SVP protein. Swapping

of this interaction motif between AGL24 and SVP1 did not result in

a complete exchange of interaction pattern (Table 1). Though, for

one single mutation (SVP1 S61R) and the double SVP1 mutant

(SVP1 C58S/S61R) at least interaction with the floral repressor

protein FLOWERING LOCUS C (FLC) was lost, which is

supposed to be important for its floral repressor function [55].

Introducing the ‘‘SVP1’’-motif in AGL24 did not result in

interaction with FLC, but the mutated protein (AGL24 R61S)

gained interaction with MADS AFFECTING FLOWERING 2

(MAF2), which is closely related to FLC and acts also as floral

repressor [56]. Probably, mutations in various interaction motifs

need to be combined in order to get an exact and complete swap of

interaction pattern between AGL24 and SVP1. Indeed, mutations

in predicted interaction motifs in the C-terminal region of SVP1,

which is most divergent from AGL24, showed that this part of the

protein also contributes to SVP1 interaction specificity (Table 1).

As indicated above, our predictor performs worse than the null

model in five out of 15 cases. This seemingly moderate performance

can be understood as caused by side effects of the mutations for at

Figure 2. Example of the experimental validation approach. (A) Schematic representation of the SUPPRESSOR OF OVEREXPRESSION OF CO 1
(SOC1) and AGAMOUS LIKE14 (AGL14) MADS domain proteins. Due to the generated mutations one particular interaction motif (green rectangle) is
swapped between these two Arabidopsis MADS domain transcription factors. The swapped motif is located in the ‘‘hotspot’’ region between the
MADS and I-domain. (B) Part of a sequence alignment of AGL14 and SOC1, including the motif that was selected for mutagenesis (indicated in green
in the SOC1 sequence). The mutated residues that were swapped between the two proteins are shown bold/underlined. (C) Bar diagrams showing
the number of interaction partners for SOC1, AGL14 and their mutated counterparts SOC1* and AGL14*, respectively; see Table 1. For these two
proteins, the F-scores of predicted mutant interactions are 0.63 and 0.71, respectively. (D) Example of a matrix-based yeast two-hybrid screen. Yeast
was spotted on medium lacking Leucine, Tryptophan, and Histidine, and supplemented with 1 mM 3-amino 1,2,4-triazole to suppress transcriptional
autoactivation. Growth and hence interaction events, was scored after incubation at 20uC for 4 days.
doi:10.1371/journal.pcbi.1001017.g002
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least some of the cases (see discussion about AP1 and CAL above).

Nevertheless, in order to further investigate the statistical significance

of our predictions of interaction changes upon introducing mutations

and to judge the value of our predictor, we used a second null model.

Here, a series of models were trained with interaction data to which

increasing amounts of noise were added, from 10% to 40% (see

Methods for details). If our predictions using the experimental data

are significantly different from random expectation, one would expect

that the more noise is added to the data, the worse the prediction is.

This is indeed what we observe, with the F-score dropping

continuously from 0.46+/20.05 at 10% noise to 0.24+/20.1 at

40% noise (average and standard deviation over 10 different random

tests). As an extreme version of this randomization we also performed

the test using fully randomized data as input, obtained by keeping the

interaction network unchanged but randomly reassigning sequences

to the MADS proteins. This randomization was repeated 1000 times,

resulting in an average F-score of 0.23+/20.1. None of these random

tests obtained a similar or higher F-score than what was obtained for

our predictor trained with the experimental data (Figure 3B). This

indicates that with p,0.001 our results are significantly different from

random expectation.

Evolutionary dynamics of interaction motifs
The putative effect of mutations on protein-protein interaction

specificity must have played an important role in the evolution of

the MADS protein interaction network. Our interaction motifs

provide means to investigate this. Of importance here is the

balance between motif conservation, which leads to a static

interaction network, and variability of motifs, which could lead to

interaction loss or gain and potentially to neo- or sub-

Figure 3. Effect of motif-based mutations on interaction patterns. (A) Mutations were introduced based on predicted interaction motifs as
explained in Figure 2. Different domains in MIKC MADS domain proteins are shown with colored boxes indicating the various regions in which point
mutations were introduced. Below these, the various mutant MADS domain proteins that were generated are listed. The descriptions of the mutated
proteins are colored based on the domain in which the mutation was generated. The mutated MADS domain proteins are SHORT VEGETATIVE PHASE
(SVP1), AGAMOUS LIKE 24 (AGL24), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), APETALLA1 (AP1), CAULIFLOWER (CAL), and AGAMOUS (AG).
Note that there are two double mutations for which one mutation occurs in the MADS/I domain and one in the K-box. Below each mutated protein,
the number of losses and gains of protein-protein interactions in the yeast two-hybrid assay for the mutated proteins in comparison to the native
MADS domain proteins is indicated (see Table 1 for interaction partner identities). (B) Histogram of F-scores for prediction of effect of mutants based
on randomized input data (see text for details). The arrow indicates the F-score obtained by the predictor trained on experimental input data.
doi:10.1371/journal.pcbi.1001017.g003
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functionalization of particular proteins. The latter is especially

relevant after gene or (partial) genome duplications, which has

played an important role in expansion of the plant MADS domain

transcription factor family [39]. We expect to observe overall

conservation of the interaction motifs, but also variation of motifs

when comparing duplicated proteins. We performed several

analyses on the interaction motifs to test this hypothesis, the

results of which are described below.

Motif conservation
First, we compared predicted motifs with available non-

synonymous single nucleotide polymorphism (SNP) data [57].

Comparison of ‘‘motif density’’ and ‘‘SNP density’’ showed that

these are negatively correlated (Figure 4A). For the ,1500 non-

synonymous SNPs falling within MADS protein sequences, 170

cases were found where a SNP was located inside a motif

occurrence (Table S10). Randomly generated motif occurrences

with the same number of occurrences per protein as the predicted

motifs were generated in 1000 trials. The average overlap of SNPs

with those motif occurrences was 351+/2116, and in 965 out of

1000 random trials the overlap was larger than 170. This indicates

that the experimental overlap between IMSS motifs and SNPs is

significantly smaller than the randomly expected overlap

(p, = 0.04; see Table S10). In addition, the cases where SNPs

overlap motifs are conservative mutations (several non-conserva-

tive SNPs do affect the MADS proteins, but they fall outside the

predicted interaction motifs). In fact, the largest contribution to the

170 overlaps between SNPs and motifs is formed by in total 122

SNPs found at two consecutive positions in AGL14, where an S is

changed to a T and a T to an S (Ser187, Thr188). The few cases

with an overlap between a potentially more important SNP and an

interaction motif indicate interesting candidates for putative causes

of functional differences between MADS proteins in various

Arabidopsis accessions. This includes for instance a Q-.E SNP in

ANR1 that occurs in several ecotypes (Table S10).

The analysis above only captures short term evolutionary

dynamics and might be biased by the preference of motif existence

in certain sequence regions (e.g. the motifs are generally absent in

the C-region of the proteins, which is the most variable region). To

obtain further insight into the conservation of predicted interac-

tion motifs, we analyzed the extent to which motifs are conserved

in putative orthologous protein sequences from various sequenced

plant genomes (see Methods). This conservation was compared to

that of homologous regions in MADS proteins without a motif

occurrence at that particular position in the sequence. This

approach ensures that the results are not influenced by a bias for

motifs in particular protein domains. The analysis showed that on

average the fraction of motif characters that were completely

conserved was 0.65+/20.09, whereas the same fraction for non-

motifs was 0.55+/20.09 (average +/2 standard deviation). We

used a Kolmogorov-Smirnov test which indicated that with

p,1027 the distribution of fraction conservation of characters of

motifs was significantly different from that of non-motif characters.

Focusing on motif-characters that are non-wildcards (i.e. not ‘‘*’’),

the difference was even somewhat higher, 0.73+/20.09 (motifs) vs.

0.58+/20.07 (non-motifs) (Figure 4B). In addition, the number of

non-conservative changes was much higher in the non-motifs than

in the motifs; for example, a swap from K or R to D or E occurred

in only 1% of the characters of motifs versus 3% of the non-motif

sequence regions. Note that our interaction motifs were obtained

using a limited set of sequences and interaction data, and as such

their conservation across various species is an independent

validation of their functional importance.

Motif variability
The observed conservation of predicted interaction motifs

provides supporting evidence that the IMSS motifs are under

functional constraints. Such functional constraints would be relaxed

after a gene duplication in one of the two copies, allowing sub- or

neo-functionalization to occur via modification of interaction

motifs. To analyze this, we first focused on indels coinciding with

IMSS motifs (see Text S1; note that here we used motifs from the

‘‘all_species’’ model as these are more appropriate in this context

where we use sequences from various species). This revealed several

examples of duplicated proteins where an indel overlaps with an

interaction motif (Table S11). Specifically, out of 81 pairs of putative

paralogous proteins containing an indel, 29 pairs were found in

which the indel overlaps with a predicted interaction motif (in 20

different species). In half of these cases both of the paralogs contain a

motif (albeit in general a different one) at the indel position

(Figure 4C). Those cases where both copies contain an interaction

motif are the result of sequence changes after the gene duplication

that modified, but did not delete the interaction motif. This suggests

that after such duplication one of the copies indeed acquired a novel

or specialized function (option II in Figure 4C). Hence, this analysis

highlights interesting candidates for possible sub- or neo-functiona-

lization and confirms the expected role of variability of interaction

motifs in these processes. Unfortunately, in most cases we do not

know the interaction patterns of the proteins so we cannot validate

our predictions, but the Arabidopsis cases we found have clearly

different interaction patterns. For the proteins in the SEP clade for

Figure 4. Interaction motifs and network evolution. The role of
conservation of interaction motifs versus variation of these motifs was
investigated. (A) Histogram of occurrences of interaction motifs (black)
and SNPs (red) at particular positions in the protein sequences of all
Arabidopsis MIKC MADS proteins. Note that there is hardly any overlap
between interaction motifs and SNPs. Positions of the M, I, K and C
domain are indicated. (B) Histogram of cross-species conservation of
interaction motifs (black) and non-motif-sequences (red) in MIKC MADS
domain protein sequences. Non-motif sequences are defined at
positions in MADS protein sequences where in other MADS sequences
a motif is present. (C) Four different scenarios are possible if after
duplication of a MADS domain protein sequence an indel occurs in one
of the two sequences: (I) indel does not overlap with a predicted
interaction motif; (II) both insertion and deletion overlap with a motif;
(III) only insertion or (IV) only deletion overlap with a motif. Lines
indicate sequences, colored boxes indicate predicted interaction motifs,
triangles indicate insertion, and arrows indicate effect of insertion/
deletion on motif. As discussed in the text, if an indel overlaps a motif
(scenario II-IV), in half of the cases (18% for scenario II vs 9% for each of
scenario III and IV) it does not delete but only modifies the motif
(illustrated by a change in color for the motif).
doi:10.1371/journal.pcbi.1001017.g004
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instance, some evidence is present that they are not fully functional

redundant [58,59].

Neo- and sub-functionalization
Interestingly, the interaction motifs in the ‘hotspot region’ at the

junction between MADS and I domain overlap an intron/exon

boundary. This provides a plausible evolutionary mechanism to

generate protein interaction diversity by shifting these intron/exon

boundaries after duplications or via alternative splicing (Figure 5).

Indeed the above mentioned cases where indels modify interaction

motifs in duplicated proteins occur often in the MADS domain

protein ‘hotspot region’, in which interaction motifs overlap an

intron/exon boundary. An example of a change in interaction

pattern via ‘splicing out’ of a predicted interaction motif is

observed in a recently identified SVP splicing variant (named

SVP3; Accession: EU078686; Figure 5). SVP3 lost the interaction

motif found in the hotspot region of the fully spliced SVP protein

(SVP1) leading to a large loss of protein interaction partners

(Figure 5; Table 1; Figure S2). Additional discussion is provided in

the Supplementary information (Text S1, Figure S1), where we

also provide an analysis of the distance of predicted interaction

motifs from intron/exon boundaries. Based on these findings we

hypothesize that shifting intron/exon borders plays a role in neo-

functionalization of plant MADS domain transcription factors by

direct changing of dimerization capacity (Figure 5). Note that, at

least in the above-mentioned SVP case, this mechanism seems to

allow the duplicate to optimize in one specific interaction and

avoid conflict with the original copy, by deleting other common

interactions.

A clear example of the effect of sub- or neo-functionalization for

MADS proteins is given by the LpMADS1 protein from Lolium

perenne, a grass species. Based on overall sequence similarity, this

protein is part of the Arabidopsis AP1 clade. However, the

interactions and expression pattern of LpMADS1 clearly resemble

Arabidopsis SOC1 [60], and our interaction motif prediction

supports this: it correctly predicted most (14 out of 16) of the

interaction partners of LpMADS1, including several which are not

interacting with AP1 (e.g. SEP2, AGL14). In our predictor (using

the ‘‘all_species’’ model) LpMADS1 contains two specific motifs

which SOC1 also contains, but AP1 does not (in addition

LpMADS1 contains a set of motifs which it shares with both

AP1 and SOC1). One of these is located in the C-terminus region,

and overlaps with a motif which we experimentally targeted in

SVP1 (SS227-228MF mutation in SVP1). Indeed, the experimen-

tal validation showed that mutations in this region influence

interaction specificity (Table 1).

As a further example, sequences for various Arabidopsis SEP

homologs were analyzed and the occurrence of a specific

interaction motif in the above mentioned ‘hotspot’ region was

found to correlate with differences in expression for the genes

encoding those proteins (Text S1, Table S9). This again supports

the proposed importance of variations in interaction motifs as a

means to sub- or neo-functionalization.

Discussion

Our method predicting sites mediating protein interaction

specificity, and our experimental data showing changes in

interaction specificity extend previous examples, in which

protein-protein interactions were modified through mutation of

a few amino acids or even a single amino acid [5,6,61,62]. In

particular, we now demonstrated this for a family of interacting

proteins, for which interaction specificity is governed by subtle

differences in their sequences. Moreover, we performed various

additional computational analyses for the predicted interaction

motifs which support their importance.

Figure 5. Mechanism of generating protein-protein interaction diversity by shifting intron/exon borders. (A) After a duplication of a
gene or in the case of alternative splicing, a shift of an intron/exon border can modify a protein interaction motif which overlaps or is close to such a
border. Top panel, schematic illustration of this process. Line indicates gene sequence, grey bars indicate exons, and colored bars indicate predicted
interaction motifs. Bottom panel, part of a protein sequence alignment for the Arabidopsis MADS domain protein SHORT VEGETATIVE PHASE (SVP1)
and an identified alternatively spliced SVP form named SVP3. A predicted interaction motif in SVP1 which is almost completely spliced out in SVP3 is
shown in red. Two grey bars indicate the two adjacent exons. (B) Predicted interaction motifs can be either close to an intron/exon border (indicated
by red motif) or far away from the intron/exon border (green motif). Bars in the graph indicate average number of Arabidopsis MIKC MADS proteins in
which predicted interaction motifs occur for two different motif groups: motifs that are located close to the intron/exon border (,3 amino acids
distance, red) occur on average in a few proteins only, and motifs that are located far away from the border (. = 3 amino acids distance, green) occur
in many proteins.
doi:10.1371/journal.pcbi.1001017.g005
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Our IMSS approach is not perfect, but it is one of the first to

approach computationally the important problem of interaction

specificity in a paralogous family of interacting proteins. The

method is based on the occurrence of combinations of motifs and

offers a number of advantages over currently available tools (which

are not specifically targeted towards the context of interaction

specificity in a paralogous family of interacting proteins). In

contrast to methods such as InSite [63], IMSS does not rely on a

pre-selection of conserved sequence motifs from a database, and in

contrast to correlated mutations approaches [6,64–66], our

method does not need accurate alignments. In cases where a

quantitative model of interaction energetics is available, a method

such as CLASSY [5] might be applicable, but there are many

protein families such as the MIKC MADS proteins, for which

such data is not available. Also, our approach does not need

protein structure data, which is important as protein structure

information is lacking for many protein families. Nevertheless, our

method also has its own weaknesses, one of which is that we have

to rely on existing interaction data which we use as training data,

but it is clearly complementary to existing approaches. In this

study we focused on analysis of the properties of our predicted

interaction motifs, but we also demonstrated the usefulness of our

method for the prediction of protein-protein interactions for

MADS domain proteins from other plant species, including crops.

For most of these only sequence information is available and

knowledge about interaction capacity of MADS domain proteins is

completely lacking. Here, our method provides an alternative and

orthogonal way to predict interactions, as compared e.g. to the

‘interolog’ approach [67,68].

Traditional experimental techniques to identify and test the role

of specific amino acids or combinations of amino acid residues in

specifying protein-protein interaction capacity, such as ‘‘alanine

scanning’’ (e.g. [69]), are based on systematic mutational analyses

and therefore, laborious. In contrast, the combined computational

and experimental approach we followed is a fast way to pin-point

motifs putatively involved in determining interaction specificity.

We demonstrated that the predicted motifs can be targeted to

change MIKC MADS protein interaction specificity and hence

rewire the interaction network. A problem we encountered is that

mutations can have unwarranted side effects on e.g. the structure

of the proteins involved. Probably, this can be solved in the near

future by a combination of IMSS with detailed protein structure

modeling. Furthermore, in some cases mutations lead to novel

interaction patterns that do not occur for any MADS domain

protein in the original family. Remarkably, this is at least partially

predicted correctly by our IMSS method. The result is

complementary to the recent observation that bZIP-like coiled-

coil proteins only sparsely sample the possible interaction space [5]

and suggests that it is a common scenario for protein-protein

interaction networks.

Studies of gene regulatory network evolution often focus on cis-

regulatory changes [70], which may affect only part of the activity

of a factor and often lead to sub-functionalization after a

duplication event. Changes in coding regions have a higher

chance of leading to non-functionalization. However, they may

also generate completely new functions due to changes in e.g.

interaction patterns, which in turn may lead to sub- or neo-

functionalization for one of the two copies after a duplication. We

have shown that the predicted interaction motifs are important for

the protein interaction specificity of the MIKC MADS domain

proteins and that even single amino acid mutations in these motifs

result in either a gain or loss of interactions in a predictable way.

This data suggests that these motifs underlie neo-functionalization

in the MIKC MADS family, which is a transcription factor family

that has been heavily expanded in plants during evolution through

both whole genome- and small-scale duplications [39]. The

duplicated genes were recruited for novel developmental networks,

e.g for regulating the formation of the floral organs, although they

were also subjected to sub-functionalization and many are

therefore still acting in a (partially) redundant manner [41,71–

73]. Our results represent a step forward in understanding how

proteins perform their molecular function. The challenge ahead

for the MADS domain transcription factor family and transcrip-

tion factors in general is to extend this method to higher-order

protein complexes [33,74–76], interactions with non-MADS

interaction partners, and protein-DNA interactions [77,78].

Methods

Interaction Motif Search and Selection (IMSS)
The basic idea behind our bioinformatics method to predict

protein interactions based on their sequences was recently published

[44]. Here we give a brief overview and present modifications to the

algorithm. As a first step in our approach we used the correlated

motif search algorithm D-STAR [79]. This finds correlated motifs

that are over-represented in pairs of interacting protein sequences.

Correlated motif pairs are defined over pairs of sequences; this

means that for each protein-protein interaction pair we can define

absence or presence of particular correlated motif pairs. Next, we

used these motifs together with experimental interaction data to

train a Random Forest [80] classification algorithm in combination

with a feature-selection procedure [81]. In the latter, previously the

accuracy of prediction was used as scoring criterion, but in order to

deal better with unbalanced datasets we now changed this to the F-

score. In addition, before running the feature-selection, we now first

performed a simple clustering step of motifs using the algorithm

described in [82]. This was based on the similarity of occurrences of

motif pairs (number of sequence pairs in which both motifs occur

divided by number of sequence pairs in which at least one of the two

motifs occurs). These modifications were not used in the

‘‘ara_original’’ model but were applied in the ‘‘ara_new’’ and the

‘‘all_species’’ model.

Experimental validation
IMSS-prediction identifies regions in the protein, but does not

directly tell which amino acid residue to change in the short motif

sequence, and into which amino acid it has to be changed. In order

to decide on this, we aligned sequences of related proteins and chose

residues to be mutated based on conservation (See Text S1). The

residues selected for amino acid mutation are listed in Table S2.

The point mutations were generated by PCR-based site-

directed mutagenesis using the original Gateway entry clones

[24] containing the respective MADS domain ORFs as a

template. For each gene a forward primer was generated at the

start codon and a reverse primer at the stop codon. In addition,

two complementary primers were made that anneal to the region

where the mutation has to be introduced and which contain the

altered nucleotides encoding the mutated amino acids. Initially,

two PCR reactions were performed with proofreading Phusion

DNA polymerase (Finnzymes, Finland). The forward primer at the

ATG and the reverse primer at the position of the mutation were

used in the first PCR, while the forward primer at the position of

the mutation and the reverse primer at the stop codon were used

in the second PCR. The two purified fragments were used as

template in a PCR reaction with the forward and reverse primer

on the start and stop codon, respectively. The complete ORFs

were cloned into the pCR8/GW/TOPO Gateway entry vector

(Invitrogen, Carlsbad, US). The presence of the mutation was
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confirmed by sequence analysis (DETT sequencing kit Amersham,

GE Healthcare, UK). Finally, the mutated ORFs were cloned into

the pADGAL4 (pDEST22) and pBDGAL4 (pDEST32) Gateway

destination vectors (Invitrogen, Carlsbad, US) by LR reactions.

Yeast transformation was performed according to the Quick

and Easy transformation protocol [83]. Although, from the

proteins selected for mutation only a low level of transcriptional

activation activity was shown previously for the AP1 protein [25],

all generated mutated proteins expressed as GAL4-BD fusion

proteins were first tested for auto-activation capacity. For this

purpose, the yeast clones were spotted onto selective SD medium

lacking Leucine and Histidine and supplemented with a range of 3

Amino1,2,4-Triazole (3AT; 1, 5, and 10 mM). Growth of yeast

and hence autoactivation, was scored after 5 days incubation at 22

degrees Celsius. These analyses revealed that all mutated proteins

behave like the wild type protein from which they originate and

none contains a strong transcriptional activation domain. In

theory proteins fused to the GAL4 AD domain can also give

activation of yeast reporters, when the protein is able to bind to

regulatory sequences of the reporter genes. We didn’t screen for

this possibility, but the fact that none of the generated AD-GAL4

fusion proteins was giving growth of yeast in the final screening for

all or almost all tested combinations, shows that none of them is

auto-activating as GAL4-AD fusion protein. Subsequently, matrix-

based two-hybrid screenings were performed in duplo and by

scoring for at least two different reporter genes, as previously

described [25]. Combinations were scored as interactions when

giving growth for one of the selection markers in both screens and

both selection markers in at least one of the screens.

Statistical analyses
Performance of our predictions of changes in interaction

specificity was measured via the F-score, which equals 2*pre-

cision*recall/(precision+recall). Here precision = TP/(TP+FP)

and recall = TP/(TP+FN), where TP indicates the number of

correctly predicted interactions, FP indicates the number of

predicted interactions that are not correct, and FN indicates the

number of experimental interactions that are incorrectly not

predicted as interactions.

The F-score when using the original interaction data as a

predictor for the interactions of the mutated proteins was

calculated in a similar manner. In addition, a series of models

were trained with interaction data to which increasing amounts of

noise were added, from 10% to 40%. These numbers refer to the

percentages of interactions that were removed from the data, and

converted into interactions between randomly chosen pairs of

proteins that do not interact according to the experimental data.

Structural and evolutionary analysis
Protein structures were modeled using Modeller 8.2 [84], with

the structures 1EGW [85] and 1N6J [46] as templates, using the

automodel module and generating 1000 structures. The best one

according to objective function was selected. SNP data were

obtained from www.1001genomes.org (data for 80 ecotypes).

Intron/exon structures were defined using the software tool Scipio

[86]. To compare the observed overlap of predicted motifs with

SNPs or their observed distance from intron/exon boundaries

with random expectation, random motif instances were generated

by randomly choosing a number of motif locations in each protein

equal to the predicted number of motif locations. This was

repeated 1000 times for each sequence.

Conservation of motif occurrences was assessed as follows. First,

MIKC MADS sequences were obtained from the genomes of rice

[87], poplar [88], grape vine [89], maize (www.maizesequence.

org), Medicago truncatula (www.medicago.org), papaya [90] and

sorghum [91]. For rice and poplar we used the MIKC MADS

domain protein sequences as provided in the respective publica-

tions; for the other genomes, sequences were obtained from the full

set of coding sequences using the profile HMM software HMMER

[92] with the PFAM [93] models for the MADS-domain (SRF-TF)

and the K-domain (K-box). Next, putative orthologs for the

Arabidopsis protein sequences were identified by aligning each

sequence to each Arabidopsis sequence using MUSCLE [94] and

using sequence identity as the criterion in a bi-directional best hit

approach. Subsequently, for each motif occurrence in a particular

Arabidopsis protein, its conservation was calculated as the fraction

of characters in the motif which were identical in the homologous

regions in its orthologs; the same was calculated for all Arabidopsis

proteins which did not have a motif occurrence at that particular

location in the sequence.

To obtain insight into the dynamics of interaction motifs upon

duplications, we analyzed a set of 1,459 MIKC MADS domain

protein sequences from 257 species (obtained from Interpro by

requiring the presence of both a MADS and K-box domain,

IPR002487 and IPR002100, respectively). From these, we

obtained pairs of putative duplicates, which we defined simply as

two proteins from the same species both having their highest

sequence similarity with members of the same clade in Arabidopsis

(as defined in [95]).

We focused on indels because occurrence of an insertion or

deletion could be interpreted as a signature of disruption of the

interaction motif. For each pair of protein sequences, indel

positions in their sequence alignments were probed by looking for

stretches of length d with high sequence identity, and one

insertion/deletion occurring. d was set to 6, and the cutoff for

identity was set to 5 (i.e. all positions except the indel were

required to be identical). Subsequently, the overlap between those

indels and the predicted interaction motifs was assessed.

To perform intramolecular correlated mutation analysis of AP1,

sequences of MADS proteins were obtained using blastp on the NR

database, filtering with hmmsearch [92] to retain only sequences

with a MADS-domain and a K-domain, and assigning sequences as

putative AP1 orthologs using a best-hit criterion. These sequences

were aligned with MUSCLE [94]. Subsequently, the CAPS [96]

algorithm was used to obtain correlated mutations, using a

reasonably stringent cutoff of 0.4 on the Pearson correlation

coefficient that is returned between pairs of sites with this algorithm.

Supporting Information

Figure S1 Relation between position of intron-exon borders and

predicted interaction motifs. Histogram of distances (amino acids,

X-axis) between motif occurrences and exon borders, for IMSS

motifs (red) and random motif occurrences (green).

Found at: doi:10.1371/journal.pcbi.1001017.s001 (9.45 MB TIF)

Figure S2 Effects of alternative splicing of SHORT VEGETA-

TIVE PHASE (SVP) and SEPALLATA4 (SEP4) on predicted

interaction motifs. Top, in alternatively spliced SVP3 (SHORT

VEGETATIVE PHASE, splicing variant three), a predicted motif

at an exon border is spliced out, resulting in loss of interactions

(bold indicates motif occurrence in SVP1). Bottom, splicing

removes predicted interaction motifs from the SEP4-II splice

variant (SEPALLATA4-II) that are present in the SEP4-I variant

(bold indicates motif occurrences in SEP4-I).

Found at: doi:10.1371/journal.pcbi.1001017.s002 (0.31 MB TIF)

Table S1 IMSS motif positions within the Arabidopsis MIKC

MADS domain transcription factor proteins.
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Found at: doi:10.1371/journal.pcbi.1001017.s003 (0.55 MB

DOC)

Table S2 Interaction data from additional species.

Found at: doi:10.1371/journal.pcbi.1001017.s004 (0.20 MB

DOC)

Table S3 Prediction of large-scale MADS interaction data.

Found at: doi:10.1371/journal.pcbi.1001017.s005 (0.04 MB

DOC)

Table S4 Interaction prediction for SEP-homologs.

Found at: doi:10.1371/journal.pcbi.1001017.s006 (0.05 MB

DOC)

Table S5 Mutagenesis positions.

Found at: doi:10.1371/journal.pcbi.1001017.s007 (0.06 MB

DOC)

Table S6 Results yeast two-hybrid assays.

Found at: doi:10.1371/journal.pcbi.1001017.s008 (0.48 MB

DOC)

Table S7 Analysis of known mutations in MADS domain

proteins.

Found at: doi:10.1371/journal.pcbi.1001017.s009 (0.08 MB

DOC)

Table S8 Previous computational studies that revealed residues

that are under functional constraint.

Found at: doi:10.1371/journal.pcbi.1001017.s010 (0.05 MB

DOC)

Table S9 SEP equivalents grouped according to expression in

whorl one.

Found at: doi:10.1371/journal.pcbi.1001017.s011 (0.05 MB

DOC)

Table S10 SNPs overlapping IMSS motifs.

Found at: doi:10.1371/journal.pcbi.1001017.s012 (0.05 MB

DOC)

Table S11 Pairs of sequences with indel overlapping predicted

interaction motif.

Found at: doi:10.1371/journal.pcbi.1001017.s013 (0.07 MB

DOC)

Text S1 Additional text van Dijk et al.

Found at: doi:10.1371/journal.pcbi.1001017.s014 (0.11 MB

DOC)
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