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Abstract

Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of
human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly
periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in
pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the
dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the
cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-
dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing
the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human
gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-
knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due
to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent
on the feedback from the peripheral nervous system.
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Introduction

Complex physiological rhythms and synchronization processes

are ubiquitous in biological systems and are fundamental to life

[1]. The human heartbeat [2,3], walking [4], vocal cords vibration

[5], blood pressure and respiration [6], white blood-cell count and

tremor in patients [7,8], epidemic dynamics [9] all demonstrate a

stable, possibly nonlinear, oscillatory pattern along with highly

irregular fluctuations from period to period. Such signals are

variously known as semiperiodic, approximately periodic or

pseudoperiodic time series. The fluctuation overlying the oscilla-

tory pattern, or specifically, the cycle-to-cycle variability, arises

from the combined effects from the changing environment, the

nonlinear nature inherent to biological systems, and noise of

various sources. It contains a wealth of information regarding the

health or disease status of an individual subject. Usually, little or

no a priori knowledge or models that govern the underlying system

are available. Therefore accurately characterizing and quantifying

such biological rhythms through data-driven approaches contrib-

utes significantly to our understanding of complex biological

control systems [10] and have important applications in disease

diagnosis.

Traditionally, rhythmic signals are fruitfully analyzed by linear

methods like the Fourier transform and power spectrum analysis.

However, physiological signals as outputs of complex biological

systems are typically nonlinear and non-stationary, and can not be

properly characterized by linear methods. A number of new

techniques based on nonlinear dynamical system theory [11,12]

have also been intensively applied, like correlation dimension [13]

and Lyapunov exponents [14]. Although the chaotic measures

may provide new insights into the nonlinear nature of the system,

they are severely hampered by the cyclic trend and noise in the

system [15,16]. Recent attempts include producing pseudoperiodic

surrogate data [17], or performing a transformation from time

domain to dual complex network domain [18–24]. Generally,

there still lacks systematic and robust approaches to handle such

oscillatory, possibly nonlinear time series. The Fourier analysis

decomposes the signal into harmonics that span over the entire

time-line, thus information about how each period, or cycle,

changes over time has been averaged out. Similarly, nonlinear

measures are also based on averaged properties of phase space

attractor reconstructed from the data. This lack of discrimination

among the individual cycles calls for more advanced signal

processing techniques. Inspired by the recent advances in the field

of dimensionality reduction [25,26], we propose a novel and

robust approach that can effectively capture the dynamics of cycle-

to-cycle variation, which is especially suitable for analyzing

approximately periodic, or semiperiodic data like human gait,

ECG, respiration, and vowel data.

Human walking is a highly complex, rhythmic process which

was found to exhibit long-range correlation and self-similarity, and

has attracted sustained interest over the past decades [4,27–33].

The fluctuations overlying the cyclic trend in human walking may
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reflect valuable information about the neuromuscular processes

responsible for normal and pathological locomotor patterns. In

particular, the stride interval (SI) (the duration of each gait cycle)

has been intensively studied to quantify the physiological or

pathological state associated with walking. For example, it has

been found that the long range correlation properties are altered

with aging and disease [10,28]. The stride interval reflects the

duration of each cycle, and a wealth of information contained in

the waveform of the gait cycle is lost. Our approach utilizes the full

waveform of each gait cycle, and is therefore expected to extract

more information relevant to motor control of walking. We apply

our method to the locomotion data collected from two groups of

people — healthy subjects and neuropathic patients suffered from

diabetes. We aim to find whether the extracted dynamical

fluctuation of the knee and ankle movements as well as their

synchronization pattern can vary between the healthy and

diabetics group. Specifically, we want to find out whether the

impaired sensory feedback due to diabetes can lead to different

locomotion dynamics of the knee and ankle (and their synchro-

nization pattern) compared with the healthy subjects.

Methods

Reconstructing Dynamics Underlying Cyclic Trend:
Dimensionality Reduction

The general problem of dimension reduction has a long history.

With advances in data collection, dimension reduction has

reemerged as a prominent tool to unravel the high dimensional

structure emerging in various disciplines. For example, it has been

widely applied to gene and protein expression profiling for disease

classification and prognostication [25,26]. Generally, the large

number of dimension reduction approaches can be categorized

into linear methods, including the principle component analysis,

multidimensional scaling [34], and nonlinear methods such as

state-of-the-art Isomap [34], laplacian eigenmaps [35] and local

linear embedding [34]. Usually biomedical data process nonlinear

structures and that nonlinear dimensionality reduction methods

might be more appropriate [26]. Here we use Laplacian Eigenmaps

[35], which are based on spectral graph theory and projects the high-

dimensional data into a low dimension so that two points nearby

on the manifold are kept near to each other. We first illustrate with

benchmark data from the chaotic Rössler system described by:

X ’ ~ {(YzZ)

Y ’ ~ Xz0:398Y

Z’ ~ 2zZ(X{4)

8><
>:

ð1Þ

The time series from the X -component (see Figure 1A), exhibits

a strong periodic component along with irregular fluctuations,

therefore it serves as an ideal example of an approximately

periodic signal with nontrivial dynamics. Motivated by the fact

that such data usually exhibit a highly redundant pattern in the

form of repeated cycles, we can partition the time series into

individual cycles Ci (i~1, . . . ,k, which is the index of the cycle) at

the peaks or troughs in the time series, see Figure 1A [36]. Each

individual cycle can then be taken as a high dimensional vector xi

(i~1, . . . ,k), whose dimension equals the number of points in that

cycle. Our goal is to map these multiple, high-dimensional cycles

to a set of new, low-dimensional (preferably one dimensional)

representation, or embedding yi’s, such that the proximity

relations among xi’s are maximally preserved in their low-

dimensional counterparts yi’s. In the case that each cycle xi is

reduced to 1D (i.e., yi being a scalar), the derived yi constitute a

new time series (y1,y2, . . . ,yk), which encodes the dynamics the

original time series on the cycle scale.

To achieve this, a weighted matrix W is constructed, with each

entry Wij denoting the similarity between cycle xi and xj , which

can be chosen conveniently as the correlation coefficient

rij~Cov(xi,xj)
�

(sxi
sxj

) (under the circumstance that xi and xj

differ in length, we shift the shorter vector along the longer one

until rij maximizes). Then, the low-dimensional representation yi’s

can be cast as the solution of the following optimization problem,

min
P

Wij yi{yj

�� ��2
, which penalizes those mappings where

nearby points xi’s are relocated far apart in the space of yi’s. In

case of univariate yi’s, the objective can be written as yT Ly, where

y~½y1,y2, . . . ,yk�T , L~D{W is the graph Laplacian, and D is the

diagonal degree matrix such that Dii~
P

j Wji.

The above constrained minimization is solved by the general-

ized eigenvalue problem Lyi~liDyi, where li’s (i~1,2, . . . ,k) are

eigenvalues sorted in an ascending order, and yi’s are the

corresponding eigenvectors. The minimum eigenvalue l1 is zero,

corresponding to an eigenvector (y1) whose entries are all 1.

Therefore it is degenerate and the optimal solution is actually

provided by y2, the eigenvector of the second smallest eigenvalue

[35]. As is shown in Figure 1B, the eigenvector y2(i) provides a

cycle-scale representation of the original time series by reducing

each full cycle to a single point. We use a general notation c(i) (c
for ‘‘cycle’’, and i indicates the ith cycle) for this simplified

representation of the original time series. It is worthwhile to note

that other dimension reduction schemes can also be adopted. For

example, we can compute the Euclidian distance among cycles

[36], and multidimensional scaling can be readily applied in this

case to reduce the cycles to scalars. The c(i) derived from

multidimensional scaling and the Laplacian Eigenmap in fact yield

quite similar results, see Figure 2.

The applicability of dimension reduction techniques is generally

justifiable, considering the low correlation dimension of most real

world pseudoperiodic data. For this kind of data, the trajectories of

Author Summary

Complex physiological rhythms arise from a large variety
of biological systems that include natural pacemakers as
well as feedback mechanisms, from the heartbeat to the
rhythmic movement of human walking. Accurately ex-
tracting and characterizing the fluctuations underlying the
biological rhythms is a fundamental problem which holds
the key to understanding the mechanisms that govern the
dynamics of biological systems. Usually such signals
demonstrate certain oscillatory patterns, with each period
displaying irregular fluctuation, or nontrivial dynamics,
over time. This renders traditional spectral methods and
nonlinear techniques less effective. We propose a novel
approach to highlight the intrinsic fluctuations masked by
the periodic component and noise through advanced
dimension-reduction techniques, and apply it to human
gait data from healthy subjects and diabetics. We find that
this approach is capable of extracting the intrinsic
dynamics and identifying the subtle synchronization
pattern between knee and ankle. We find that although
the two groups of individuals demonstrate remarkable
differences in the dynamics of ankle movement and ankle-
knee synchronization, the knee movement of both groups
show similar dynamics. These results suggest that sensory
feedback from a peripheral nerve system (like the feet)
does not play an important role in regulating the motor
control of human walking.

Dynamics of Human Gait by Dimension Reduction
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nearby cycles in phase space usually have similar orientations.

Such redundancy can be effectively removed through dimension

reduction, leaving only the useful degree of freedom. Finally, it is

worthwhile to mention that for long time series with large number

of cycles, the nyström method can be adopted to solve large scale

spectral clustering problem [37,38].

The Advantage of Characterizing Dynamics on the Cycle
Scale

A popular method in nonlinear time series analysis is to reduce a

continues flow to a series of discrete points, called a Poincaré

section. The Poincaré section is the intersection of flow data in the

state space with a hyperplane transversal to the flow. Thus each

cycle in the data is simplified into a single point on the Poincaré

section, which preserves many properties of periodic or pseudo-

periodic orbits. Now we compare c(i) obtained by dimension

reduction and the Poincaré section points P(i) obtained by

collecting the local minimum points in the data. As can be seen

Figure 2, the return plot (i.e., plot of x(iz1) versus its previous

values x(i)) of c(i) and P(i) show similar quadratic form. Further

calculation of the chaotic measure such as correlation dimension

indicates that they have the same dynamical origin.

One problem with the P(i) series is that it is highly susceptible to

noise that is inevitable in biological data. To see this, we plot the

return map for the c(i) and P(i) series obtained from the noisy

X (t) data, see Figure 3. We find that although both return maps

display a clear quadratic form intrinsic to the chaotic Rössler

system, the return map of P(i) is more vulnerable to noise as the

points are more dispersed than that of c(i). We use the variance s2

of the least-square fit to the quadratic function (y~ax2zbxzc) to

quantify the influence of noise, with s2
p(i)~4:5704, almost 5 times

larger than that of c(i) (s2
c(i)~0:9360). Now we explain why c(i) is

more robust to noise. First we take the ‘‘cycle’’ as the basic unit

rather than a discrete point in the time series. Obviously the latter

is more vulnerable to noise. Second, the acquisition of c(i) is based

on an optimization that preserves the proximity relation among all

cycles simultaneously, while P(i) is obtained by treating each cycle

independent of one another. Our approach utilizes the richer

information of pairwise cycle correlation, therefore it not only

excavates the inherent dynamics obscured by the cyclic trend, but

also offers an extra robustness to noise due to the global nature of

this method.

Detecting Degree of Synchronization from Bivariate
Oscillatory Data

Another interesting phenomena associated with rhythmic

process is synchronization between self-sustained oscillators, which

plays an important role in understanding coordination or

cooperation in biological systems [39,40]. Several different types

of synchronization have been observed, such as complete

synchronization [41–43] generalized synchronization [44], and

phase synchronization [45].

Figure 1. Illustration of transforming a pseudo-periodic time series X(t) into a new series c(i) by reducing each cycle in X(t) to a
point. (A) Time series form X -component of the chaotic Rössler system, which demonstrates obvious oscillatory pattern. It can be divided into
consecutive cycles at local minimum points (denoted by triangles). (B) A new representation of the oscillatory time series X (t) on the cycle scale, with
each point in c(i) corresponding to a cycle in X (t).
doi:10.1371/journal.pcbi.1001033.g001

Dynamics of Human Gait by Dimension Reduction
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The evaluation of degree of synchronization from the outputs of

coupled systems is of particular interest to study the interactions in

biological systems. For example, the consistency of mutual nearest

neighbors and the peakness of the phase difference distribution are

used to characterize the dynamical interdependence [46] and

phase synchronization [45], respectively. Here we are interested in

the case where two processes are phase synchronized, but the

synchronization strength is hard to estimate due to noise and non-

phase-coherence, or is too subtle to be differentiated due to the

mask of strong phase synchronization. For example, the knee and

ankle move perfectly in phase during human walking. Under such

circumstances the phase synchronization index will take on high

values for both healthy subjects and diabetics and it may not probe

the subtle difference in the degree of synchronization masked by

the strong phase synchronization and noise.

To solve this problem, we propose to quantify the degree of syn-

chronization between two noisy, phase-synchronized oscillatory

processes on the cycle scale through the reduced representation c(i) of

the original data, thereby minimizing the influence of phase

synchronization. We illustrate with the X and Y components of

the noisy Rössler system, which are perfectly in phase and

therefore serve as ideal benchmark data. The two time series are

first segmented into cycles according to the local minimums of

either X or Y time series, then we apply Laplacian eigenmap to

both and obtain reduced representations, i.e., cX and cY for X and

Y time series. Finally we calculate the linear correlation coefficient

r between cX and cY as an indicator of the degree of

synchronization between X and Y data. We find that the

extracted cX and cY series can successfully reveal the synchroni-

zation pattern in presence of noise, which is demonstrated by an

increasing trend in the corresponding scatter plot (Figure 4B). The

Poincaré section points, however, are less informative of the

synchronization degree due to the presence of noise, as PX and PY

do not demonstrate clear correlation (Figure 4A).

Results

Data Description
Now we apply the method proposed in previous section to

human gait data collected from two groups: the healthy controls

(CO) and neuropathic patients (NP, with significant diabetic

neuropathy), each with 10 subjects [4]. The kinematic data were

collected from a portable data-logger equipped on the subjects

during continuous overground walking for 10 minutes (sampled at

66.7 Hz). Three electrogoniometers were placed on the approx-

imate joint centers of the hip, knee, and ankle joints of the right leg

to measure their sagittal plane movements. Here we consider the

signals measured from knee and ankle joints movement.

Characterizing Human Locomotion Dynamics
Human locomotion is a highly complex, rhythmic process that

involves control from subcortical locomotor brain regions and

feedback from various peripheral sensors. Typically, the human

gait time series (see Figure 5 for knee and ankle movement) exhibit

a stable frequency while irregular stride-to-stride fluctuation. For

biological signals with a strong periodic component, vital

Figure 2. Return maps of c(i) series and Poincaré section points P(i). The time series c(i) is extracted from the oscillatory data X (t) using two
dimension reduction techniques, i.e., the Laplacian Eigenmaps and Multidimentional scaling. The Poincaré section points P(i) are extracted by
collecting the local minimum points of X (t).
doi:10.1371/journal.pcbi.1001033.g002

Dynamics of Human Gait by Dimension Reduction
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Figure 3. Return plots of Poincaré section points P(i) and c(i). (A) Return plot for P(i) series that is obtained by collecting the local minimums
Xmin. (B) Return plot for c(i) series that is extracted from X (t) by dimension reduction. The Rössler system here is corrupted by 5% dynamical noise
and 30% measurement noise. Obviously c(i) is less influenced by noise than P(i).
doi:10.1371/journal.pcbi.1001033.g003

Figure 4. Correlation between X and Y component of noisy Rössler system as is revealed by Poincaré section points P(i) and c(i). (A)
Correlation between PX (i) and PY (i). (B) Correlation between cX (i) and cY (i). The Rössler system is corrupted by 5% dynamical noise and 30%
measurement noise.
doi:10.1371/journal.pcbi.1001033.g004

Dynamics of Human Gait by Dimension Reduction
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information regarding the pathology and pathophysiology of the

subject is hidden in the cycle-to-cycle variation. Accurately extracting

this fluctuation and characterizing its dynamics are expected to

provide important insights into the underlying neuromuscular

control of walking and yield greater diagnostic information. For

example, the stride interval (SI), defined as the time duration of

each gait cycle, has been widely used to study the human gait

[27,28,31–33]. It was shown that SI series displays long-range

correlation intrinsic to the healthy locomotor system.

The SI series contains the information of the duration of each

gait cycle. Another source of information consists in the waveforms

of the gait cycles, which is not reflected in SI series [29]. As can be

seen in Figure 6, the stride interval from the gait data seems to

contain insufficient information to reflect the intrinsic dynamics

due to digitization. Therefore it is natural to expect that the c(i)
series, which is obtained by comparing the waveforms of each

cycle (therefore preserves the full dynamical pattern within each

cycle) will contain more information relevant to the locomotion

dynamics. Meanwhile, c(i) successfully removes the periodic trend

that may obscure the underlying dynamics, and has the same

advantage as SI series. In the following we will demonstrate that

c(i) obtained by Laplacian Eigenmap can reveal the dynamical

fluctuation underlying the cyclic trend more effectively than the SI

series, so that we can distinguish clearly between the healthy and

pathological groups and make inference about the neuromuscular

control, especially on the role of sensory feedback from the feet in

regulating dynamics of human walking.

First we check the ankle movement (see Figure 5B), and use the

Laplacian eigenmap to extract the fluctuation c(i) on cycle scale

for the two groups. To quantitatively characterize the time

evolution of c(i), we furthermore compute its power spectrum

density (PSD), see the top row in Figure 7. We find that most CO

subjects demonstrate broad band spectrums (i.e., 1=f noise) that

scale as 1
�

f b, with b~0:76(mean)+0:23(std) (see Figure 8A),

indicating the presence of long range correlation (i.e., the strides

separated by a large time span are still statistically correlated). In

comparison, the power spectrum of the diabetic patients are

mostly flat resembling white noise processes (b~0:37+0:16),

which means that the strides at different times are mostly

uncorrelated. The values of b in the two groups are statistically

different (Pv0:01). This difference, however, has not been found

with either the stride interval (SI) series (see the middle row in

Figure 7) or the raw data (see the bottom row in Figure 7).

The absence of long range correlation in the ankle kinematics of

the NP group suggests the alteration of the locomotor pattern in

the lower limbs of neuropathy patients. This is due to the loss of

Figure 5. Time series (upper panel) and the corresponding phase space reconstructions (lower panel) of knee and ankle locomotion
from a healthy subject. (A) Knee locomotion data. (B) Ankle locomotion data. The time series are typically non-phase-coherent, demonstrating
multi-oscillation within each cycle. This is also evident from the multi-center rotations of the attractor in phase space (lower panel). The two time
series are divided into consecutive cycles by their respective local maximum points.
doi:10.1371/journal.pcbi.1001033.g005
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peripheral sensation in the lower limbs, which arises from the

gradual dying back of nerves from the fingers and toes typical of

diabetes. Despite the deterioration in peripheral nervous system,

the knee movement of the NP group is still found to demonstrate a

stable long range correlation indistinguishable from the CO group

(bCO~0:63(mean)+0:21(std), bNP~0:62(mean)+0:19(std),
which are statitcally identical with P~0:965), see Figure 8B.

These results suggest that the impaired peripheral feedback caused

by the dying nerves in the feet does not influence the upper-limb

dynamics, which leds us to another fundamental problem in

human walking, i.e., what is the role of sensory feedback in

adjusting the global locomotor dynamics? To understand this, we

examine further the degree of synchronization between the knee

and ankle movement using dimension reduction.

Assessing Synchronization between Knee and Ankle
Movement

Human walking involves the coordination of two major joints,

i.e., the knee and the ankle, whose movements during continuous

walking are obviously in phase due to the physical connection

between them. However, we find that correlation between knee

and ankle movement for the two groups can hardly be

distinguished by the phase index of the signal due to the presence

of strong phase synchronization. Also, noise tends to destroy the

local structure in phase space and thus hampers the dynamical

dependence measures [47]. To circumvent these difficulties, we

propose to compare the dynamics of the two time series by using

their Laplacian eigenmap c(i)’s. Note that each time series can be

segmented by either its own local maximums, or those of its

partner series (shown in Figure 5). Therefore we will segment

each time series twice and compute the averaged correlation

coefficients rij ’s between cankle and cknee for these two

segmentation schemes.

Figure 9A shows the typical synchronization pattern between ankle

and knee movement for healthy subjects. The scatter plot between

cknee(i) and cankle(i) demonstrates a significant increasing trend,

indicating that the knee and ankle movements are highly

synchronized. The correlation coefficient r between cankle(i) and

cknee(i) for the healthy group takes on a high value:

r~0:68(mean)+0:19(var), see Figure 8C. For diabetics, however,

there is little correlation between cankle(i) and cknee(i), as is manifested

in randomly distributed points in Figure 9B. The correlation

coefficient in this case is also low: r~0:26(mean)+0:18(var), and

the values of r is statistically different for the two groups (Pv0:001).

All the results of b and r values for the two groups of individuals are

summarized in Supplementary Table S1. Again, the discrimination

between CO and NP groups cannot be achieved by SI series, which

always exhibits a strong correlation between the two joints (Figure 9,

lower panel), corresponding to high degree of phase synchronization.

Finally, we point out that a more comprehensive description of

synchronization can be achieved by examining more Laplacian

eigenvectors. In the current case the single eigenvector y2 already

encodes the primary variability and is thus sufficient for the

discriminative task.

The lack of significant synchronization between ankle and knee

movements observed in diabetic patients suggests the ‘‘incoordi-

Figure 6. Time series of the extracted c(i) and the stride interval (SI) from ankle movement data of a healthy subject. (A) c(i) time
series, which demonstrates significant fluctuation that is not observed in original ankle movement data. (B) Stride interval series extracted from the
ankle movement data, which, due to digitization in data collection, loses much information about the original dynamics.
doi:10.1371/journal.pcbi.1001033.g006

Dynamics of Human Gait by Dimension Reduction
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nation’’ between the ankle and knee movements. This may arise

from the gradual deterioration of the nerves in foot and toes of

the diabetics, which is unable to produce sufficient neural

feedback for the lower limb to be coordinated with the upper

limb. In section ‘‘Characterizing Human Locomotion Dynamics’’

we have found that both the ankle and knee movements for

healthy subjects demonstrate long range correlation, while for

patients, only the knee movement show long range correlation.

This finding is consistent with the result obtained here, i.e., the

ankle and knee movement are more synchronized for healthy

people than for the diabetics. Finally it should be noted that our

study is limited by the relatively small sample size (each group has

10 subjects). Therefore significance tests are performed to verify

the differences observed between the two groups of individuals.

The current conclusion will be further validated on a larger data

base available in the future.

Discussion

Central Nerve Control over Peripheral Nerve System
A fundamental question concerning human walking is the origin

of the long range correlation (or 1=f noise) found in human gait

data, the mechanism of which are not exactly clear [28].

Generally, the locomotor system incorporates inputs from both

the central nervous system such as the motor cortex and basal

ganglia, and peripheral inputs and sensory feedbacks. Both these

two kinds of inputs are suggested to be possible reasons for the

presence of the long range correlation in normal human walking

[4].

In section ‘‘Characterizing Human Locomotion Dynamics’’, we

found that although the locomotion dynamics of the ankle shows

significant difference between the normal persons and the patients

in terms of long range correlation, their knee movements

Figure 7. Power spectrum density (PSD) for a typical healthy subject (the left panel) and a diabetes patient (the right panel). (A) A
healthy subject. (B) A diabetes patient. The top, middle and bottom rows are PSDs for the extracted c(i), stride interval series, and the original ankle
data, respectively. It is obvious that the PSDs for the stride interval series and the original data show no significant difference between the healthy
subject and the diabetic patient. The sampling rate of c(i) can be taken as the mean stride interval, and the log-log PSDs are then fitted with a linear
function using least-square regression.
doi:10.1371/journal.pcbi.1001033.g007

Dynamics of Human Gait by Dimension Reduction
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Figure 8. Mean and standard deviation of the derived statistics for control (CO) and neuropathic (NP) groups. (A) The slope b of the
least-square-fit to the power spectrum density for the ankle movements. (B) The slope b of the least-square fit to the power spectrum density for the
knee movements. (C) The correlation coefficient r between cankle(i) and cknee(i).
doi:10.1371/journal.pcbi.1001033.g008

Figure 9. Synchronization pattern between knee and ankle locomotion revealed by cknee(i) and cankle(i)(upper panel) and stride
interval series SIknee(i) and SIankle(i) (lower panel). (A) A healthy subject. (B) A diabetes patient. As can be seen in the lower panel, the stride
interval series SI(i) cannot distinguish the healthy from the diabetics, as the scatter plots between SIknee(i) and SIankle(i) show similar increasing
trends for both subjects.
doi:10.1371/journal.pcbi.1001033.g009
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demonstrate similar scaling properties. These results support the

belief that the impaired peripheral feedback from the sensors in

the feet of diabetics influences only the lower limb locomotion

while not that of the knees. We therefore conclude that human

walking is not critically dependent on the feedback from peripheral

feedback of the lower-limb, and that the central nervous system is

playing a major role in regulating locomotor dynamics. In fact it

has been found that pathology in central nervous system, such as

Huntington’s disease, can result in a loss of long range correlation

in the gait dynamics [28]. For diabetics, although the peripheral

sensory feedback is weakened, their central nervous system is not

damaged and still plays an important role in adjusting the

locomotion dynamics. This is why their knee locomotion still

demonstrate 1=f dynamics. Finally, it was pointed out that

diabetics may still retain proximal somatosensory inputs, and

visual or vestibular feedback information [33]. Further study need

to be done to clarify the role of these factors in regulating the

dynamics of human walking.

Possible Application to Other Areas
Our approach may be of great relevance, and is expected to

provide more accurate and robust characterization and diagnostics

to the complex oscillatory data observed in general biological and

engineering fields. Reconstructing the dynamics on the cycle scale

also brings new vitality to a number of other approaches which are

otherwise not suitable for analyzing rhythmic data directly, such as

detrended fluctuation analysis [48], recurrence plot [20–22,49],

entropy measures [50–52], surrogate data method [17], causality

analysis[53–56], and so on. The inherent periodicity in time series

can cover up the intrinsic dynamical fluctuation, thus extracting

the dynamics on a cycle scale is crucial for subsequent analysis. For

example, human vowel data and sunspot number variation are

typical oscillatory time series in biomedical and astrophysical

fields. We can easily extract the corresponding c(i) series from

such signals and feed them into DFA algorithm. By this we are

able to tell if the original data has long range correlation on the

cycle scale more reliably than other approaches.

Another striking example of physiological rhythms and their

interaction is the complex, human cardiovascular system (CVS)

[57,58]. For example, the human heart is driving the blood

circulation, in which one heartbeat corresponds to one cycle of

blood pressure variation. Meanwhile, the heart rate is modulated

by respiration through the so called Respiratory Sinus Arrhythmia

(RSA). Analyzing the interaction among these biological rhythms

from simultaneously measured ECG, blood pressure, and

respiration force is crucial for understanding the cardiorespiratory

control and disease diagnostics. Due to noise and non-phase-

coherence of ECG, blood pressure and respiration signal,

traditional measures may not be able to capture the subtle

changes in the degree of synchronization, which could possibly be

probed more accurately by our approach.

Finally, it is worthwhile to note that our approach can also be

applied to time-course microarray data [59,60] as well as

Functional Magnetic Resonance Imaging (FMRI) time series

[61–63]. For example, genes related to cell-cycle control are

always expressed periodically and subject to fluctuation, thus

reliably characterizing the correlation or synchronization pattern

among such genes using microarray data is expected to provide

more insights into the corresponding regulatory network respon-

sible for cell-cycle transcription and regulation. Similarly, FMRI

experiments, which are unusually designed with periodic stimuli,

always lead to periodic BOLD responses demonstrating large

fluctuations [64–66]. Our approach is therefore expected to

evaluate more reliably the functional connectivity among different

regions in the brain for a deeper understanding of cerebral

function.

Supporting Information

Table S1 b and r values for Control (CO) and Neuropathic (NP)

groups.

Found at: doi:10.1371/journal.pcbi.1001033.s001 (0.03 MB PDF)
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